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Ultrasound imaging is frequently employed to aid with fetal development. It 
benefits from being real-time, inexpensive, non-intrusive, and simple. Artificial 
intelligence is becoming increasingly significant in medical imaging and can assist 
in resolving many problems related to the classification of fetal organs. Processing 
fetal ultrasound (US) images increasingly uses deep learning (DL) techniques. 
This paper aims to assess the development of existing DL classification systems 
for use in a real maternal-fetal healthcare setting. This experimental process 
has employed two publicly available datasets, such as FPSU23 Dataset and Fetal 
Imaging. Two novel deep learning architectures have been designed in the proposed 
architecture based on 3-residual and 4-residual blocks with different convolutional 
filter sizes. The hyperparameters of the proposed architectures were initialized 
through Bayesian Optimization. Following the training process, deep features 
were extracted from the average pooling layers of both models. In a subsequent 
step, the features from both models were optimized using an improved version of 
the Generalized Normal Distribution Optimizer (GNDO). Finally, neural networks 
are used to classify the fused optimized features of both models, which were 
first combined using a new fusion technique. The best classification scores, 98.5 
and 88.6% accuracy, were obtained after multiple steps of analysis. Additionally, a 
comparison with existing state-of-the-art methods revealed a notable improvement 
in the suggested architecture’s accuracy.
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1 Introduction

Preterm birth (PTB) is a challenging obstetrical syndrome that 
significantly contributes to newborn health problems and mortality 
(1). The term “maternal-fetal” pertains to the bond between a pregnant 
mother and her unborn baby, encompassing their health and 
interactions (2). Detecting fetal abnormalities increases the likelihood 
of successful treatment (3). During the first trimester of pregnancy, 
the risk of miscarriage is higher than in later trimesters (4). It is a 
critical period for fetal development, and various factors can 
contribute to this increased risk. On a global scale, approximately 15 
million infants are born preterm each year, constituting over 10% of 
all deliveries worldwide. Preterm birth remains a significant public 
health concern due to its potential impact on neonatal health and 
mortality (5). In Brazil, the Ministry of Health currently recommends 
a minimum of six prenatal visits throughout pregnancy—one during 
the first trimester, two during the second, and three during the third. 
Nevertheless, if there are any gestational complications, this number 
should be increase (6). Approximately 2 million premature births were 
reported by the World Health Organization in 2019. The majority of 
these might have been prevented by ensuring safe, high-quality care, 
implementing timely emergency interventions, and keeping accurate 
records (7). Early obstetric ultrasound determines the location of the 
pregnancy, detects fetal cardiac activity, estimates gestation, identifies 
multiple pregnancies and fetal anomalies, reduces the likelihood of 
inductions after term, and enhances the experience of pregnancy (8). 
Vietnam’s Ministry of Health recommends at least four antenatal care 
(ANC) visits. In urban and rural areas, nearly all women attend at least 
one. As of the early 21st century, ANC includes three routine 
ultrasounds and a third-trimester growth scan (9). During a cross-
sectional investigation conducted in Poland, the importance of 
physical activity before and during pregnancy was highlighted, 
emphasizing its role in reducing adverse perinatal outcomes (10). A 
healthy pregnancy not only promotes long-term maternal well-being 
but also positively impacts the child’s development from infancy to 
adulthood (11). Maternal health is strongly correlated with a reduced 
risk of chronic conditions in children, such as obesity, diabetes, and 
cardiovascular disease (12). Despite improvements in maternal health 
outcomes across Europe, significant disparities persist. Some countries 
report maternal mortality rates up to four times higher than the 
European Union average. For instance, in 2021, the EU average was 4 
deaths per 100,000 live births, while Romania and Bulgaria reported 
around 16 per 100,000 (13). Early and continuous prenatal care can 
reduce maternal mortality and morbidity by up to 50% and improve 
birth outcomes by 60%, according to WHO estimates (14).

According to a survey conducted in the United  States, infant 
mortality rates dropped by 14% from 2007 to 2017. However, in some 
developing countries, a lack of publicly available resources to address 
such health conditions has serious consequences for many infants and 
pregnant women (15). Medical imaging technology has improved 
significantly in recent years, making fetal imaging a more mature 
discipline (16). Ultrasound (US) (17) is frequently employed in 
clinical practice due to its ability to provide real-time imaging, low 
cost, and lack of radiation. During the ultrasound examination, 
various important aspects of the fetus must be identified, sized, grown, 
oriented, and gestational age determined (18). The first trimester of 
pregnancy is also an excellent time to use ultrasonography to identify 
any potential abnormalities in the uterus or cervix (19). Fetal 

movements and maternal respiration introduce motion artifacts that 
corrupt the data (16). Automated organ localization is challenging due 
to fetal positioning and placental location irregularities. Moreover, the 
complexity of texture differentiation increases due to the presence of 
both fetal and maternal tissues in ultrasound imaging (20). In cases of 
multiple pregnancies, data processing and analysis become even more 
complicated as fetal structures are duplicated (21). Such variability has 
the potential to result in misdiagnosis, such as inaccurately estimating 
fetal growth, or even worse, it can lead to missed conditions, making 
the process time-consuming (4). To guarantee accurate interpretation 
of data obtained from these examinations, the task is performed 
manually by trained research technicians and later validated by a 
senior specialist in maternal-fetal care (22).

However, the crucial task of determining the fetus’s orientation 
and assessing vital biometric measurements, such as abdominal 
circumference or femur length, necessary for determining gestational 
age, currently depends solely on the expertise of trained sonographers 
and physicians (18). Well-organized retrospective data is vital for 
studies on fetal growth and diseases (3). Therefore, implementing an 
automated system capable of performing this task would enhance 
cost-effectiveness and potentially reduce errors and mistakes (22). The 
demand for automatic computer-aided diagnosis (CAD) to assess the 
caliber images from ultrasound is increasing, mainly to assist junior 
doctors. This trend, known as “intelligent ultrasound,” is driven by the 
quick advancement of medical imaging techniques (23). To observe 
and detect certain anatomical structures using machine learning and 
neural networks, many dedicated research works have focused on the 
excellent evaluations of unborn offspring ultrasound pictures (24). 
Integrating deep neural networks (DNN) in CAD has proven highly 
advantageous, resulting in decreased errors and improved 
measurement efficiency compared to healthcare professionals and 
conventional CAD tools (18). Preprocessing is performed on the 
obtained 2D ultrasound pictures to enhance feature extraction and 
address issues related to redundant information. The feature extraction 
process involves analyzing objects and images to identify the 
distinctive characteristics representing different object classes (25). 
Feature Selection is performed to selecting relevant features and then 
in maternal-fetal medicine, different imaging modalities (e.g., 
ultrasound, magnetic resonance imaging) or various types of data 
(e.g., physiological measurements, biomarkers) could be  fused to 
enhance the understanding and assessment of maternal and fetal 
health (26).

Artificial intelligence (AI) techniques have enabled recent 
breakthroughs in obstetrics and gynecology, allowing for rapid and 
automated identification and measurement of both normal and 
abnormal ultrasound findings (27). Despite this development, no 
research has been conducted to evaluate fetal occiput position during 
labor using an AI-based model (27). Deep Learning (DL) has made 
significant progress in image recognition, especially with 
Convolutional Neural Networks (CNNs), and artificial intelligence has 
grown substantially over the past decade. DL, particularly in medical 
imaging, is rising, showing promise in magnified visuals, heart disease 
diagnostics, and gynecological imaging (28). In fetal imaging, DL has 
become a valuable tool for educating and training young and 
inexperienced medical professionals, offering benefits in recognizing 
fetal development and measuring prenatal biometry (29). Its 
automation potential reduces variability and examination times, 
enhancing workflow efficiency and reducing long-term fatigue and 
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injuries. DL algorithms excel at identifying fetal standard planes, 
including the brain, thorax, femur, heart, and abdomen (30).

This study aims to evaluate the potential of deep convolutional 
neural networks in automating the classification of typical maternal-
fetal ultrasound planes. The ultimate aim is to enhance diagnostic 
accuracy and elevate clinical performance, presenting a promising 
future for healthcare. A new deep learning framework is proposed in 
this work for accurate classification of common maternal fetal 
classification using Ultrasound images. The major contributions of 
this work are as follows:

 • We have introduced two novel convolutional neural network 
architectures, namely the 3-Residual and the 4-residual-block 
models, each designed to enhance efficiency compared to ResNet 
18 and ResNet 50.

 • Proposed 3-Residual model incorporates three residual blocks 
with fewer parameters than ResNet 18 and ResNet 50, ensuring 
computational efficiency while maintaining 
competitive performance.

 • Proposed four-residual-block model introduces additional 
hidden layers and a limited number of max-pool layers, achieving 
efficiency through a reduced parameter count compared to 
ResNet 18 and ResNet 50.

 • Our proposed models prioritize streamlined architectures 
without compromising accuracy, distinguishing them as efficient 
alternatives to the benchmark ResNet models.

