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Background: Sepsis-associated acute kidney injury (S-AKI) has a significant 
impact on patient survival, with continuous renal replacement therapy (CRRT) 
being a crucial intervention. However, the optimal timing for CRRT initiation 
remains controversial.

Methods: Using the MIMIC-IV database for model development and the eICU 
database for external validation, we analyzed patients with S-AKI to compare 
survival rates between early and late CRRT initiation groups. Propensity score 
matching was performed to address potential selection bias. Subgroup analyses 
stratified patients by disease severity using SOFA scores (low ≤10, medium 11–
15, high >15) and creatinine levels (low ≤3 mg/dL, medium 3–5 mg/dL, high 
>5 mg/dL). Multiple machine learning models were developed and evaluated 
to predict patient prognosis, with Shapley Additive exPlanations (SHAP) analysis 
identifying key prognostic factors.

Results: After propensity score matching, late CRRT initiation was associated 
with improved survival probability, but led to increased hospital and ICU stays. 
Subgroup analyses showed consistent trends favoring late CRRT across all 
SOFA categories, with the most pronounced effect in high SOFA scores (>15, 
p = 0.058). The GBM model demonstrated robust predictive performance 
(average C-index 0.694  in validation and test sets). SHAP analysis identified 
maximum lactate levels, age, and minimum SpO2 as the strongest predictors 
of mortality, while CRRT timing showed relatively lower impact on outcome 
prediction.

Conclusion: While later initiation of CRRT in S-AKI patients was associated 
with improved survival, this benefit comes with increased healthcare resource 
utilization. The clinical parameters, rather than CRRT timing, are the primary 
determinants of patient outcomes, suggesting the need for a more personalized 
approach to CRRT initiation based on overall illness severity.

OPEN ACCESS

EDITED BY

Sree Bhushan Raju,  
Nizam’s Institute of Medical Sciences, India

REVIEWED BY

Francesco Bellocchio,  
Fresenius Medical Care, Germany
Andrea Glotta,  
Ospedale Regionale di Lugano, Switzerland
Hailong Hu,  
Children’s Hospital of Philadelphia, 
United States

*CORRESPONDENCE

Songjie Bai  
 songjie.bai@ncu.edu.cn  

Sheng Zhang  
 zhangs@enzemed.com  

Xuehuan Wen  
 wenxuehuan@gmail.com

RECEIVED 20 August 2024
ACCEPTED 18 December 2024
PUBLISHED 22 January 2025

CITATION

Zhuang C, Hu R, Li K, Liu Z, Bai S, Zhang S and 
Wen X (2025) Machine learning prediction 
models for mortality risk in sepsis-associated 
acute kidney injury: evaluating early versus 
late CRRT initiation.
Front. Med. 11:1483710.
doi: 10.3389/fmed.2024.1483710

COPYRIGHT

© 2025 Zhuang, Hu, Li, Liu, Bai, Zhang and 
Wen. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 22 January 2025
DOI 10.3389/fmed.2024.1483710

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1483710&domain=pdf&date_stamp=2025-01-22
https://www.frontiersin.org/articles/10.3389/fmed.2024.1483710/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1483710/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1483710/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1483710/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1483710/full
mailto:songjie.bai@ncu.edu.cn
mailto:zhangs@enzemed.com
mailto:wenxuehuan@gmail.com
https://doi.org/10.3389/fmed.2024.1483710
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1483710


Zhuang et al. 10.3389/fmed.2024.1483710

Frontiers in Medicine 02 frontiersin.org

KEYWORDS

sepsis, acute kidney injury, continuous renal replacement therapy, machine learning, 
mortality, CRRT timing

Introduction

Sepsis is a life-threatening condition characterized by organ 
dysfunction that results from a dysregulated host response to infection 
(1). Among the affected organs, the kidneys are particularly 
vulnerable, leading to sepsis-associated acute kidney injury (S-AKI) 
(2). S-AKI significantly increases the risk of in-hospital mortality and 
long-term chronic kidney disease, exhibiting a poorer prognosis than 
non-septic AKI (3–5). Epidemiological studies indicate that sepsis 
accounts for 45–70% of all cases of AKI (6), while approximately 60% 
of patients with sepsis develop AKI (7).

Continuous renal replacement therapy (CRRT) has emerged as a 
crucial treatment modality for Patients with S-AKI due to its capacity 
to continuously remove toxins and regulate electrolyte and acid–base 
balance (3, 8). CRRT offers several advantages over conventional 
intermittent dialysis, including more precise volume control, improved 
hemodynamic stability, and more effective correction of acid–base 
balance and electrolyte imbalance (9). These advantages have 
established CRRT as the preferred renal replacement therapy for 
critically ill patients, as evidenced by a 2015 multinational study, which 
reported its use in 75.2% of AKI cases in intensive care units (ICU) (10).

