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Background: Modern digital anthropometry applications utilize smartphone 
cameras to rapidly construct three-dimensional humanoid avatars, quantify 
relevant anthropometric variables, and estimate body composition.

Methods: In the present study, 131 participants ([73  M, 58  F] age 33.7  ±  16.0  y; 
BMI 27.3  ±  5.9  kg/m2, body fat 29.9  ±  9.9%) had their body composition assessed 
using dual-energy X-ray absorptiometry (DXA) and a smartphone 3D scanning 
application using non-rigid avatar reconstruction. The performance of two new 
body fat % estimation equations was evaluated through reliability and validity 
statistics, Bland–Altman analysis, and equivalence testing.

Results: In the reliability analysis, the technical error of the measurement and 
intraclass correlation coefficient were 0.5–0.7% and 0.996–0.997, respectively. 
Both estimation equations demonstrated statistical equivalence with DXA 
based on ±2% equivalence regions and strong linear relationships (Pearson’s r 
0.90; concordance correlation coefficient 0.89–0.90). Across equations, mean 
absolute error and standard error of the estimate values were  ~  3.5% and  ~  4.2%, 
respectively. No proportional bias was observed.

Conclusion: While continual advances are likely, smartphone-based 3D 
scanning may now be suitable for implementation for rapid and accessible body 
measurement in a variety of applications.

KEYWORDS

3D scanning, body fat, smartphone, optical imaging, digital anthropometry

1 Introduction

Recent advances in digital anthropometry have highlighted the use of smartphone cameras 
to obtain visual information that can be used to produce 3-dimensional (3D) humanoid 
avatars. Several reports have supported the reliability of anthropometric and body composition 
parameters estimated by such procedures (1–4). While mobile digital anthropometry 
applications have typically constructed rigid humanoid avatars using two photographic images 
of static subjects—either from anterior and lateral (2–7) or anterior and posterior views 
(6, 8)—we recently reported the high reliability of new methods capturing serial images (~150) 
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during complete rotation of subjects in front of a smartphone camera, 
followed by non-rigid avatar reconstruction (7). Specifically, the 
observed technical error of measurement (TEM) across common 
body circumferences averaged 0.5 cm or 0.9%, slightly lower than 
errors observed for two large, non-portable 3-dimensional scanning 
measurement booths that employ rigid avatar reconstruction and are 
commonly used in research and practice (TEMs of 0.6–0.8 cm or 
1.1—1.5%). The combination of greater quantities of visual data and 
improved data processing pipelines may have contributed to these 
low errors.

In addition to establishing the reliability of body circumferences 
from smartphone 3D scanning, considering the validity of 
subsequent body composition estimation from humanoid avatars is 
warranted based on the importance of body composition in health, 
disease, and athletic settings (9–11). Trials to date have evaluated 
the validity of mobile applications estimating body composition 
variables from rigid avatars arising from two photographic images, 
with mixed results (2–6). These methods involve the assessment of 
a rigid, non-moving human body, which leads to relatively simple 
avatar reconstruction. Non-smartphone methods, such as 
traditional scanning booths or sensors positioned in front of 
turntables, have also employed rigid avatar reconstruction due to 
the lack of body movement during assessments. In contrast, 
emerging smartphone methods require participants to complete 
360° of rotation in place by taking small, rocking steps while 
attempting to maintain an A-pose (i.e., standing upright with feet 
apart and legs straightened, arms straightened and lifted away from 
the sides of the body). Due to complex body motions generated 
during this rotation and the resultant body deformations, the 3D 
avatar must be produced using non-rigid reconstruction, potentially 
introducing additional error. Following both rigid and non-rigid 
avatar reconstruction, anthropometric variables from the avatars are 
used to predict body composition. However, no prior investigations 
have evaluated the validity of body composition estimates arising 
from smartphone-based scanning followed by non-rigid avatar 
reconstruction. Therefore, the purpose of the present study was to 
examine the validity of body fat percentage (BF%) prediction 
equations employed by such a smartphone-based 3D scanning 
application. It was hypothesized that BF% estimates obtained by the 
smartphone would exhibit strong linear relationships and statistical 
equivalence as compared to dual-energy X-ray absorptiometry 
(DXA), an accepted laboratory method of body 
composition assessment.