 • We have proposed an enhanced version of the Generalized 
Normal Distribution Optimization algorithm to eliminate 
irrelevant features from the extracted features. This modification 
aims to select the best features, ultimately enabling us to achieve 
the highest accuracy.

2 Literature review

A few deep-learning techniques have been introduced in the 
literature to classify common maternal fetuses from Ultrasound 
images. Selvathi and Chandralekha (31) employed a complex 
convolutional neural network method to identify regions to examine 
ROI in ultrasound images containing fetal biometrics and organ 
structures. The image feature was evaluated using AlexNet (32), 
GoogleNet (33), and CNN based on the depiction of key fetal 
biometric structures within the ROI. The presented work achieved 
90.43, 88.70, and 81.25% accuracy with AlexNet, GoogleNet, and 
CNN, respectively, while classifying 400 images, including normal and 
abnormal ultrasound data. Nurmaini et  al. (34) developed DL 
approaches for diagnosing CHDs in fetal ultrasound scans, with 
DenseNet201 as the top classifier for seven CHD categories and 
normal cases. All feature maps from previous layers are merged in the 
DenseNet architecture to facilitate information distribution. In 
contexts involving both intra-patients and other patients, 
DenseNet201 achieved excellent sensitivity, specificity, and accuracy.

The study aims to support front-line sonographers and enhance 
CHD diagnostics with expert fetal cardiologist assistance. Płotka et al. 
(35) presented a versatile deep-learning architecture called FUVAI, 
specifically developed for analyzing fetal ultrasound videos. FUVAI 
performs multiple tasks simultaneously within fetal ultrasound videos, 
including localizing standard planes, classifying and measuring 

unborn biometric credentials, and estimating maternal age and fetal 
dimensions from the video sequences. The results demonstrated that 
FUVAI achieved performance equivalent to that of humans, as agreed 
upon by experienced audiologists. According to Rahman et al. (19), 
the experiment aimed to employ Artificial Neural Networks (ANNs) 
explored in predicting obstetrical outcomes in samples of low-risk 
pregnant women. The study used an Artificial Neural Network (ANN) 
trained with eight input variables representing obstetrical history to 
predict preterm birth and high-risk preterm birth outcomes. 
Moreover, the researchers refined the model by excluding cases that 
involved free-flow oxygen resuscitation. The refined high-risk preterm 
delivery model achieved 54.8% sensitivity compared to the preterm 
birth model without artificial transportation. Utilizing the YOLOv4 
(21) target detection algorithm, the method incorporated additional 
attention mechanisms to pinpoint crucial anatomical structures. The 
strategy yielded amazing results, attaining an impressive mean 
identification precision of 94.16% for six formations, a precision rate 
of 97.20% for the regular median sagittal plane, and an accuracy level 
of 99.07% for the typical retro-nasal triangle perspective. As a result, 
automatic acquisition in early pregnancy ultrasound screenings may 
become feasible with the developed method.

In 2022, Arroyo et al. (36) developed an automated diagnostic 
framework to improve obstetric care in under-resourced communities 
with limited ultrasound imaging. The framework utilized a 
standardized VSI protocol and the UNet deep learning algorithm, 
eliminating the need for experienced sonographers or radiologists. 
The UNet model showed remarkable accuracy in evaluating fetal 
presentation, placental location, and biometric measurements, 
potentially reducing healthcare disparities in underserved regions. 
Torrents-Barrena et al. (16) focus on efficient segmentation techniques 
for fetal MRI and 3D ultrasound images of intrauterine tissues. 
Radiomic features are used to characterize anatomies, and machine 
learning helps identify optimal features for accurate segmentation 
using support vector machines. Utilizing DeepLabV3+ or BiSeNet in 
MRI applications and employing PSPNet or Tiramisu for 3D 
ultrasound imaging and specific radiomic features further improves 
fetal and maternal tissue segmentation, advancing surgical planning 
and segmentation techniques. To enhance tissue characterization, 
Figure  1 shows the 10 top engineering features and network 
framework elements for each anatomy. According to a global survey, 
approximately 8% of the population is impacted by genetic syndromes, 
but genetic diagnoses are typically made after birth. To address this, 
Tang et al. (37) introduced a new fully automated prenatal screening 
algorithm called Pgds-ResNet, which was developed, utilizing deep 
neural networks to identify high-risk fetuses with different genetic 
diseases. The algorithm found that diagnostic information could 
be extracted from fetal features such as the nose, jaw, and forehead. It 
is essential to understand that this deep-learning-based tool is a 
diagnostic aid to doctors, streamlining the process without replacing 
their expertise. Mirzamoradi et al. (5) introduced an artificial neural 
network (ANN) approach to early predict preterm birth (PB), enabling 
physicians to initiate treatment sooner and reduce the risk of infant 
morbidity and mortality. The study employs a feed-forward ANN with 
seven hidden neurons for PB prediction and achieves an accuracy of 
79.03% in classifying subjects into normal and PB categories. Li et al. 
(38) employed ResNet50, a pre-refined model based on deep 
multilayer neural networks, to reduce inter-observer variation in 
identifying fetal growth. Using the model, Crown Rump Length (CRL) 
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images between 11 and 13 + 6 weeks were classified as either accurate 
or inaccurate. Through the implementation of a skip link strategy for 
constructing a more intricate network tuned to the particular tasks 
hyper parameters, the system achieved an 87% accuracy in identifying 
the images across preparation, validation, and test datasets from a real 
dataset containing 900 CRL images, with 450 images being correct and 
450 being incorrect.

Prabakaran et al. (18) introduced FPUS23, a novel fetal phantom 
ultrasound dataset tailored to diagnose fetal biometric values, 
determine fetus orientation, recognize anatomical features, and 
outline bounding boxes for fetal phantom anatomies at 23 weeks 
gestation. It comprised 15,728 images employed to train four Deep 
Neural Network models using a ResNet34 backbone for feature 
detection. The assessment demonstrated that models trained on 
FPUS23 enhanced accuracy by 88% when applied to actual ultrasound 
fetus datasets. Włodarczyk et  al. (39) developed a ConvNet for 
automated classification of prenatal ultrasound images and preterm 
birth detection. The CNN efficiently handled various cervix types in 
transvaginal ultrasound images, using image features to predict 
autonomous preterm birth. The authors evaluated three widely 
recognized network models to address the cervix segmentation 
challenge: U-Net, Fully Convolutional Network, and Deeplabv3. It 
achieved impressive results with high segmentation accuracy (with a 
mean Jaccard coefficient index of 0.923 ± 0.081) and exceptional 
classification responsiveness (0.677 ± 0.042), while maintaining a low 
false positive rate (3.49%). Baumgartner et  al. (40) presented a 
convolutional neural network (CNN) technique to autonomously 
recognize and pinpoint 13 typical fetal perspectives within 2-D 
ultrasound data. Xie et al. (41) discovered 2,529 and 10,251 abnormal 
pregnancies, respectively, confirmed by ultrasounds, follow-ups, or 
autopsy. The training data focused on lesion location, skull 
segmentation, and classification of normal and pathological images.

Lim et al. (42) gathered a diverse dataset of 33,561 de-identified 
two-dimensional obstetrical ultrasound images collected between 
January 1, 2010, and June 1, 2020. The dataset was classified into 19 
unique classes based on standard planes and split into training, 
validation, and testing sets using a 60:20:20 stratified technique. Using 
a convolutional neural network framework and transfer learning, the 
standard plane classification network achieved impressive results, with 
99.4% accuracy and a 98.7% F1 score. Furthermore, the diagnostic 
usability network performed exceptionally well, achieving 80% 
accuracy and an F1 score of 82%.

Ferreira et al. (26) employed medical data from 808 participants 
and 2024 ultrasound pictures to create AI models that predict vaginal 
delivery (VD) and cesarean birth (CS) results following induction of 
labor (IOL). The best model, based solely on clinical data, achieved an 
F1-score of 0.736 and a PPV of 0.734. Ultrasound-based models, 
particularly those using femur images, showed lower accuracy. An 
ensemble model combining clinical data with femur images offered a 
balanced trade-off between false positives and false negatives but had 
6.0% less accuracy compared to the clinical-only model.

To improve feature extraction and minimize noise, Qiu et al. (43) 
presented PSFHSP-Net, a simplified neural network that utilizes an 
improved ResNet-18 with a single convolutional layer and three 
residual blocks. The model achieved strong performance, with an 
accuracy of 0.8995, F1-score of 0.9075, and processing speed of 65.7909 
FPS, surpassing other models in efficiency. Despite a slight reduction 
in precision compared to ResNet-18, PSFHSP-Net significantly 

reduced model size from 42.64  MB to 1.48 MB, making it highly 
effective for real-time processing while accurately identifying PSFHSP.

In summary, the discussed studies used pre-trained deep learning 
architectures such as DenseNet, DeepLabV3, and YOLO. Moreover, they 
also used U-Net architecture for the cervix segmentation. The main focus 
of the above studies was the classification of maternal-fetal. However, 
there is still a gap in the accuracy and precision rate due to the following 
challenges: pre-trained models contain many learnable and gain much 
time in the training. In addition, the redundant information extraction 
took more time and reduced the classification accuracy. Hence, designing 
specific maternal fetal classification CNN architecture and implementing 
an optimization technique to reduce irrelevant features is essential.