Despite the widespread use of CRRT in S-AKI management, 
considerable debate persists regarding the optimal timing of initiation 
in patients lacking absolute indications. Several studies have 
demonstrated the benefits of early CRRT initiation, including 
improved survival rates and accelerated recovery of renal function 
(11–14). However, other studies have found no significant benefit 
from early initiation, and some studies have even suggested potential 
risks associated with the premature commencement of CRRT (15–18). 
This controversy primarily stems from the heterogeneity of patients 
with S-AKI and the limitations of current research methodologies.

Beyond the timing of CRRT initiation, many other factors also 
influence the prognosis of patients with S-AKI. These include patient 
characteristics, illness severity, and various clinical and laboratory 
parameters (19, 20). Given the complex interplay between these 
factors, there is a growing demand for prognostic models to guide 
personalized treatment.

In this study, we used the MIMIC-IV and EICU large-scale database 
to investigate the impact of CRRT initiation timing on outcomes in 
patients with S-AKI. Moreover, we developed and validated machine 
learning algorithms to predict survival in these patients, aiming to 
identify crucial prognostic factors influencing outcomes. By leveraging 
advanced analytical techniques on a large patient cohort, we aimed to 
offer insights that could help refine personalized and more effective 
management strategies for patients with S-AKI requiring CRRT.

Methods and materials

Data source

This retrospective study used health-related data from the 
MIMIC-IV (version 3.0) database, a comprehensive and widely used 

resource developed and maintained by the MIT Computational 
Physiology Laboratory. The MIMIC-IV database contains high-
quality medical records of patients admitted to the ICU of Beth Israel 
Deaconess Medical Center (21). Data extraction was conducted by 
Xuehuan Wen, who adhered to all database access requirements. For 
external validation, we  utilized the eICU Collaborative Research 
Database, with data access also authorized to Xuehuan Wen. As both 
MIMIC-IV and eICU are publicly available anonymized databases, 
ethical committee approval was deemed unnecessary for this study.

Study population

The study population comprised adult patients (≥18 years) with 
S-AKI. Sepsis was defined according to the Third International 
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) 
criteria, requiring a Sequential Organ Failure Assessment (SOFA) 
score ≥ 2 points in the context of suspected or confirmed infection 
(1). AKI was classified using the Kidney Disease: Improving Global 
Outcomes (KDIGO) criteria, with inclusion requiring stage ≥1 
AKI (22).

As shown in Figure 1, from an initial cohort of 23,083 patients 
with S-AKI, we excluded 21,524 patients who did not receive CRRT 
and 54 patients with multiple hospital admissions during the study 
period. Among the remaining 1,505 patients who received CRRT, 
we further excluded 443 patients who initiated CRRT within 24 h of 
admission to address potential confounding from mixed pre-and 
post-CRRT effects. This resulted in 1,062 patients for analysis. Using 
the median time from S-AKI onset to CRRT initiation (2.49 days) as 
the threshold, we stratified patients into early (≤2.49 days) and late 
(>2.49 days) CRRT groups. To minimize potential selection bias and 
confounding, we performed propensity score matching (PSM) (23) 
using a 1:1 nearest neighbor matching algorithm without 
replacement. The matching variables included disease severity 
indicators: SOFA score, maximum creatinine, minimum platelets, 
minimum mean blood pressure, maximum potassium, minimum 
bicarbonate, and maximum INR. The matched cohort comprised 
296 patients in each group (total n = 592), achieving balance in these 
key clinical characteristics. Subsequent survival analyses were 
conducted using this matched cohort to minimize bias from disease 
severity differences between groups.

Data collection and processing

Data extraction was executed using PostgreSQL (version 
16.3.2) and Navicat Premium (version 17) with Structured Query 
Language (SQL) queries. This process was performed on both the 
MIMIC-IV and eICU databases, following identical extraction 
protocols to ensure consistency across datasets. The extracted 
variables were classified into five main groups: (1) Demographics: 
age, gender, race, weight, height, and BMI. (2) Comorbidities: 
including cardiovascular, pulmonary, hepatic, renal, and metabolic 
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diseases. (3) Laboratory indicators: including complete blood 
count, metabolic panel, coagulation profile, and markers of organ 
function. (4) Vital signs: including blood pressure, heart rate, 
respiratory rate, temperature, and oxygen saturation. (5) Severity 
of illness scores at admission: Sequential Organ Failure 
Assessment (SOFA) score, which evaluates six organ systems 
(respiratory, coagulation, liver, cardiovascular, central nervous 
system, and renal) using specific clinical and laboratory 
parameters ranging from 0 (normal) to 4 (most abnormal) for 
each system.

The feature set used for analysis comprised three main 
components: clinical parameters collected within the first 24 h of 
ICU admission, patient comorbidities, and the time interval from 
AKI diagnosis to CRRT initiation. The baseline clinical parameters 
included demographic information, SOFA scores and their 
components, laboratory results, and vital signs. To ensure data 
integrity, we employed a systematic approach to handle missing 
data. Patient records with more than 20% missing features were 
excluded from the analysis. For the remaining records, features with 
missing values exceeding 10% were removed from the dataset. The 
remaining missing values were imputed using the Multiple 
Imputation by Chained Equations (MICE) method, implemented 
through the miceR package in R. This comprehensive approach to 
data collection and preprocessing ensured a robust foundation for 
subsequent analyses while minimizing potential biases from 
missing data.