2 Method

2.1 Overview

Across two laboratories, adult participants were assessed using a 
smartphone 3D scanning application and dual-energy X-ray 
absorptiometry (DXA) at a single research visit. Serial images were 
collected by the smartphone 3D scanning application during a 
subject’s complete rotation in place, with data subsequently processed 
using non-rigid avatar reconstruction. The reliability of BF% from 
duplicate 3D scans was examined, and the validity of BF% values 
obtained by the 3D scanning application was established through 
comparison with DXA values.

2.2 Participants

Generally healthy adults (≥18 years of age) were recruited for 
participation in Lubbock, TX, USA and Baton Rouge, LA, 
USA. Prospective participants were ineligible if they had a 
diagnosis of a disease or any medical condition that is known to 
influence body composition (e.g., Cushing’s Syndrome, cancer, 
type 2 diabetes, chronic kidney disease, and heart failure), a 
history of major body altering surgery, implanted electrical 
devices, or were currently pregnant or breastfeeding. All 
participants provided written informed consent prior to 
participation, and this study was approved by the Texas Tech 
University Institutional Review Board (IRB2022-610; date of first 
approval: 07/23/2022) and the Pennington Biomedical Research 
Center Institutional Review Board (IRB 2022–002; date of first 
approval: 2/26/2022). All research was performed in accordance 
with relevant guidelines and regulations, including the Declaration 
of Helsinki.

2.3 Laboratory visit

Participants reported to the research laboratory at Texas Tech 
University (Lubbock, TX, USA) or Pennington Biomedical Research 
Center (Baton Rouge, LA, USA) after an overnight (≥8 h) period of 
fasting from foods, fluids, and other substances, and a ≥ 24-h abstention 
from exercise and other moderate- or vigorous-intensity physical activity. 
For assessments, each participant wore minimal form-fitting clothing.

2.4 Smartphone 3D scanning application

The smartphone 3D scanning application required participants to 
rotate in place on the laboratory flooring, using their own feet to perform 
the rotation and maintaining an A-pose, approximately 1.7 meters in 
front of a smartphone. During the rotation, multiple images were 
captured by the smartphone’s built-in camera. Scans were performed 
using an iPhone 13 Pro Max (model number MLKR3LL/A) with iOS v. 
16.5 (Apple, Cupertino, CA, USA) or an iPhone 14 Pro (model number 
MQ2T3LL/A) with iOS v. 16.6. Each phone was mounted on a tripod 
for image acquisition. Each scan was automatically processed using the 
procedures of the manufacturer (Prism Labs, Los Angeles, CA, USA), 
which include machine learning for data pre-processing through binary 
segmentation and obtaining frame-to-frame correspondences (7). 
Humanoid avatars were produced by fully non-rigid reconstruction, and 
a parameterized body model was fitted to each avatar to normalize the 
avatar’s pose to a canonical pose and promote consistent measurement 
locations (1). Three scans were performed for each participant, and one 
scan was randomly selected for each participant, such that the present 
analysis is based on a single scan per participant to mimic typical use. 
For these scans, two proprietary BF% algorithms developed by the 
manufacturer were used: COmpound Circumferences Only (COCO) 
and Automatic Detection of Athlete Mode (ADAM). The COCO 
equation employs measurement ratios, such as waist:height, to estimate 
BF% using coefficients derived from linear regression on the 
manufacturer’s proprietary training data. The ADAM equation 
computes a weighted average between the COCO BF% and a variant of 
the Navy method designed to target individuals with lower BF%.
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2.5 Dual-energy X-ray absorptiometry

A DXA scan was performed for each participant using a scanner 
that was calibrated daily according to manufacturer procedures 
(iDXA, General Electric, Boston, MA, USA with enCORE software 
versions 13.60.033 and 16.10.151, 16 [SP  1]). For each scan, the 
participant was positioned supine on the DXA table with hands 
neutral at their sides and feet together. Consistent positioning of 
hands and feet was achieved using foam blocks and straps. The region 
BF% values for the entire body were used in the present analysis.

2.6 Statistical analysis

The reliability of the ADAM and COCO 3D scanning equations 
was determined by calculating the TEM (i.e., precision error), least 
significant change (i.e., 2.77 × TEM), and the intraclass correlation 
coefficient (model 2.1) from duplicate scans, using previously 
described procedures (12, 13).