3 Proposed methodology

The following section introduces the framework for classifying 
maternal and fetal characteristics using ultrasound images. Figure 1 
showcases the framework of the proposed framework, which involves 
training two datasets, the fetal dataset, and FPSU23 datasets, on two 
models with 3 Residual blocks and 4 Residual blocks. Following this, 
feature extraction is performed, resulting in two feature vectors 
obtained from the global average pool layer. Subsequently, an 
improved generalized normal distribution optimization technique is 
employed for feature selection, and a serial probability-based approach 
is used to fuse the best features. As a final step, deep neural network 
classifiers are applied to the fused features in order to produce the final 
classification results.

3.1 Feature extraction

In this study, two datasets were used: The fetal dataset and 
FPSU23. The details of both datasets are given below.

3.1.1 FPSU 23 dataset
The FPSU23 was developed in 2023 and consists of four classes 

(18). The four classes are Abdominal Circumference (AC), Biparietal 
Diameter (BPD), Femur Length (FL), and No Plane. As described in 
Table 1, the number of images differs throughout classes, as showed 
in Figure 2.

Abdominal circumference (AC): The abdominal circumference 
measures the widest part of the abdomen and is used in healthcare for 
various purposes, including assessing adult abdominal fat and 
monitoring fetal growth during pregnancy.

Biparietal diameter (BPD): Prenatal ultrasounds utilize the 
biparietal diameter (BPD) measurement to assess fetal head size and 
development, involving the distance between major parietal bones on 
the fetal skull. This measurement aids in gestational age assessment 
during the early to mid-second trimester.

Femur length (FL): FL measurement in prenatal ultrasounds tracks 
fetal thigh bone length, assisting in gestational age estimation and 
growth monitoring, focusing on the second and third trimesters for 
gestational age determination.

3.1.2 Fetal dataset
This dataset includes six classes: fetal abdomen (FA), fetal brain 

(FB), fetal femur (FF), fetal thorax (FT), maternal cervix (MC), and 
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not a brain (NB) (44). The fetal abdomen consists of 1422 images; 
Fetal Thorax contains 1718 images; fetal class includes 3092 images; 
maternal cervix consists of 1626 images; and the fetal femur contains 
2080. As described in Table 2, the number of images differs throughout 
classes, as showed in Figure 3.

Fatel brain: As the fetal brain develops from the neural tube 
during pregnancy, it continues to develop into early childhood, 
affecting cognitive and motor development. Ultrasound and MRI are 
crucial tools for detecting fetal abnormalities during pregnancy.

Fatel thorax: An unborn infant’s fetal thorax contains respiratory 
and circulatory tissues from neck to abdomen. Monitoring this region 
can identify potential respiratory or circulatory issues and abnormalities.

Maternal cervix: During pregnancy and childbirth, the maternal 
cervix extends into the vaginal canal and plays a crucial role. For 
predicting premature labor, monitoring its length and condition is 
critical to assessing the risk of premature birth and tracking 
cervical changes.

3.2 Proposed three-residual blocks CNN

Residual blocks are a fundamental architectural component in deep 
neural networks, particularly in the context of convolutional neural 
networks (CNNs). They were introduced as part of the “ResNet” 
(Residual Network) architecture by Jian et al. (45). In deep networks, 

residual blocks address the problem of vanishing gradients, which can 
hinder training and limit their ability to learn complex features. In a 
residual block, the input to a layer is passed through that layer and 
directly to subsequent layers. This introduces a shortcut connection 
that bypasses one or more layers, allowing the network to retain and 
propagate gradient information more effectively during training. The 
motivation for choosing residual blocks because it facilitate the learning 
of deeper architectures by enabling the network to preserve important 
feature information through skip connections, ensuring better gradient 
flow. In the specific domain of fetal image classification, deeper 
networks with residual connections allow the model to capture more 
complex patterns without increasing the computational cost, making 
them highly relevant for achieving accuracy while maintaining efficiency.

The structure of a residual block typically involves three main 
components: the input path (the original input to the block), the residual 
path (which processes the input through a series of layers), and the skip 
or shortcut connection (which directly adds the input to the output of 
the residual path). The result is that a residual block aims to learn the 
residual (the difference between the input and the output), making it 
easier for the network to fine-tune the learned features. Maintaining a 
stride of 1 across all layers is vital in residual block to enable parallel 
fusion. This ensures compatibility between the sequence of various 
layers before addition and the layers within the block, requiring the size 
of the last layer in the set and the last block layer to match.

Initiating with an input layer sized at 224 × 224 × 2 and a depth of 3. 
The network begins with a convolutional layer configured with the 
following parameters: a depth of 32, a kernel size of 3 × 3, and a stride of 
2. These values correspond to the number of filters (depth), the size of 
the receptive field (kernel), and the step size (stride) used to move the 
filter across the input. A relu activation layer is applied following each 
convolutional layer to introduce nonlinearity and boosting the network’s 
ability to recognize intricate patterns and preventing the loss of learning 
strength by nullifying negative values. The next step in the process is to 
add another convolutional layer with a depth of 64, 3 × 3 filter and a 
stride of 2. To reduce the spatial dimensions while preserving essential 
features, a Relu activation layer and a max pooling layer having 3 × 3 with 

TABLE 1 A summary of the FPSU23 dataset.

FPSU 23 dataset

Class #Images Training/Testing

Abdominal circumference 1386 693/693

Biparietal diameter 1280 640/640

Femur length (FL) 1281 641/640

No plane 1318 659/659

FIGURE 1

A framework for maternal-fetal classification using ultrasound images.
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stride 1 follow. Then, the first residual block is appended, consisting of 
five layers. The initial two convolutional layers have 512 depth, 3 × 3 filter 
and stride 1. A pair of relu activation layers are positioned after each 
convolutional layer. Concluding this block, an extra convolutional layer 
with a depth of 64, 3 × 3 filters, and a stride of 1 is integrated. An addition 
layer is introduced to establish connections, merging data through 
element-wise addition, thus augmenting the network’s capacity to 
comprehend relationships and intricacies. After this, two additional 
convolutions are applied, with each convolution followed by two relu 
activation layer. Both layers maintain a depth of 1024 and employ a filter 
size of 3 × 3 with a stride of 2, as shown in Figure 4. A detailed architecture 
is shown in Figure 5. Both layers keep a depth of 1024 and utilize a filter 
size of 3 × 3 with a stride of 2. A max pooling layer with a filter size of 
3 × 3 and a stride of 1 is added. Subsequently, two convolutional layers 
are appended, one with a depth of 512 and the other with 64. Both 
maintain a filter size of 3 × 3 and a stride of 2. Another max pooling layer 
with a filter size of 3 × 3 and a stride of 1 follows. A convolutional layer 
and Relu layer pair are included before the subsequent residual block is 
added. Then a convolutional with 1024 depth, 3 × 3 filter and stride of 2 

added. The second residual block is integrated in this step, featuring 
seven layers. The first convolutional layer, accompanied by a Relu layer, 
maintains a depth of 64, a filter size of 3 × 3, and a stride of 1. A pair of 
convolutional and Relu layers follow, both have 512 depth, 3 × 3 filter, and 
a stride of 1. A max pooling layer with a filter size 3 × 3 and a stride of 1 
ensues. Concluding the second residual block are two convolutional 
layers, one with 512 depth and the other with 1024. Both layers possess 
3 × 3 filter and a stride of 1. The second addition layer integrates the 
residual block and the layers (Figures 6, 7).

Two convolutional layers, each with a subsequent Relu layer, are 
implemented next. Both layers maintain a 512 depth, stride 2 and 3×3 
kernel size. Following these, two convolutional with accompanying 
relu layers are inserted. Both layers have a depth of 1024, 3×3 filter, 
and a stride of 2. A max pooling layer with 3×3 filter and a stride of 1 
follows. A convolutional layer, followed by a Relu layer, is then 
appended with a depth of 2048 and a stride of 2. Subsequently, a max 
pooling layer with 3×3 filter and a stride of 1 is added. The third 
addition layer concludes this set. The third residual block, consisting 
of eight layers, is introduced. The initial convolutional layer, 
accompanied by a relu layer, maintains a depth of 64, 3×3 filter, and a 
stride of 1. Following this, convolutional and Relu layers are 
incorporated, each holding 1024 depth, 3×3 kernel with stride 1. A 
max pooling layer with a filter size of 3×3 and a stride of 1 ensues. 
Subsequently, another pair of convolutional and Relu layers are 
included. The convolutional layer holds 1024 depth, 3×3 kernel size 
with stride 1. Concluding the third residual block is a convolutional 
layer with a depth of 2048, 3 × 3 kernel, with stride 1. The final step 
involves the addition of a pair of convolutions, each accompanied by 
a following relu layer, with a depth of 2048, 3 × 3 kernel, with stride 2. 
Lastly, the deep neural network concludes with a global average 
pooling layer, a fully connected layer, and a Softmax layer. In the 
proposed architecture, the loss was calculated using the cross-entropy 

FIGURE 2

A few sample images of the FPSU23 dataset for classification purposes.