Propensity score matching analysis

To minimize selection bias between early and late CRRT groups, 
we  performed PSM using the “MatchIt” package in R (24). The 
matching model incorporated six key clinical parameters that typically 
influence CRRT initiation decisions: SOFA score (reflecting overall 
illness severity), maximum creatinine (indicating kidney dysfunction), 
minimum mean blood pressure (hemodynamic status), maximum 
potassium (electrolyte derangement), minimum bicarbonate 
(metabolic acidosis), and maximum INR (coagulation status). These 
variables were selected based on their clinical relevance to CRRT 
timing decisions in critical care settings.

We employed nearest-neighbor matching with customized 
parameters to ensure precise matching on these critical variables. The 
matching was performed with a 1:1 ratio, and balance assessment of 
covariates before and after matching was conducted using 
standardized mean differences, with values less than 0.1 indicating 
adequate balance. The quality of matching was further evaluated 
through visual inspection of propensity score distributions and 
covariate balance plots.

Clinical outcomes

The primary endpoint of this study was all-cause mortality. 
We  analyzed survival status at multiple time points, including 

FIGURE 1

Flowchart of the study cohort. Schematic representation of patient selection methodology from the MIMIC-IV 3.0 database, delineating the sequential 
filtration process and subsequent analytical stratification of sepsis-associated acute kidney injury cases into original and propensity-matched cohorts 
for comparative outcome analysis. CRRT, continuous renal replacement therapy; PSM, propensity score matching; KM, Kaplan–Meier; OS, overall 
survival.
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short-term outcomes at 14, 28, and 90 days, as well as long-term 
outcomes at 1, 2, and 3 years. Among these, 28-day mortality and 
survival time were designated as key indicators and utilized for 
subsequent predictive model development.

Survival analysis with Kaplan–Meier curves

We conducted survival analyses on both the original cohort and 
the propensity score-matched cohort using the Kaplan–Meier 
method consistent with our previous work (25). Using the median 
time interval between AKI onset and CRRT initiation as the 
threshold, patients were stratified into early and late CRRT groups. 
The analysis was performed using R (version 4.3.2) and 
encompassed both short-term outcomes (14-day, 28-day, and 
90-day survival) and long-term outcomes (1-, 2-, and 3-year 
survival). We  employed the log-rank test to assess statistical 
differences in survival distributions between groups. To ensure 
robustness of our findings, we performed parallel analyses in both 
the MIMIC-IV and eICU databases. The initial analysis on the 
complete cohort examined unadjusted survival differences, while 
the subsequent analysis on the propensity score-matched cohorts 
provided survival outcomes with balanced baseline characteristics, 
thus minimizing potential confounding effects.

Construction of multiple machine learning 
models

We developed and validated multiple machine learning models 
using features collected within the first 24 h of ICU admission, as 
detailed in Table  1. The dataset was randomly split into training 
(70%) and internal validation (30%) sets, with external validation 
performed using the eICU database. To ensure robust predictive 
performance, we implemented multiple machine learning algorithms 
(26), including: Gradient Boosting Machine (GBM, an ensemble 
learning technique that sequentially builds decision trees to improve 
predictive accuracy by learning from previous errors), Random 
Survival Forest (RSF, which combines multiple decision trees to 
analyze time-to-event data), and various regression-based approaches 
including LASSO (Least Absolute Shrinkage and Selection Operator), 
Ridge regression, and Elastic Net (Enet) with α values ranging from 
0.1 to 0.9.

Additional algorithms included COXboost (an algorithm that 
enhances standard Cox regression through boosting), Partial Least 
Squares Regression for Cox models (plsRcox, which handles high-
dimensional data while maintaining interpretability), Supervised 
Principal Components (superPC, which identifies relevant feature 
combinations for survival prediction), and Survival Support Vector 
Machine (SVM, which optimizes prediction boundaries for 
survival outcomes).

Furthermore, all numeric characteristics were initially categorized 
through discrete code, given the considerable discrepancy in their 
values. These diverse algorithms were selected to comprehensively 
explore various modeling approaches, enabling us to identify the most 
effective and robust predictive model for our specific dataset and 
research objectives.

Validation of model with survival ROC

To validate the GBM model, we conducted a survival receiver 
operating characteristic (ROC) analysis in the validation dataset. The 
analysis was conducted using the ‘survivalROC’ package in R (27). 
Time-dependent ROC curves were generated to assess the model’s 
discriminative ability at two clinically relevant timepoints: 14-day and 
28-day mortality. The analysis was systematically performed across 
three distinct datasets: the training set (used for model development), 
the internal validation set (for initial performance verification), and 
the external test set (using eICU data for independent validation). For 
each timepoint and dataset, we calculated the area under the ROC 
curve (AUC) to quantify the model’s discriminative capability.