The validity of the ADAM and COCO 3D scanning equations were 
compared to reference DXA values. The linear relationships between 
3DO and criterion estimates were established using ordinary least 
squares regression, with DXA specified as the x variable and the 3D 
scanning equation specified as the y variable. To determine if 3DO 
values demonstrated group-level statistical equivalence with DXA 
values, equivalence testing (14) was performed using equivalence 
regions of ±2.0% for BF%, as in a prior investigation (15). The mean 
difference (i.e., constant error) was calculated, along with the standard 
error of the estimate (SEE), root mean square error (RMSE), mean 
absolute error (MAE), Pearson’s r and R2, and Lin’s concordance 
correlation coefficient (CCC). Bland–Altman analysis was performed 
to establish the 95% limits of agreement, alongside linear regression to 
check for proportional bias (16). Statistical significance was accepted at 
p < 0.05. All statistical analyses were conducted in R (version 4.3.1) (17).

3 Results

3.1 Participants

One hundred and thirty-one participants (73 M, 58 F) with at least 
one valid scan were included in the validity analysis (Table 1), and a 
subset of 121 participants with two valid scans were included in the 
reliability analysis due to the need for duplicate scans to assess 
reliability. Sample avatars in differing body mass index categories are 
displayed in Figure  1. Based on self-report, 86 participants were 
non-Hispanic Caucasian, 21 were Hispanic Caucasian, 13 were Black 
or African American, 8 were Asian, 2 were Native American or 
Alaskan, and 1 was Native Hawaiian or other Pacific Islander.

3.2 Reliability

For BF% from the ADAM equation, the TEM, least significant 
change, and ICC were 0.66%, 1.82%, and 0.996 (95% CI: 0.994–0.997), 
respectively. For BF% from the COCO equation, the TEM, least 
significant change, and ICC were 0.50%, 1.39%, and 0.997 (95% CI: 
0.996–0.998).

3.3 Validity

Based on the prespecified equivalence regions of ±2.0%, both 
3DO BF% equations (ADAM and COCO) demonstrated statistical 
equivalence DXA BF% (Table 2). Both equations also demonstrated 
strong, significant correlations with DXA (r 0.90; CCC 0.89–0.90; 
Figures  2A,C). MAE and RMSE values were 3.4–3.5 and 4.5%, 
respectively. From Bland–Altman analysis, no proportional bias was 
observed for either equation (ADAM equation: slope −0.01, 95% CI 
−0.09, –0.07, Figure 2B; COCO equation: slope −0.07, 95% CI −0.15, 
0.01, Figure 2D). Limits of agreement ranged from 8.6 to 8.8%.

4 Discussion

Smartphone-based 3D scanning increases the accessibility of 
digital anthropometry and body composition estimation. While such 
mobile scanning methods have typically relied on the generation of 
rigid avatars from two photographic images, new methods employ the 
acquisition of numerous images to capture more body shape data for 
use in non-rigid avatar reconstruction. With recent data indicating the 
precision of anthropometric and body composition estimates from 
this method compares favorably to traditional, non-portable  3D 
scanners (7), a consideration of the validity of resultant body 
composition estimates was warranted. In the present analysis, 
we found that two prediction equations demonstrated high reliability 
and generally strong agreement with DXA for estimation of BF%.

For both BF% equations, very high reliability was observed, with 
TEM values of 0.50–0.66% from duplicate assessments. Corresponding 
least significant change values, reflecting the degree of change that 
would be  considered statistically significant, were 1.39–1.82%. 
Additionally, strong group-level agreement was observed, as 
supported by statistical equivalence with DXA and strong linear 
relationships (r 0.90; CCC 0.89–0.90). Several additional metrics (SEE, 
RMSE, and MAE) described the typical individual errors of the 
equations, with values ranging from 3.4 to 4.5% across metrics and 
equations. Bland–Altman analysis did not indicate proportional bias 
in either equation, which is an encouraging indicator due to the 
common occurrence of large negative proportional bias when 
applying body composition prediction equations, particularly in 
consumer-facing assessment methods (15, 18). For example, 
we previously found notable proportional bias, with slopes of −0.27 
to −0.35, when evaluating anthropometric BF% prediction equations 
developed using the NHANES dataset (15). Additionally, in an 
evaluation of numerous consumer-grade bioimpedance scales, 
we found that approximately half exhibited notable proportional bias 
for BF%, with slopes as large as −0.50 (18). Despite the minimal 
proportional bias in the present study, the limits of agreement were 
approximately ±8.6% for both equations, indicating a relatively wide 
range of individual-level differences between DXA and the prediction 
equations are possible. However, typical errors—as indicated by the 
SEE—may be closer to ≤ ±4% in two-thirds of cases. Collectively, 
these results support high reliability and group-level performance of 
the prediction equations and provide information regarding the 
individual-level errors that can be expected with this technology.