TABLE 2 A summary of the fetal dataset.

Fetal dataset

Class #Images Training/Testing

Fetal abdomen 1422 711/711

Fetal thorax 1718 858/857

Fetal brain 3092 1546/1546

Not a brain 4213 21066/21065

Maternal cervix 1626 813/813

Fetal femur 2080 1040/1040
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loss function. This function is extensively used in classification 
problems since it calculates the difference between the projected 
probability distribution and the true labels, effectively assessing the 
model’s performance. The training loss for the 3-residual block model 
on the FPUS23 dataset was 5.7, whereas it measured 24.8 for the 
fetal dataset.

3.2.1 Four-residual block CNN
The proposed 4-residual blocks CNN architecture consists of 

4-residual blocks, with each block comprising multiple layers, and few of 
them are different from 3-residual blocks CNN. The first input layer of 

this architecture has a size of 224 × 224 3×  and a depth of 3. A convolution 
layer included has 64 depth, 3 × 3 kernel size with stride 2. After 
convolution layers, a relu layer is incorporated; then second convolution 
added with 256 depth, 3×3 filter, and a stride of 2. This is succeeded by a 
relu layer with max pool, utilizing 3 × 3 kernel and a stride 1.

The first residual block, which has a total of six layers, is then 
added after that. The initial two convolutional exhibit 64 and 256 
depth, both utilizing the 3×3 filter and stride value 1. Each 
convolutions is followed by a strategically placed set of relu layers, 
which introduce non-linearity into the network. A subsequent 
addition is a batch normalization layer boasting 256 channels. At the 

FIGURE 3

A few sample images of the fetal dataset.

FIGURE 4

A visual architecture of 3-residual blocks CNN.
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end of the first residual block, the addition of a max pooling layer 
comes into play, featuring 3 × 3 kernel with stride 1. The first addition 
layer combines the residual block and set of layers.

Following the initial convolution, a relu layer was added with a 64 
depth size, 3 × 3 filter, with stride 2. Next, two convolutional layers 
were introduced, with depths of 256 and 512, using a 3×3 filter size 

FIGURE 5

Detailed layered architecture of 3-residual blocks CNN.
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and maintaining a stride of 2. After each convolutions, a set of relu 
layers was strategically placed. Another convolutional layer, followed 
by a relu layer, was added with a 1024 depth, 3 × 3 filter with stride 2. 
Lastly, a max pool added with 3 × 3 kernel.

The second residual block, which has six layers, is added at this step. 
The initial two convolutional layers exhibit depths of 512 and 1024, 
both utilizing 3 × 3 kernel with 1. Following each convolutional layer, a 
set of Relu layers is thoughtfully positioned to infuse non-linearity. A 
subsequent addition is a batch normalization layer boasting 1024 
channels. At the end of the first residual block, the addition of a max 
pooling layer comes into play, featuring 3 × 3 kernel and stride 1. The 
second addition layer combines the residual block and set of layers.

After this, the first convolutional layer with the following Relu was 
added with 512 depth, 3 × 3 filter, and stride size 2. After this, two 
convolutions exhibit depths of 1024 and 2048, utilizing the same 3 × 3 
filter and maintaining a stride of 2. At the end of this set, a max 
pooling layer has been added.

The third residual block, which has six layers, is then added. The 
initial two convolutional layers exhibit depths of 1024 and 2048, 
utilizing the 3 × 3 kernel. Following each convolutional layer, a set 
of Relu layers is thoughtfully positioned to infuse non-linearity. A 
subsequent addition is a batch normalization layer boasting 2048 
channels. At the end of the first residual block, the addition of a max 
pooling layer comes into play, featuring 3 × 3 kernel and a stride of 
1. Now, the third addition layer combines the residual block and set 
of layers. The 4th residual block, which has six layers, is added at 
this step. The initial two convolutional layers exhibit depths of 1024 
and 2048, utilizing the same 3 × 3 kernel. After convolution layers, 
a set of relu activation is thoughtfully positioned to infuse 
non-linearity. A subsequent addition is a batch normalization layer 
boasting 2048 channels. At the end of the first residual block, the 

addition of a max pooling layer comes into play, featuring 3 × 3 
kernel size with 4th addition layer combines the residual block and 
set of layers.

At the end of this model, a convolution with the following relu 
layer added has 1024 depth, 3×3 kernel size, and stride 2. Next 
again, a convolution with the following rule’s has been added with 
2048 depth and has same kernel. Then a max pool layer having 3 × 3 
kernel added. Then, the global average pooling layer is fully 
connected, and the Softmax layer has been added. The training loss 
for the 4-residual block model on the FPUS23 dataset was 4.9, with 
a corresponding value of 18.8 for the fetal dataset. The proposed 
3-Residual and 4-Residual-block models differ from pre-trained 
architectures such as ResNet18 and ResNet50  in terms of both 
design and parameter efficiency. 3-Residual block model has 3.77 
million parameters, significantly fewer than ResNet 18’s 11.7 
million parameters. It incorporates only three residual blocks, 
prioritizing computational efficiency without sacrificing accuracy 
and 4-Residual-block model has 18.87 million parameters which is 
fewer than ResNet50 model 23.5 million parameters. The reduced 
number of parameters leads to faster training and inference times, 
making it a lightweight alternative to deeper models.

3.3 Selecting hyperparameters

In this work, we  use Bayesian Optimization (BO) to select 
hyperparameters values employed in the proposed architecture for 
the training process. Bayesian optimization was selected due to its 
efficiency in identifying optimal parameters with fewer evaluations, 
compared to methods such as the grid search algorithm. BO builds 
a probabilistic model to explore the hyperparameters space 

FIGURE 6

A visual architecture of proposed 4-residual blocks CNN.
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FIGURE 7

Layered architecture of the CNN with 4- residual blocks.
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intelligently, concentrating on promising regions and avoiding 
exhaustive searches. BO offers a more effective solution for deep 
networks, where each evaluation can be computationally intensive. 
By contrast, grid search and other algorithms. The 3-residual-block 
model has been trained with 3.77 million hyper parameters, while 
the 4-residual-block model has been trained with 18.87 million 
hyper parameters. The optimization of DL architectures comprises 
a black box optimization process, where the objective function is a 
black box function. The main aim of BO is to obtain the values of 
hyperparameters that help improve the accuracy of training models 
than inexpert researchers. The process of BO is defined under the 
following six steps.

 • By employing the Gaussian Process, the posterior distribution is 
adopted to update the previous results of a black box function F . 
Mathematically, the Gaussian Process function is defined by 
Equation 1.

 ( ) ( ) ( )( )~ , ,F u GAP u u uµ ξ ′  (1)

Where ( )uµ  denotes the mean function ( )u Rµ ∈  and covariance 
function :k u u× .

 • Using an acquisition function, the optimal point for the function 
F  is selected using the expected improvement as the acquisition 
function, which is defined by Equation 2.

 
( ) ( ) ( ){ }1max 0, tEI u F u F u++= −

 
(2)

 • Using EI , we  trained to maximize the ( )EI u  w.r.t. current 
optimal value ( )F u+ . Mathematically, it is defined by Equation 3.

 ( )( )u argmax EI uφ=     (3)

 • The objective function F  is utilized to find the validation 
set results.

 • Augmenting the best-optimized sample points to the data 
already selected.

 • The statistical Gaussian Process model is finally updated.

Iterations are repeated until a maximum number is reached. In 
this paper, we selected several hyperparameters after employing BO 
(see Table 3). In addition, the visual process of BO is shown in Figure 8.

3.4 Training the proposed model and 
extracting features

On the chosen datasets, both proposed architectures have been 
trained using a ratio of 50 and 50  in the training process. Several 
hyperparameters (HPS) have been used in the training process, as 
mentioned in Table 3. The hyperparameters settings determine the 
training of the models, which is followed by the extraction of features 
based on the learned features. Throughout the training process, 
features are extracted from the global average pooling layer of the 
trained models. The extracted features are analyzed at this stage, and 
it was observed that some irrelevant information is included that 
should be removed for the final classification. Global average pooling 
layer is used for feature extraction and we obtain two feature vectors 

1vF  from 3 residual block model and 2vF  from 4 residual block model 
of dimensions 2048N × . We proposed an improved feature selection 
method named the Improved Generalized Normal Distribution 
Optimization (IGNDO) algorithm to resolve this issue.

3.5 Improved feature selection algorithm 
and fusion

In real-world problems, population-based methods provide 
efficient solutions using artificial intelligence (AI) (46). Optimization 

TABLE 3 Hyperparameters selection of proposed deep models using BO.