SHAP analysis for feature importance

To enhance the interpretability of our GBM model and 
understand the relative contribution of each clinical feature to 
mortality prediction, we employed Shapley Additive exPlanations 
(SHAP) analysis. SHAP values, based on cooperative game theory 
principles, quantify how each feature influences individual 
predictions by comparing model outputs with and without that 
feature present. We calculated SHAP values for each patient case 
using the ‘iml’ R package (28). The results were visualized using the 
‘shapviz’ R package, which generated comprehensive plots showing 
both global feature importance and local feature effects.

Results

Baseline characteristics

A total of 1,505 patients were enrolled in this study. The median 
age of the participants was 64.11 years (interquartile range [IQR]: 
53.9–74.19), and 897 (59.6%) were male. The median time from AKI 
onset to CRRT initiation was 1.5 days (IQR: 0.36–3.75). CRRT modes 
were recorded for 654 patients, with continuous venovenous 
hemodiafiltration (CVVHDF) being the most prevalent (n = 622, 
95.1%). The 28-day mortality rate was 49.8%.

Patients were stratified into two groups: Early (≤1.5 days) and 
Late (>1.5 days) initiation, based on the median time from the onset 
of AKI to the start of CRRT (1.5 days). Into Early (≤1.5 days) and 
Late (>1.5 days) initiation groups based on the median time from 
AKI onset to CRRT initiation (1.5 days). Baseline characteristics 
derived from first-day measurements were both significant and 
non-significant differences between groups (Table 1). Compared to 
the early initiation group, the Late initiation group demonstrated a 
higher prevalence of cerebrovascular disease (14% vs. 9.1%, p = 0.004) 
and invasive ventilation requirements (92.1% vs. 86.3%, p < 0.001). 
However, this group exhibited lower disease severity markers, 
including maximum creatinine (2.3 vs. 3.9 mg/dL), SOFA score (10 
vs. 12), and lactate levels (3.0 vs. 5.2 mmol/L). These differences in 
baseline characteristics suggested less severe illness in the Late 
initiation group, highlighting the need for propensity score matching 
in subsequent analyses.
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TABLE 1 Baseline characteristics of patients with sepsis-associated AKI stratified by time from AKI onset to CRRT initiation (parameters from first 
24 hours of ICU admission).

Variables Total (n = 1,505) Late (n = 748) Early (n = 757) p

AKI to CRRT days 1.50 [0.36, 3.75] 3.76 [2.39, 7.02] 0.36 [0.00, 0.78] <0.001

CRRT mode

  CVVH 20 (1.3) 16 (2.1) 4 (0.5)

  CVVHD 11 (0.7) 4 (0.5) 7 (0.9)

  CVVHDF 622 (41.3) 295 (39.4) 327 (43.2)

  SCUF 1 (0.1) 1 (0.1) 0 (0.0)

Age 64.11 [53.90, 74.19] 66.02 [55.37, 75.17] 62.88 [52.41, 72.42] <0.001

Gender

  Female 608 (40.4) 291 (38.9) 317 (41.9)
0.262

  Male 897 (59.6) 457 (61.1) 440 (58.1)

Race

  ASIAN 40 (2.7) 22 (2.9) 18 (2.4)

0.162
  BLACK 190 (12.6) 89 (11.9) 101 (13.3)

  WHITE 857 (56.9) 445 (59.5) 412 (54.4)

  OTHER 418 (27.8) 192 (25.7) 226 (29.9)

Height (cm) 170.18 [163.00, 178.00] 170.18 [163.00, 178.00] 170.18 [163.00, 178.00] 0.388

Weight (kg) 88.34 [74.50, 104.83] 88.44 [75.28, 105.07] 88.00 [73.91, 104.31] 0.469

BMI 30.57 [26.18, 35.66] 30.80 [26.68, 35.44] 30.41 [25.95, 36.10] 0.343

Comorbidities

  Myocardial Infarct (+) n (%) 306 (20.3) 149 (19.9) 157 (20.7) 0.741

  Congestive Heart Failure (+) n (%) 562 (37.3) 266 (35.6) 296 (39.1) 0.172

  Peripheral Vascular Disease (+) n 

(%)

241 (16.0) 116 (15.5) 125 (16.5) 0.645

  Cerebrovascular Disease (+) n (%) 174 (11.6) 105 (14.0) 69 (9.1) 0.004

  Dementia (+) n (%) 27 (1.8) 15 (2.0) 12 (1.6) 0.675

  Chronic Pulmonary Disease (+) n 

(%)

388 (25.8) 196 (26.2) 192 (25.4) 0.754

  Rheumatic Disease (+) n (%) 55 (3.7) 24 (3.2) 31 (4.1) 0.436

  Peptic Ulcer Disease (+) n (%) 68 (4.5) 33 (4.4) 35 (4.6) 0.941

  Mild Liver Disease (+) n (%) 440 (29.2) 212 (28.3) 228 (30.1) 0.483

  Diabetes without Complication (+), 

n (%)

413 (27.4) 213 (28.5) 200 (26.4) 0.403

  Diabetes with Complication (+),  

n (%)