A small number of previous investigations have reported the 
validity of smartphone-based 3D scanning applications, typically 
using two photographic images, as compared to reference methods (2, 
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6, 8). Graybeal et al. (2) demonstrated a similar high reliability of BF% 
estimates (TEM of 0.3–0.4%) and good group-level performance as 
compared to a rapid 4-compartment model (r 0.85; statistical 

equivalence between methods based on a ± 2% equivalence region). 
However, RMSE values (5.0–5.1%) were slightly higher than in the 
present investigation (4.5%), and a larger magnitude of proportional 
bias was observed (slope of −0.25 vs. −0.01 to −0.07 in the present 
study). In a separate investigation using different 3D scanning 
applications, Graybeal et al. (6) observed TEM values of 0.3–0.6% for 
BF%, RMSE values of 3.9–6.2%, and statistical equivalence for some, 
but not all, scanning applications. As in other studies, negative 
proportional bias was observed, with slopes of −0.17 to −0.53 across 
applications. Collectively, some aspects of the performance of the 3D 
scanning applications evaluated in the present study are similar to 
prior investigations, with the reduction in the magnitude of 
proportional bias being a potentially notable difference.

The participants in the present investigation comprised a wide 
range of adiposity, with DXA BF% values of 10.6–54.7% and BMIs of 
16.9–48.5 kg/m2, as well as expected natural variation in overall body 
size and shape. An approximately even distribution between sexes 
(73 M, 58 F) and some representation of racial or ethnic minorities 
(35% of the sample) were also features of the sample. Collectively, 
these features contributed to a relatively diverse sample in terms of 
body size and composition, race and ethnicity, and sex. However, a 
limitation is the relatively young average age (33.7 ± 16.0 years). As 
such, the present results provide an important step in evaluating the 
smartphone-based 3D scanning procedures, but continued 
investigation is warranted in a variety of groups, including diverse 
racial and ethnic groups and middle-aged or older adults.

Smartphones are ubiquitous worldwide, with 2022 estimates 
indicating a median adult smartphone ownership rate of 85% across 
18 advanced economies—an increase from 76% in 2018 (19, 20). As 
such, numerous promising applications of smartphone-based health 
technologies can be considered. The accessibility of smartphone-
based 3D scanning allows for precise anthropometric evaluation and 
subsequent body composition estimation, providing new 
opportunities for individual users to track relevant body changes over 
time. For example, a simple implementation of this technology is the 
ability for smartphone-based 3D scanning to provide a precise 
estimate of waist circumference, thereby allowing one important 
component of cardiometabolic risk (21) to be easily assessed without 
the need for a trained assessor. Additionally, there are opportunities 
for anthropometric and body composition estimates to be integrated 
into weight management mobile applications to provide customized 
feedback and progress tracking. While the ability of 3D scanning to 
aid in the success of such weight management programs will be a 
topic for future investigation, the automated nature of such 
procedures reduces barriers to physical evaluations as compared to 
decades past. The ability to rapidly obtain automated measurements 
at home, using smartphone capabilities, could eliminate the need for 
in-person anthropometric assessment by health providers. Beyond 

TABLE 1 Participant characteristics.