HP Name Range Value

Learning rate 0.01–0.999 0.000274

Mini-batch size 16–256 128

Regularization 0.01–1 L2

Momentum 0–1 0.699

Learning algorithm – SGDM

L2 weight – 1e−6

Activation function – Sigmoid

FIGURE 8

The visual process of hyperparameters selection using BO.
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FIGURE 9

A framework of GNDO for best feature selection.

techniques encompass both gradient and non-gradient approaches. In 
this work, we implemented an improved version of the Generalized 
Normal Distribution optimization called IGNDO. The improved 
GNDO algorithm is applied on these feature vectors separately and 
then obtained two best feature vectors that contain only important 
information (best features).

Generalized normal distribution optimization (GNDO): The 
GNDO emerges as an efficient technique without requiring fine-
tuning of initial parameters. In 2020 (47), a noteworthy addition to 
the realm of optimization algorithms emerged as the GNDO 
algorithm. Various sophisticated mathematical models were used to 
develop this innovative algorithm, all based on the elegant concept of 
normal distributions. The algorithm is an example of metaheuristics, 
which takes inspiration from classical normal distributions. A diverse 
array of mechanisms is employed by the GNDO algorithm to perfectly 
balance the key dynamics of exploration and exploitation within its 
framework. This fusion of mathematical precision and creative 
imagination represents a significant advancement in optimization 
techniques. The Gaussian distribution, commonly called the normal 
distribution, is a fundamental tool for characterizing natural 
phenomena. An outstanding feature of the GNDO algorithm is its 
avoidance of specific controlling parameters, instead relying solely on 
determining essential population size and terminal condition before 
its execution. Furthermore, the algorithm’s simplicity shines through 
its uncomplicated structure, where individual positions are updated 
using a formulated generalized normal distribution (48).

We can define a normal distribution like this: Suppose there is a 
random variable y, which adheres to a probability distribution defined 
by the location parameter (μ) and the scale parameter (δ). The 
expression of its density function for probability takes the form:

 

( ) ( )2
2

y1f y exp
2 2πδ

 − µ = −
 δ   

(4)

Here’s how we can describe a normal distribution: Imagine there 
is a random variable y, which can be denoted as a normal distribution, 
specifically ( ),yN µ δ . As Equation 4 indicates, a normal distribution 
involves two key variables: the location parameter μ and the scale 
parameter δ. These parameters, μ and δ, represent the average value 
and the standard deviation of random variables, respectively.

Searching through a population-based optimization method is 
divided into three major stages. Initially, individuals are scattered 
widely. Later, they begin employing strategies that balance global and 
local solutions, moving toward the ideal global solution. As a result, 
the individuals come together to identify the best solution. This search 
process can be  likened to the behavior of multiple normal 
distributions. All individuals’ positions are determined by random 
variables with a normal distribution. During the initial phase, there is 
a significant difference between the average position of individuals 
and the optimal solution’s location. Simultaneously, a variation in the 
positions of all individuals is also relatively high at this point. As the 
process advances into the second phase, the difference between the 
average and optimal solution positions systematically lessens.

Similarly, the variability in individuals’ positions starts decreasing. 
In the final phase, the distance between the average position and the 
optimal solution’s location and the variability in individuals’ positions 
reach their lowest points. This signifies the population’s convergence 
around the most optimal solution. A visual framework of GNDO is 
shown in Figure 9.
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GNDO features a straightforward framework in which local 
exploitation and global exploration represent the core information-
sharing mechanisms. The execution of GNDO relies on developing 
local exploitation and global exploration strategies. Local exploitation 
revolves around a generalized normal distribution model that has 
been established and is directed by the current mean and optimal 
positions. On the other hand, global exploration involves three 
individuals chosen randomly. These two strategies carry equal 
significance in GNDO and have equal selection probabilities. GNDO 
stands out for its minimal requirements: specifying population size 
and termination conditions before starting. After evaluating individual 
performance using an objective function, the algorithm iterates, using 
random numbers to transition between exploration and exploitation 
until the end criterion is met. Moreover, similar to other optimization 
algorithms based on populations, the GNDO population is initialized 
using the Equation denoted as Equation 5:

 ( ) 5, 1,2,3, , , 1,2,3, ,t
iy pj rj pj i N j Dλ= + − × = … = …  (5)

Here, D represents the count of design variables, t
iy  signifies the 

position of the ith individual at time t , the symbol pj denotes the lower 
limit of the jth design variable, rj signifies the upper limit of the jth 
design variable, and λ5 is a randomly generated number ranging 
between 0 and 1. The obtained outcomes are subject to analysis using 
a Wilcoxon signed-rank test, considering a significance level of α = 0.05.

3.5.1 Local exploitation
Local exploitation pertains to the quest for better solutions within 

the immediate positions of all individuals scattered throughout the 
search space. To commence, the algorithm initiates by generating a 
random population; this is achieved by applying the subsequent 
Equation 6:

 i 1,2,3, , Nt
iw i iµ δ= + ×η = …  (6)

The population size, denoted as N , is coupled with the trial vector 
t
iw  for the ith individual at time t . The generalized mean position of 

the ith individual is represented by iµ , while δi stands for the 
generalized standard variance. Additionally, the role of η comes into 
play as the penalty factor.

 
( )1

3
t t
i Besti y y Mµ = + +

 
(7)

 
( ) ( ) ( )

2 2 21        
3

δ µ µ µ = − + − + − 
 

t t
i Besti y y M

 (8)
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( )

1 2
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log cos 2 ,if a b
cos 2 ,otherwiselog

λ πλ
πλλ

 − × <=η =  × + π−  
(9)

Here, , , 1, 2a b andλ λ  represent random values falling within the 
range of 0–1 and Besty  refers to the current best position. The symbol 

M  refers to the mean of the average position in the existing population, 
which can be determined by applying the following Equation 10:

 
1

N t
ii y

M
N
==

∑
 

(10)

It is important to acknowledge that the individual represented by 
ith might not always discover an improved solution through local 
exploitation or global exploration strategies. A screening procedure 
was introduced to ensure the integration of better solutions into the 
next generation’s population. This procedure can be  formulated 
as follows:

 

( ) ( ),if1

,otherwise

t t
i i

t
i f v f yt

i
t
i

v
y

y
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= 
  

(11)

3.5.2 Mean position
The Generalized Mean Position (GMP) iµ  concept involves 

adjusting individuals’ positions within a population during 
optimization. The best individual Besty  contains valuable global 
solution information, and others are guided toward its direction. This 
can lead to premature convergence if Besty  gets trapped locally. Mean 
position M  is introduced to mitigate this, allowing individuals to 
move between Besty  and M , improving solution discovery. The 
changing M  enhances adaptability, which reduces the risk of local 
maxima, making it a valuable addition to local exploitation strategies.

3.5.3 Standard variance
In the realm of GNDO, the infusion of the Generalized Standard 

Variance δi concept significantly amplifies its local search proficiency. 
It functions as a fluctuating sequence of randomness, directing 
exploration toward the Generalized Mean Position iµ . The distance 
that exists among an individual’s location (like yt [i]) and key points 
like the Mean Position (M) and top performer ( Besty ) impacts the 
fluctuations of this sequence. A more considerable distance leads to 
more substantial changes, helping struggling individuals discover 
better solutions. Conversely, for individuals already performing well, 
a gentler fluctuating sequence aids in finding even more optimal 
solutions nearby.

3.5.4 Penalty factor
The penalty factor η  contributes to the generalized standard 

variance’s generated randomness in the GNDO algorithm. This 
factor influences the resultant random sequence. Most penalty 
factors tend to fall between −1 and 1. It is important to emphasize 
that the generated generalized standard variances are consistently 
positive. This penalty factor’s impact expands the search directions 
within GNDO, thus strengthening the algorithm’s overall 
search capabilities.

3.5.5 Global exploration
Global exploration involves searching the solution space on a 

broad scale to identify promising areas. In GNDO, this exploration is 
carried out by selecting three individuals at random, as illustrated in 
the following Equation:
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Here, 3ϒ  and 4ϒ  represent two random numbers following a 
standard normal distribution. The parameter ß denotes the adjustment 
parameter and takes on a random value between 0 and 1. Additionally, 
v1 and v2 stand for two trail vectors. Furthermore, the computation 
of v1 and v2 can be accomplished using the following equations:
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Here, 1p , 2p , and 3p  represent three distinct random integers 
chosen from 1 to N , satisfying the condition 1 2 3p p p i≠ ≠ ≠ . By 
employing Equations Equation 13 and 14, the second term on the right 
side of Equation 12 can be termed as the “local learning term,” indicating 
the exchange of information between solution 1p  and solution i. The 
third term on the right side of Equation 12 can be  called “global 
information sharing,” signifying that individual i receives information 
from individuals 2p  and 3p . The adjusted parameter ß is utilized to 
balance these two information-sharing strategies. Furthermore, 3ϒ  and 

4ϒ  denote random numbers following a standard normal distribution, 
broadening GNDO’s search scope during global search operations. The 
absolute symbol in Equation 12 maintains consistency with the 
screening mechanism defined in Equations 13 and 14.