275 (18.3) 120 (16.0) 155 (20.5) 0.031

  Paraplegia (+) n (%) 27 (1.8) 15 (2.0) 12 (1.6) 0.675

  Renal Disease (+) n (%) 656 (43.6) 314 (42.0) 342 (45.2) 0.230

  Malignant Cancer (+) n (%) 141 (9.4) 78 (10.4) 63 (8.3) 0.189

  Severe Liver Disease (+) n (%) 221 (14.7) 112 (15.0) 109 (14.4) 0.809

  Metastatic Solid Tumor (+) n (%) 36 (2.4) 17 (2.3) 19 (2.5) 0.895

  AIDS (+) n (%) 9 (0.6) 3 (0.4) 6 (0.8) 0.515

Vasoactive agents (+), n (%) 1,186 (78.8) 600 (80.2) 586 (77.4) 0.205

Invasive ventilation (+), n (%) 1,342 (89.2) 689 (92.1) 653 (86.3) <0.001

28-day mortality (+), n (%) 750 (49.8) 362 (48.4) 388 (51.3) 0.290

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 1,505) Late (n = 748) Early (n = 757) p

Laboratory tests

  Lactate min (mmol/L) 1.80 [1.20, 3.00] 1.60 [1.10, 2.40] 2.10 [1.30, 4.00] <0.001

  Lactate max (mmol/L) 3.70 [2.00, 7.90] 3.00 [1.80, 5.20] 5.20 [2.30, 10.50] <0.001

  PH min 7.22 [7.12, 7.31] 7.27 [7.19, 7.34] 7.17 [7.06, 7.26] <0.001

  PH max 7.39 [7.32, 7.44] 7.41 [7.35, 7.46] 7.37 [7.30, 7.43] <0.001

  Base excess min (mEq/L) −8.00 [−14.00, −3.00] −6.00 [−10.00, −1.00] −11.00 [−17.00, −6.00] <0.001

  Base excess max (mEq/L) −1.00 [−5.00, 1.00] 0.00 [−3.00, 2.00] −2.00 [−6.00, 0.00] <0.001

  Wbc min (K/uL) 10.80 [6.70, 15.50] 10.50 [6.70, 14.75] 11.00 [6.68, 16.30] 0.064

  Bicarbonate min (mEq/L) 22.00 [19.00, 25.00] 23.00 [20.00, 26.00] 21.00 [18.00, 24.00] <0.001

  Bicarbonate max (mEq/L) 17.00 [13.00, 21.00] 19.00 [16.00, 22.00] 15.00 [11.00, 20.00] <0.001

  Wbc max (K/uL) 16.00 [10.90, 22.75] 15.20 [10.55, 20.50] 17.30 [11.38, 24.72] <0.001

  Abs Basophils min (K/uL) 0.01 [0.00, 0.03] 0.01 [0.00, 0.03] 0.01 [0.00, 0.03] 0.092

  Abs Basophils max (K/uL) 0.02 [0.00, 0.05] 0.02 [0.00, 0.05] 0.02 [0.00, 0.05] 0.409

  Abs Eosinophils min (K/uL) 0.01 [0.00, 0.07] 0.01 [0.00, 0.09] 0.00 [0.00, 0.06] 0.137

  Abs Eosinophils max (K/uL) 0.02 [0.00, 0.12] 0.03 [0.00, 0.13] 0.02 [0.00, 0.11] 0.187

  Abs Lymphocytes min (K/uL) 0.82 [0.46, 1.38] 0.82 [0.46, 1.34] 0.81 [0.46, 1.40] 0.945

  Abs Lymphocytes max (K/uL) 0.98 [0.59, 1.71] 0.96 [0.57, 1.66] 1.00 [0.61, 1.72] 0.324

  Abs Monocytes min (K/uL) 0.50 [0.23, 0.92] 0.49 [0.24, 0.91] 0.52 [0.22, 0.93] 0.542

  Abs Monocytes max (K/uL) 0.66 [0.37, 1.09] 0.64 [0.36, 1.04] 0.68 [0.37, 1.16] 0.226

  Abs Neutrophils min (K/uL) 10.09 [6.01, 15.94] 9.86 [5.83, 14.19] 10.58 [6.27, 16.92] 0.041

  Abs Neutrophils max (K/uL) 11.43 [7.22, 17.48] 11.05 [6.96, 16.35] 11.81 [7.40, 19.06] 0.004

  Calcium min (mEq/L) (K/uL) 7.70 [7.10, 8.40] 7.85 [7.20, 8.40] 7.60 [6.90, 8.30] <0.001

  Calcium max (mEq/L) (K/uL) 8.60 [8.00, 9.20] 8.50 [7.90, 9.00] 8.70 [8.10, 9.40] <0.001

  Chloride min (mEq/L) 99.00 [94.00, 104.00] 100.00 [95.00, 105.00] 97.00 [93.00, 102.00] <0.001

  Chloride max (mEq/L) 104.00 [99.00, 108.00] 105.00 [100.00, 109.00] 103.00 [98.00, 108.00] <0.001

  Sodium min (mEq/L) 135.00 [132.00, 139.00] 136.00 [132.00, 139.00] 135.00 [131.00, 138.00] <0.001