All (n  =  131) M (n  =  73) F (n  =  58)

Mean SD Min Max Mean SD Min Max Mean SD Min Max

Age (y) 33.7 16.0 18.0 76.0 36.2 16.8 18.0 76.0 30.5 14.5 18.0 72.0

Height (cm) 172.2 10.0 151.5 194.9 178.4 7.7 163.4 194.9 164.5 6.9 151.5 183.3

Weight (kg) 81.5 21.4 42.0 168.9 90.9 21.3 54.4 168.9 69.8 14.9 42.0 105.4

BMI (kg/m2) 27.3 5.9 16.9 48.5 28.5 6.0 17.8 48.5 25.8 5.5 16.9 41.9

DXA BF% 29.9 9.9 10.6 54.7 26.7 9.8 10.6 49.4 33.9 8.6 16.9 54.7

FIGURE 1

Humanoid avatars from 3-dimensional optical imaging scans. 
Sample female (left column) and male (right column) avatars are 
displayed for participants categorized as being underweight (i.e., 
BMI  <  18.5  kg/m2; top row), healthy weight (i.e., 18.5  kg/
m2  <  BMI  <  24.9  kg/m2; second row from top), overweight (i.e., 
25.0  kg/m2  <  BMI  <  29.9  kg/m2; middle row), or obese (i.e., 
BMI  >  30.0  kg/m2; bottom two rows).
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using simple metrics like waist circumference and BF%, there are also 
opportunities to employ various machine learning and artificial 
intelligence procedures to characterize unique body phenotypes and 
their relationship to health and disease parameters (22, 23). Pairing 
smartphone-based 3D scans with relevant clinical data—such as 
blood lipids, glucose, and blood pressure—may allow for better 
understanding of the influence of body shape and size on relevant 

cardiometabolic risk factors, both at the group and individual level. 
Future investigations including a greater proportion of participants 
with obesity and related comorbidities will provide further clarity 
regarding the utility of this technology. Due to the lack of risk and 
non-invasive nature of 3D scanning assessments, other medical 
applications—such as the monitoring of pregnant and breastfeeding 
individuals—should also be considered in subsequent work. While 

TABLE 2 Validity results.

DXA 3D scanning Validity analysis

Mean SD Min Max
BF% 

estimate
Mean SD Min Max MD

SD 
of 

MD
SEE RMSE r CCC Equivalence?

29.9 9.9 10.6 54.7
ADAM 29.7 9.8 11.0 55.6 −0.2 4.5 4.3 4.5 0.90* 0.90* Y (p < 0.01)

COCO 31.1 9.3 14.4 56.0 1.3 4.4 4.1 4.5 0.90* 0.89* Y (p = 0.03)

MD, mean difference; SEE, standard error of the estimate; RMSE, root mean square error; r, Pearson’s correlation coefficient; CCC, Lin’s concordance correlation coefficient; Y, yes (statistically 
equivalent); BF%, body fat %; ADAM, Automatic Detection of Athlete Mode 3D scanning equation; COCO, COmpound Circumferences Only 3D scanning equation.
*p < 0.001.

FIGURE 2

Body fat percentage estimates from smartphone-based 3-dimensional optical imaging. Two prediction equations, ADAM and COCO, were evaluated 
as compared to DXA. Relationships between 3DO-based values and DXA values are displayed in panels (A,C), with the dotted line indicating the perfect 
linear relationship (line of identity) and the solid black line with shading representing the observed linear relationship and 95% confidence bands. Data 
points indicate individual participants. Bland–Altman plots are displayed in panels (B,D), with dashed lines indicated the 95% limits of agreement, the 
horizontal solid black line indicating the mean difference (i.e., constant error), and the diagonal black line with shading indicating the observed linear 
relationship and 95% confidence bands.
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future research and development will be  needed to realize the 
potential of 3D scanning as a component of health assessment, 
emerging findings indicate notable potential of smartphone-
based methods.

In summary, the present study demonstrates the validity of body 
composition estimation from smartphone-based 3D scanning. Unlike 
previous trials of smartphone technologies, the humanoid avatars 
constructed by the 3D scanning application were based on large 
amounts of visual data collected during complete subject rotation. 
With the reliability (7) and validity of these procedures established, 
new applications of this technology can be investigated. Additionally, 
continued refinement of body composition prediction in diverse 
populations can promote the lowest errors achievable and maximize 
the ability to accurately track changes over time. While continual 
advances are likely, smartphone-based 3D scanning may now 
be  suitable for implementation for rapid and accessible body 
measurement in a variety of applications.
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