3.5.6 Global search with binary cross entropy
The global search matrix is computed and later utilized to handle 

the uncertainty using the binary cross-entropy function. The binary 
cross-entropy function is defined as follows:

 
( ) ( )( ) ( ) ( )( )

1

1 log 1 .log 1
N

i i i i
i

CE Gy Gy p Gy Gy p Gy
N =

= − + − −∑
 (15)

Where Gy denotes the global search matrix obtained using 
Equations 12–14, the global search matrix is employed for the entropy 
value calculation using Equation 15. The entropy value is computed 
in 1, 0 form that shows the either global feature is selected (1) or not 
(0). The threshold function is defined as follows to get the final 
feature vector.
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(16)

Where Gy is a selected feature vector and Gy


 is a feature vector 
containing features that do not meet the selection criteria. A pseudo-
code for the IGNDO algorithm is given in Algorithm 1. As an input, 
population size is defined as N , variable upper limit u  and lower limit 

of variables l; the starting iteration count T = 0, and the maximum 
iteration limit Tmax  all be considered. The stopping criteria of this 
algorithm are defined based on the number of iterations. In our case, 
we performed 200 iterations.

ALGORITHM 1 Best features selection using IGNDO algorithm
  1. Using Equation 5, initialize an individual from 

the population.
 2.  Calculate the fitness value of every individual and achieve 

the best solution Besty .
 3. The number of iterations t is updated to t + 1
 \*Main Loop*\
 4. While T < Tmax do
 5.  for i = 1 to N
  6.   Generate a random value, denoted as α, within the 

range of 0 to 1.
 7.  if α>0.5
     \*Local exploitation strategy*\
  8.  Equation 10 calculates the mean position M by 

choosing the optimal solution ybest.
  9.   Equations 7–9, respectively, were used to calculate 

the generalized mean position, generalized standard 
deviation, and penalty factor.

 10. Computer the local exploitation strategy.
 11.  else
    \*Global exploration strategy*\
  12. Execute a global exploration strategy by using 

Equation 11–14
  13. Find the entropy of the global search matrix using 

Equation 15.
  14. Entropy features are passed in a final threshold function 

Equation 16.
 15.  end if
 16. end for
 17. Increment the current iteration number by: t = t + 1.
 18. end while
Output: The optimal solution y best.

The above algorithm is applied separately to both proposed 
models’ extracted deep features. The learning rate for Stochastic 
Gradient Descent with Momentum (SGDM) in this work is set to 
0.000274, which is a crucial parameter controlling the step size during 
weight updates and influencing the convergence of the model. In the 
end, we  obtained two feature vectors of dimension 652N ×  and 

742,N × respectively. The selected features are finally fused using a 
simple serial-based approach and get the accuracy. The resultant 
serially fused vector has a dimension of 1394N × . In the final step, the 
fused vector is passed to the neural network classifiers to compute the 
final accuracy. Five neural network classifiers have been selected for 
the classification results as narrow-neural network (N3) (49), medium-
neural network (MN2) (50), wide-neural Network (WN2) (51), 
bilayered-neural network (BN2) (52), and trilayered -neural network 
(TN2) (53).

4 Results and discussion

The results of the proposed method are discussed here with a 
detailed numerical analysis and confusion matrix. The results are 
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computed on selected datasets using 10-fold cross-validation. There 
were two equal parts of the dataset, with 50% allocated for training 
and rest 50% allocated for testing. The proposed fusion architecture is 
trained on the fetal dataset and FPSU23 dataset; however, some 
hyperparameters are needed to train deep architecture and 
optimization algorithms. All training hyperparameters have been 
discussed in Table  3. The optimization algorithm selects 20 
populations and 200 iterations for the best feature selection. The 
validation determines the best model based on performance metrics, 
including precision, accuracy, time, recall, FNR, MCC, F1-sc and 
kappa. Multiple classifiers are employed for validation, focusing on 
achieving the highest accuracy and minimum processing time. An 
MATLAB 2023b workstation equipped with 128GB RAM, a 512GB 
SSD, and a 12GB NVIDIA RTX 3060 graphics card was used to 
simulate the proposed architecture.

4.1 Experiments of the proposed 
architecture

To validate the proposed structure, a number of experiments 
were conducted:

Deep features extraction (54) from GAP (global average) layer of 
proposed 3-Residual block CNN.

 • Deep features extraction from GAP (global average) layer of 
proposed 4-residual block CNN.

 • Feature Selection (55) by employing improved GNDO for 
3-Residual block deep features.

 • Feature Selection by employing improved GNDO for 4-residual 
block deep features.

 • Fusion of best-selected features using serial approach.
 • Classification (56) by applying neural network classifiers.

4.2 FPSU23 dataset

Table 4 demonstrates the classification results achieved using the 
3-Residual block model on the FPSU23 dataset. The trained model’s 
features are extracted, and classification is performed. The MN2 
classifier obtained the best accuracy of 97.5%. Additional performance 
metrics for this classifier include 97.52 percent recall, 97.55 percent 
precision, 0.99% AUC and 97.53% F1-sc. The confusion matrix for 
MN2 is shown in Figure 10 that can be utilized to verify the correct 
prediction rate of each class. Furthermore, the confusion matrix can 
be used to check the computed performance metrics. During testing, 
44.98 s was the lowest measured time for the MN2 classifier, while the 
TN2 highest recorded time is 134.97 (sec). The rest of the classifiers 

also obtained the accuracy values of 97.3, 97.5, 97.1, and 96.9, 
respectively.

Table 5 presents the results of the proposed 4-residual block deep 
features for the FPSU23 dataset. The best-obtained accuracy for this 
model is 98.0% for the WN2 classifier. Also the recall is 98.05%, 
precision 98.05%, F1-sc 98.05%, and AUC 0.99%. Figure 11 shows the 
confusion matrix of this classifier that can be utilized to verify the 
correct prediction rate of each class. Every classifier’s computation 
time has also been recorded, and it is observed that the WN2 classifier’s 
least recorded time is 982.34 s, while the TN2 highest recorded time 
is 499.41 (sec). Compared to the performance of this model with 
3-Residual, it is noted that the accuracy is improved, but 
computationally, the 3-Residual model is better. A feature selection 
method is implemented on both proposed models to minimize the 
computational time further.

The classification results following the implementation of an 
improved GNDO algorithm on 3-Residual Block CNN deep features 
are presented in Table 6. In this table, the best-obtained accuracy is 
97.6% for MN2. The values of other calculated measures include a 
recall rate of 97.62%, precision rate of 97.62%, F1 Score of 97.62%, 
and AUC value of 0.99%, respectively. Comparing the results of this 
experiment with Table 4, it is observed that the accuracy is improved, 
and time is significantly reduced. The MN2 classifier’s least recorded 
time was 20.57 s after selecting the best features and 44.98 s before 
the selection process. A proposed classification method result is 
presented in Table 7 after using the improved GNDO algorithm on 
4-residual blocks CNN deep features. After employing this 
experiment, the best-obtained accuracy of 98.0% has been achieved 
for N3. The recall is 97.75%, precision 98.05%, F1-sc of 97.89%, and 

TABLE 4 The 3-residual blocks CNN classification results deep features for FPSU23 dataset.

Classifiers Accuracy % Precision % Recall % F1-sc% AUC FNR Time

N3 97.30 97.275 97.25 97.26 0.99 2.7 50.45 s

MN2 97.5 97.55 97.525 97.53 0.99 2.4 44.98 s

WN2 97.5 97.475 97.45 97.46 0.99 2.5 64.09 s

BN2 97.1 97.125 97.1 97.11 0.99 2.9 84.34 s

TN2 96.9 96.925 96.9 96.91 0.99 3.1 134.97 s

Bold values denotes the best results.

FIGURE 10

Confusion matrix of MN2 for 3-residual blocks CNN.
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TABLE 5 Classification results of 4-residual block CNN using ultrasound images.

Classifiers Accuracy % Precision % Recall % F1-sc % AUC FNR Time

N3 97.9 97.97 99.72 98.83 0.99 0.28 406.82 s

MN2 97.7 97.77 97.75 97.75 0.99 2.25 477.78 s

WN2 98.0 98.05 98.05 98.05 0.99 1.95 982.34 s

BN2 97.9 98 97.95 97.97 0.99 2.05 485.38 s

TN2 97.6 97.67 97.65 97.65 0.99 2.35 499.41 s

Bold values denotes the best results.

FIGURE 11

Confusion matrix of WN2 for 4-residual blocks CNN.

AUC value of 0.99% obtained for this classifier are better than the 
performance noted in Table  5. The computational time is also 
reduced for this experiment, and it is observed that the overall 
accuracy is also improved, which shows the strength of this method. 
The N3 classifier’s least recorded time is 49.08 s after selecting the 
best features.