  Sodium max (mEq/L) 139.00 [136.00, 143.00] 139.00 [136.00, 143.00] 139.00 [135.75, 143.00] 0.848

  Potassium min (mEq/L) 4.10 [3.60, 4.50] 4.00 [3.50, 4.50] 4.10 [3.60, 4.60] 0.001

  Potassium max (mEq/L) 5.00 [4.40, 5.80] 4.70 [4.30, 5.40] 5.30 [4.60, 6.20] <0.001

  Inr min 1.40 [1.20, 1.80] 1.30 [1.12, 1.60] 1.40 [1.20, 1.90] <0.001

  Inr max 1.60 [1.30, 2.40] 1.50 [1.30, 2.10] 1.80 [1.30, 2.95] <0.001

  Pt min (s) 15.00 [12.90, 19.30] 14.50 [12.70, 18.00] 15.60 [13.20, 20.70] <0.001

  Pt max (s) 17.90 [14.30, 26.50] 16.80 [13.90, 22.87] 19.40 [14.90, 31.80] <0.001

  Ptt min (s) 32.30 [28.15, 39.30] 31.90 [27.80, 38.85] 32.70 [28.60, 39.50] 0.076

  Ptt max (s) 42.60 [33.10, 68.25] 40.85 [32.40, 63.12] 45.10 [33.50, 74.65] 0.002

  Platelet min (K/uL) 135.00 [71.00, 206.00] 140.00 [82.00, 203.00] 125.00 [64.00, 208.00] 0.029

  Platelet max (K/uL) 186.00 [122.00, 264.50] 184.00 [124.50, 253.00] 187.50 [118.00, 278.25] 0.455

  Hematocrit min (%) 27.40 [23.10, 32.90] 27.20 [23.10, 32.75] 27.60 [22.90, 33.00] 0.867

  Hematocrit max (%) 33.20 [28.70, 38.30] 32.80 [28.60, 37.75] 33.60 [28.78, 38.70] 0.143

  Hemoglobin min (g/dL) 8.90 [7.50, 10.60] 8.90 [7.60, 10.60] 8.90 [7.40, 10.55] 0.369

  Hemoglobin max (g/dL) 10.70 [9.20, 12.30] 10.60 [9.20, 12.30] 10.70 [9.20, 12.35] 0.561

  CRP min (mg/L) 131.70 [67.20, 202.00] 120.80 [67.05, 198.88] 142.50 [69.90, 204.50] 0.520

  CRP max (mg/L) 134.40 [68.70, 210.00] 128.35 [68.35, 213.12] 158.30 [69.90, 205.40] 0.584

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 1,505) Late (n = 748) Early (n = 757) p

  ALT Min (IU/L) 37.00 [20.00, 120.50] 35.00 [20.00, 89.00] 42.00 [20.00, 193.25] 0.003

  ALT Max (IU/L) 52.00 [23.00, 249.50] 43.00 [23.00, 121.00] 66.50 [24.00, 535.25] <0.001

  AST Min (IU/L) 72.00 [34.00, 235.75] 66.50 [32.00, 161.75] 79.50 [37.75, 408.25] <0.001

  AST Max (IU/L) 108.00 [42.00, 509.50] 84.00 [39.00, 241.75] 137.50 [48.00, 1133.00] <0.001

  Bilirubin Min (mg/dL) 0.90 [0.40, 2.60] 0.90 [0.40, 2.70] 0.80 [0.40, 2.50] 0.851

  Bilirubin Max (mg/dL) 1.20 [0.50, 3.40] 1.10 [0.50, 3.50] 1.30 [0.50, 3.40] 0.536

  LDH Min (IU/L) 444.00 [281.00, 820.25] 402.00 [273.00, 709.00] 476.00 [299.00, 977.00] <0.001

  LDH Max (IU/L) 529.50 [308, 1,129] 456.00 [299.00, 844.00] 618.00 [336, 1,781.00] <0.001

  Albumin Min (g/dL) 2.80 [2.20, 3.20] 2.70 [2.30, 3.20] 2.80 [2.20, 3.30] 0.806

  Albumin Max (g/dL) 2.95 [2.50, 3.40] 2.90 [2.50, 3.40] 3.00 [2.50, 3.40] 0.576

  Bun min (mg/dL) 33.00 [21.00, 53.00] 30.00 [19.00, 50.50] 36.00 [22.00, 55.00] 0.002

  Bun max (mg/dL) 44.00 [28.00, 68.00] 38.00 [25.00, 60.50] 49.00 [32.00, 74.25] <0.001

  Creatinine Min (mg/dL) 2.20 [1.30, 3.60] 1.70 [1.10, 3.00] 2.70 [1.70, 4.20] <0.001

  Creatinine Max (mg/dL) 3.00 [1.90, 4.80] 2.30 [1.40, 3.70] 3.90 [2.48, 5.80] <0.001

Urine output

  Urine output (mL) 490.00 [140, 1,183.00] 820.00 [305, 1,598.75] 234.50 [66.50, 720.75] <0.001

Severity scores

  SOFA 10.00 [8.00, 13.00] 10.00 [7.00, 12.00] 12.00 [9.00, 14.00] <0.001

  Coagulation 1.00 [0.00, 2.00] 1.00 [0.00, 2.00] 1.00 [0.00, 2.00] 0.006

  Liver 1.00 [0.00, 2.00] 0.00 [0.00, 2.00] 1.00 [0.00, 2.00] 0.222

  CNS 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.163

  Renal 3.00 [2.00, 4.00] 2.00 [1.00, 3.00] 4.00 [3.00, 4.00] <0.001

  Cardiovascular 3.00 [1.00, 4.00] 3.00 [1.00, 4.00] 4.00 [1.00, 4.00] <0.001

  Respiration 3.00 [2.00, 4.00] 3.00 [2.00, 4.00] 3.00 [3.00, 4.00] <0.001

Vital signs

  Heart Rate min (beats/min) 76.00 [63.00, 87.00] 76.00 [65.00, 87.00] 75.00 [62.00, 88.00] 0.185

  Heart Rate max (beats/min) 111.00 [95.00, 128.00] 109.00 [95.00, 125.00] 113.00 [96.00, 130.00] 0.012

  Systolic BP min (mmHg) 81.00 [72.00, 90.00] 83.00 [75.00, 91.12] 79.00 [69.00, 90.00] <0.001

  Systolic BP max (mmHg) 142.00 [129.00, 158.00] 144.00 [129.00, 158.25] 141.00 [128.00, 157.00] 0.144

  Diastolic BP min (mmHg) 42.00 [35.00, 48.00] 43.00 [36.00, 49.00] 41.00 [34.00, 47.00] <0.001

  Diastolic BP max (mmHg) 82.00 [71.00, 96.00] 83.00 [72.00, 97.00] 81.00 [70.00, 94.00] 0.021

  Mean BP min (mmHg) 54.00 [46.00, 61.00] 55.00 [48.00, 62.00] 53.00 [43.00, 60.00] <0.001

  Mean BP max (mmHg) 99.00 [89.00, 113.00] 100.00 [90.00, 114.00] 99.00 [89.00, 113.00] 0.182

  Respiratory Rate min (beats/min) 13.00 [10.00, 16.00] 13.00 [10.00, 16.00] 13.00 [10.00, 16.00] 0.598

  Respiratory Rate max (beats/min) 30.00 [26.00, 34.00] 30.00 [26.00, 34.00] 30.00 [26.00, 35.00] 0.022

  Temperature min (°C) 36.33 [35.56, 36.61] 36.44 [35.89, 36.72] 36.11 [35.17, 36.50] <0.001

  Temperature max (°C) 37.33 [36.90, 37.94] 37.36 [36.94, 38.06] 37.28 [36.89, 37.89] 0.022

  SpO2 min (%) 91.00 [87.00, 94.00] 91.00 [88.00, 94.00] 90.00 [85.00, 94.00] <0.001

  SpO2 max (%) 100.00 [100.00, 100.00] 100.00 [99.00, 100.00] 100.00 [100.00, 100.00] 0.046

  Glucose min (mg/dL) 111.00 [87.00, 143.00] 115.00 [92.00, 145.00] 107.00 [82.00, 141.25] <0.001

  Glucose max (mg/dL) 176.50 [135.00, 252.00] 166.00 [129.00, 227.00] 191.50 [142.00, 269.25] <0.001
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Survival outcomes stratified by CRRT 
initiation timing

Initial analysis of 28-day mortality rates between early and late 
CRRT initiation groups (51.3% versus 48.4%) revealed no significant 
difference in crude mortality (p = 0.29). However, detailed temporal 
analysis through Kaplan–Meier survival curves demonstrated 
substantial differences in survival trajectories, particularly during the 
early follow-up period.

In the original cohort (n = 1,505; 748 late vs. 757 early), the 
late initiation group demonstrated significantly better survival 
across all time horizons. Short-term analyses revealed superior 
survival in the late group at 14 days (p < 0.0001, 
Supplementary Figure S1A), 28 days (p = 0.00051, 
Supplementary Figure S1B), and 90 days (p = 0.0042, 
Supplementary Figure S1C), with the most pronounced difference 
observed within the first 28 days. This survival advantage 
persisted in long-term follow-up, with significantly better 
outcomes in the late initiation group at 12 months (p = 0.004, 
Supplementary Figure S1D), 24 months (p = 0.0089, 
Supplementary Figure S1E), and 36 months (p = 0.0084, 
Supplementary Figure S1F).