Ultimately, the optimal characteristics from both models were 
combined, and Table 8 displays the outcomes. With respect to recall, 
precision, and F1 score, MN2 yielded the best accuracy of 98.5, 98.52, 
98.55, and 98.53%, respectively. Improved accuracies of 98.1, 98.3, 
98.1, and 98.4% were attained by the remaining classifiers. The 
confusion matrix of MN2 following the fusion procedure is displayed 
in Figure 12, which can be used to confirm the overall performance 
metrics. While the first experiment’s maximum accuracy was 97.5%, 
the second experiment’s maximum accuracy was 98.0%, the third 
experiment’s maximum accuracy was 97.6%, the fourth experiment’s 
maximum accuracy was 98%, and the fifth experiment’s maximum 
accuracy was 98.5%. Hence, overall, the proposed framework and the 
optimization process show improvement after the fusion process.

4.3 Fetal dataset results

The classification results of the fetal dataset using the proposed 
architecture have been presented in this subsection. The proposed results 
are computed in several experiments, as discussed in the above section. 
The results of the first experiment are presented in Table 9, showing the 
maximum accuracy of 78.3% for the WN2 classifier. Other measures are 
recall 77.75%, precision 77.28%, the F1-sc 77.51%, kappa 0.1922, and 

MCC 0.7194, respectively. The rest of the classifier obtained an accuracy 
of 76.0, 77.1, 75.9, and 75.2%, respectively. Computationally, this 
architecture is a little expensive, as the minimum noted time is 268.29 
(sec). Table 9 (2nd quarter) illustrates the classification results for the 
proposed 4-residual blocks CNN with deep features. The best-obtained 
accuracy of this experiment is 84.1% for the MN2 classifier. The kappa 
and MCC measures are also computed, and the obtained values are 
0.4255 and 0.7891. The rest of the classifiers obtained accuracy values of 
83.3, 83.9, 83.5, and 83.6%, respectively. The MN2 achieved a high 
accuracy but consumed 1230.8 (sec) for the execution.

In the third experiment, the feature selection algorithm is applied 
using three residual blocks CNN deep features, the maximum 
accuracy was obtained of 78.8% for WN2 classifier. The other 
computed measures of WN2 classifier, such as recall 78.21%, precision 
78.01%, kappa value of 0.2074, MCC value of 0.7269, F1-sc of 78.10%, 
and AUC value of 0.914%, respectively. The computation time for each 
classifier is also determined, and MN2 is executed in the maximum 
processing time of 291.13 s, whereas the minimum noted time is 
206.37 s for WN2. Similarly, the feature selection algorithm is applied 
on 4-residual blocks deep features and obtained an accuracy of 83.8% 
for N3. This classifier also has other parameters that have been 
computed, such as a recall rate of 82.51%, precision rate of 81.71%, 
kappa measure of 0.4179, MCC measure of 0.7879, F1 Score of 
82.10%, and AUC 0.96%, respectively. The Narrow Neural Network 
classifier’s least recorded time is 198.56 s, while the TN2 greatest 
recorded time is 480.48 (sec). The classification results of the proposed 
3- and 4-residual block CNN deep features are shown at the end of 
Table 9. This table presented the best-obtained accuracy of 88.6% for 
WN2 classifier. The other calculated measures were recall rate of 
87.28%, precision rate of 87.41%, kappa value of 0.5849, MCC value 
of 0.8499, F1-sc 87.34%, and AUC values of 0.96, respectively. 
Furthermore, the WN2 confusion matrix is shown in Figure 13 that 
shows the correct prediction rate of each class (Tables 10–13).

4.4 Discussion

A detail discussion of the proposed method results have been 
presented in this section. Initially, the t-test has been performed to 
validate the performance of the selected classifiers. The t-test, a 
statistical analysis method, is utilized to assess whether there is a 
significant difference between the means of two groups. When the 
experiments were finished, the Student’s t-test was used to examine 
the findings. Two classifiers were first chosen as they both showed 
constant accuracies during every experiment. This selection made it 
possible for us to do the experiment using both a low- and high-
accuracy classifier, allowing for a comparative comparison. Our initial 
hypothesis oh = the accuracy of the chosen classifiers does not vary 
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significantly in a meaningful way. A t-test for the FPSU23 Dataset 
compared two classifiers: Medium NN and tri-layered NN. The 
corresponding accuracy of these classifiers is presented in Table 14. 
For fetal dataset these two classifiers compared: wide NN and 

tri-layered N2. The corresponding accuracy of these classifiers is 
presented in Table 14.

The difference in their accuracies is calculated using the following 
formula, where in Equation 17, the term ( )1Acc C  stands for the 
uppermost accuracy, and ( )2Acc C  stands for the lowermost accuracy. 
The Mean µ  is evaluated using Equation 18, which is 0.5 for the 
FPSU23 Dataset and 1.8 for the Fetal Dataset. In this Equation, the N  
denotes a total number of methods.

 ( ) ( )1 2Diff Acc C Acc C= −
 (17)

 
( )

1

1 N
i

i
Mean Diff

N
µ

=
= = ∑

 
(18)
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−
∑

 
(19)

After that, the standard deviation is computed using the formula 
shown in Equation 19, and the obtained value is 0.4183 for the 
FPSU23 Dataset and 1.865 for the Fetal Dataset. After calculating the 

TABLE 6 Feature selection by improved GNDO algorithm of 3-residual blocks model using FPSU23 dataset.

Classifiers Accuracy % Precision % Recall % F1-sc % AUC FNR Time

N3 97.6 97.55 97.6 97.57 0.99 2.45 20.77 s

MN2 97.6 97.62 97.62 97.62 0.99 2.38 20.57 s

WN2 97.5 97.47 97.47 97.47 0.99 2.53 32.47 s

BN2 97.2 97.12 97.17 97.14 0.99 2.88 48.05 s

TN2 97.0 97.02 97.07 97.04 0.99 2.98 78.87 s

Bold values denotes the best results.

TABLE 7 Feature selection by improved GNDO algorithm of 4-residual blocks model using FPSU23 dataset.

Classifiers Accuracy % Precision % Recall % F1-sc AUC FNR Time

N3 98.0 97.75 98.05 97.89 0.99 2.25 42.21 s

WN2 98.0 98.02 97.95 97.98 0.99 1.975 50.01 s

MN2 98.0 98.02 98.02 98.02 0.99 1.975 90.82 s

BN2 97.2 97.15 97.15 97.15 0.99 2.85 44.59 s

TN2 96.9 96.92 96.92 96.92 0.99 3.08 49.08 s

Bold values denotes the best results.

TABLE 8 Classification results of the FPSU23 dataset after the fusion of best selected features.

Classifiers Accuracy % Precision % Recall% F1-sc% AUC FNR Time

N3 98.1 98.15 98.175 98.16 0.99 1.85 74.036 s

MN2 98.5 98.52 98.55 98.53 0.99 1.48 49.939 s

WN2 98.3 98.3 98.3 98.3 0.99 1.7 88.82 s

BN2 98.1 98.1 98.15 98.12 0.99 1.9 83.12 s

TN2 98.4 98.45 98.47 98.45 0.99 1.55 131.73 s

Bold values denotes the best results.

FIGURE 12

MN2 confusion matrix after the fusion of best features for FPSU23 
dataset.
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t-selection value using Equation 20, we  found it to be  2.6728 for 
FPSU23 and 2.15806 for Fetal dataset. These values are used as 
reference points for conducting the Student’s t-test.

 
Nt selection t µ
σ
×

− = =
 

(20)

The degrees of freedom are computed as 
  1degree of freedom df N= = − . Assuming the null hypothesis is 

true at a significance level of 0.05, there is a 5% probability of 
achieving the observed results, corresponding to a p-value of 0.05. 
We  calculated the confidence interval using the t-test table, 
considering the p-value and degrees of freedom, resulting in the 
interval (−2.776, +2.776). The computation of this confidence 
interval follows the Equation (21).

 
 , 1, , 1

2 2
p pt t

Confidence Interval I N N
− 

= = − − 
   

(21)

There is no discernible difference between the two chosen 
classifiers’ accuracies, as the t-selection value falls within the range 
based on this confidence interval. Therefore, our hypothesis is accepted.

4.4.1 Comparison with neural nets and SOTA
Several state-of-the-art (SOTA) recent deep learning 

architectures are compared for the two chosen datasets. The 
methods selected for the comparison is VGG16, VGG19, AlexNet, 
GoogleNet, ResNet50, ResNet101, DenseNet201, and 
MobileNet-V2. A comparison is plotted in Figures  14, 15. In 
Figure 14, the comparison is performed for the FPSU23 dataset that 

TABLE 9 Classification results of proposed architecture employing fetal dataset.

Classifiers Accuracy% Recall % Precision % Kappa MCC F1-sc 
%

AUC FNR Time

Classification results of the proposed CNN utilizing deep features with three residual blocks

N3 76.0 75.65 74.96 0.1360 0.7029 75.30 0.897 24.35 483.5 s

MN2 77.1 76.33 70.03 0.1772 0.7147 73.04 0.903 23.67 268.29 s

WN2 78.3 77.75 77.28 0.1922 0.7194 77.51 0.903 22.25 511.46 s

BN2 75.9 75.35 74.91 0.1329 0.7010 75.12 0.892 24.65 469.5s

TN2 75.2 74.48 74.05 0.1070 0.6909 74.26 0.886 25.52 449.25 s

Classification results of the proposed CNN utilizing deep features with four residual blocks

N2 83.3 81.73 81.03 0.3996 0.7797 81.37 0.95 18.27 1503.1 s

MN2 84.0 82.28 81.88 0.4225 0.7891 82.07 0.94 17.72 1230.8 s

WN2 83.9 82.53 81.95 0.4215 0.7894 82.23 0.94 17.47 1736.8 s

BN2 83.5 82.55 81.33 0.4067 0.7842 81.93 0.95 17.45 1400.2 s

TN2 83.6 82.06 81.18 0.4087 0.7825 81.61 0.95 17.94 1325.7 s

The proposed 3-residual blocks CNN deep features’ classification results are presented after using an improved GNDO method

N2 74.9 74.53 73.7 0.016 0.6896 74.11 0.895 25.47 326.65 s

MN2 76.2 75.7 75.35 0.1745 0.7145 75.52 0.905 24.3 206.37 s

WN2 78.8 78.21 78.01 0.2074 0.7269 78.10 0.914 21.79 291.13 s

BN2 75.2 74.36 73.81 0.1065 0.6893 74.08 0.889 25.64 319.77 s

TN2 74.8 74.15 73.31 0.0926 0.6849 73.72 0.889 25.85 333.8 s

The proposed 4-residual blocks CNN deep features’ classification results are presented after employing an improved GNDO method

N3 83.8 82.51 81.71 0.4179 0.7879 82.10 0.96 17.49 198.56 s

WN2 83.5 82.03 81.33 0.4052 0.7833 81.67 0.95 17.97 240.41 s

MN2 83.7 82.51 81.65 0.4138 0.7872 82.07 0.94 17.49 480.48 s

BN2 83.3 81.61 80.88 0.3970 0.7781 81.24 0.95 18.39 200.17s

TN2 83.4 81.73 81.03 0.4042 0.7798 81.37 0.95 18.27 206.69 s

Classification outcomes for the proposed architecture incorporating feature fusion

N2 87.6 86.55 86.33 0.5543 0.8383 86.43 0.94 13.45 139.98 s

MN2 87.9 86.71 86.7 0.5649 0.8422 86.70 0.966 13.29 77.109 s

WN2 88.6 87.28 87.41 0.5849 0.8499 87.34 0.969 12.72 130.62 s

BN2 87.1 85.68 85.75 0.0.5370 0.8306 85.71 0.93 14.32 262.03 s

TN2 87.1 85.65 85.66 0.5349 0.8305 85.65 0.93 14.35 314.5 s

Bold values denotes the best results.
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shows the maximum accuracy is obtained by proposed 2 
(4-Residual). The maximum accuracy obtained by other pre-trained 
models is 93.2% of Resnet101. Figure 15 compares the maternal 
fetal dataset, showing that the proposed 2 (4-Residual) obtained the 
highest accuracy of 84%. In addition, the authors of the work (18) 
used the FPSU23 dataset and obtained a maximum accuracy of 
88%. However, the proposed method improved overall accuracy of 
88.6 and 98.5%, respectively.

4.4.2 Comparison with other optimization 
algorithms

An analysis of the improved GNDO in contrast to a few other 
optimization algorithms inspired by nature. The proposed architecture 
3 residual block model obtained the highest accuracy of 78.8% and 4 
residual block model 83.8% using the IGNDO algorithm for common 
maternal fetal planes, as shown Table 13 respectively. The accuracy of 
the proposed architecture’s GA-based feature selection was 74.6%. A 

FIGURE 13

WN2 classifier confusion matrix after the fusion process using fetal dataset.

TABLE 10 Classifiers of FPSU23 dataset with their accuracies.

Classifiers 3-residual block 4-residual block
GNDO 3-residual 

block
GNDO 4-residual 

block
Fusion

Medium NN 97.5 97.7 97.6 98.0 98.5

Tri-layered NN 96.9 97.6 97.0 96.9 98.4

Diff 0.6 0.1 0.6 1.1 0.1

Bold values denotes the best results.

TABLE 11 Classifiers of fetal dataset with their accuracies.

Classifiers 3-residual block 4-residual block
GNDO 3-residual 

block
GNDO 4-residual 

block
Fusion

Medium NN 78.3 83.9 78.8 83.5 88.6

Tri-layered NN 75.2 83.6 74.8 83.4 87.1

Diff 3.1 0.3 4 0.1 1.5

Bold values denotes the best results.
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75.1% accuracy rate was achieved for PSO-based feature selection. The 
accuracy of the proposed architecture when combined with the Whale 
optimization algorithm (WOA) is 75.6%. With additional 
optimization, the proposed approach yielded an accuracy of 79.6%. 
The third highest accuracy for this dataset is 77.8 using the paired of 
firefly algorithm. Hence, this table demonstrates that the proposed 
architectures performed effectively with IGNDO using Fetal Planes 
optimization algorithm. Similarly, Table 14 presents the results of 
FPSU23 dataset and obtained the improved performance for proposed 
IGNDO optimization algorithm.

5 Conclusion

Automatic classification of common maternal fetuses from 
ultrasound images has been presented in this work using information 
fusion of two novel deep learning architectures. Two publicly 
available datasets have been employed in this work to train and test 
the proposed framework. Two deep learning architectures have been 
proposed, and the hyperparameters selected using Bayesian 
Optimization (BO) to improve the efficiency of proposed 
architectures in training phase. The extracted features from GAP 
layers of both trained CNN architectures have been optimized 
utilizing an improved version of the GNDO. The optimal features are 
combined into a single vector using a serial-based approach, which 
is then fed into neural networks for the final classification. The 
proposed method obtained an improved accuracy of 88.6 and 98.5% 
on the selected datasets compared to SOTA techniques. Therefore, 
the proposed architecture is suitable for efficiently and effectively 
classifying common maternal fetuses using ultrasound images. In 
addition, the proposed framework is effective for the early diagnosis 
of common maternal fetal abnormalities. This work has a few dark 
sides: (i) An imbalanced dataset presents challenges for training a 
deep learning model and can lead to the extraction of irrelevant 
information from deeper layers. In the future, the imbalance will 
be addressed by employing the generative algorithm and a residual 
attention module will be  proposed to overcome the irrelevant 
information extraction. Our findings, based on the results, are 
as follows:

 • Designed two novel CNN architectures: 3-Residual and 
4-Residual-block architectures reduced the total learnable and 
complex, layered structures; however, this structure improved the 
learning of input dataset images and returned higher 
training accuracy.

 • The 3-Residual model uses fewer parameters than ResNet 18 and 
ResNet 50, ensuring computational efficiency with competitive 
performance. The 4-Residual-block model adds hidden layers 
and reduces max-pooling for streamlined efficiency with 
fewer parameters.

 • Enhanced the Generalized Normal Distribution Optimization 
(GNDO) algorithm for optimal feature selection, 
improving accuracy.

 • The fusion of features improved accuracy, and with the 
application of an optimization algorithm, the overall framework 
was further enhanced in terms of accuracy, precision, and 
testing time.

TABLE 12 Accuracy comparison between the proposed method and 
existing methods.

Authors/
Reference

Dataset
Accuracy 

(%)
Time 
(sec)Fatel 

plans
FPSU23

Prabakaran et al. (18) ✓ 88.0 –

Our proposed 3- 

residual blocks CNN.

✓
88.6

130.62 

s

Our proposed 

4-residual blocks CNN.

✓
98.5 c

Bold values denotes the best results.

TABLE 13 Comparison of the two proposed architectures utilizing the 
fetal plans dataset with a number of other cutting-edge optimization 
algorithms.

Methods
Common 

maternal fetal 
planes

Time (sec)

Proposed 3-RB 

Model + IGNDO
78.8 291.13 s

Proposed 4- RB 

Model + IGNDO

83.8 198.56 s

Proposed + GA 74.6 92.990

Proposed + PSO 75.1 91.643

Proposed + WOA 75.6 103.563

Proposed + BCO 76.3 111.336

Proposed + FA 77.8 95.245

Proposed + ACO 76.5 110.511

Proposed+ lion optimization 79.6 121.6779

Bold values denotes the best results.

TABLE 14 Comparison of both proposed architectures with several other 
state-of-the-art optimization algorithms using FPSU23 dataset.

Methods
Common 

maternal fetal 
planes

Time (sec)

Proposed 3-RB 

Model + IGNDO
97.6 20.7 s

Proposed 4- RB 

Model + IGNDO

98.0 42.21 s

Proposed + GA (30) 93.4 76.2234

Proposed + PSO (31) 94.1 54.0953

Proposed + WOA 94.9 67.1674

Proposed + BCO 94.5 81.5395

Proposed + FA 96.3 71.5572

Proposed + ACO 95.2 61.4463

Proposed+ lion optimization 96.8 58.4460

Bold values denotes the best results.
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