To enhance the validity of our analysis, we  first excluded 
patients who received CRRT within 24 h of ICU admission. This 
important methodological decision was made to eliminate 
potential confounding effects, as baseline clinical parameters 
collected during the first 24 h would be influenced by the CRRT 
intervention itself in these early-initiation cases. After this 
exclusion, we performed propensity score matching incorporating 
six key clinical parameters: SOFA score, maximum creatinine, 
minimum mean blood pressure, maximum potassium, minimum 
bicarbonate, and maximum INR. Post-matching analysis 
demonstrated excellent covariate balance, with standardized mean 
differences (SMD) reduced to below 0.1 for all variables 
(Figure 2A). The density distribution of propensity scores showed 
marked improvement in overlap between groups after matching 
(Figure  2B). The non-significant differences in baseline 
characteristics between groups after matching, as demonstrated 
by p values in Supplementary Tables S1, S2, further validated the 
successful balancing of covariates.

In the MIMIC-IV matched cohort analysis, the survival 
advantage of late CRRT initiation was evident across multiple time 
horizons. Short-term survival analysis revealed significant differences 
at 14 days (p < 0.0001), 28 days (p = 0.00026), and 90 days 
(p = 0.0094) (Figures  2C–E). The survival benefit was most 
pronounced in the early period, particularly within the first 14 days 
post-initiation.

To validate these findings, we performed parallel analyses in the 
eICU database. The external validation demonstrated a consistent 
trend, though with varying levels of statistical significance. The late 
CRRT group showed better survival at 14 days (p = 0.036, Figure 2F), 
while differences at 28 days (p = 0.098, Figure  2G) and 90 days 
(p = 0.13, Figure  2H) did not reach statistical significance 
(Figures 2F–H). The consistency of the survival pattern across both 
databases, particularly in the early period, strengthens the evidence 
supporting the potential benefit of later CRRT initiation in patients 
with S-AKI.

Subgroup and clinical outcomes analysis

To further investigate the relationship between CRRT timing and 
survival in different patient subgroups, we stratified patients based 
on disease severity (SOFA score) and kidney injury severity 
(maximum creatinine levels). In SOFA score-based stratification, 
although not reaching conventional statistical significance, the 
Kaplan–Meier curves demonstrated consistent separation favoring 
late CRRT across all severity categories. This survival advantage was 
observed in patients with low SOFA scores (≤10, p = 0.063, 
Figure 3A) and medium SOFA groups (11–15, p = 0.055, Figure 3B), 
and was most pronounced in patients with high SOFA scores (>15, 
p = 0.058, Figure 3C), where the curves showed the widest separation, 
with early CRRT associated with notably lower survival rates 
by day 28.

When stratified by maximum day-1 creatinine levels, a significant 
survival advantage for late CRRT was observed in the low creatinine 
group (≤3 mg/dL, p < 0.0001, Figure  3D), while no significant 
differences were found in medium (3–5 mg/dL, p = 0.57, Figure 3E) 
or high creatinine groups (>5 mg/dL, p = 0.18, Figure 3F).

To evaluate potential complications and clinical implications of 
different CRRT timing strategies, we analyzed hemodynamic stability 
and bleeding risk. Temporal analysis of clinical parameters revealed 
distinct patterns between early and late CRRT groups. Mean arterial 
pressure remained stable in both groups over the 7-day observation 
period, with the late CRRT group maintaining slightly higher values 
(74.7 ± 10.6 vs. 73.7 ± 11.1 mmHg, p = 0.043, Supplementary  
Figure S2A). Hemoglobin levels showed a progressive decline in both 
groups after day 2, with the early CRRT group starting from a higher 
baseline (9.3 ± 1.5 vs. 8.9 ± 1.4 g/dL, p = 0.004, Supplementary  
Figure S2B; Supplementary Table S3).

Given the potential impact of CRRT timing on healthcare resource 
utilization, we further examined clinical outcomes and hospital course 
metrics. Analysis revealed significantly longer durations in the late 
CRRT group across multiple parameters. These included hospital 
length of stay (median difference 5.2 days, p < 0.001), ICU length of 
stay (median difference 4.8 days, p < 0.001), and mechanical 
ventilation duration (median difference 3.9 days, p < 0.001). The 
consistent pattern of increased resource utilization in the late CRRT 
group suggests a complex relationship between intervention timing 
and recovery trajectory (Supplementary Figure S2C).

Establishment of multiple machine learning 
methods for predicting overall survival of 
patients with S-AKI

Following the establishment of a significant association between 
CRRT initiation timing and overall survival in patients with S-AKI, 
we developed a comprehensive predictive framework using machine 
learning techniques. The MIMIC-IV cohort was divided into training 
and validation sets, while the eICU database served as an external test 
set to evaluate model generalizability. Using the features outlined in 
the Methods section, we  implemented and evaluated 17 different 
machine learning models. The performance of each model was 
assessed using the C-index across training, validation, and external 
test sets (Figure 4A). The GBM model demonstrated the strongest 
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performance with an average C-index of 0.694 between validation and 
external test sets.

We then analyzed feature selection patterns across models using 
an upset plot, selecting Elastic Net (α = 0.1) as the representative 
Elastic Net model (Figure  4B). The intersection analysis revealed 
Lactate max as the only feature consistently selected across all models. 
Notably, the time from AKI onset to CRRT initiation appeared in five 
different models, suggesting its potential predictive value.

To rigorously evaluate the model’s predictive performance, 
we conducted survival ROC analyses at clinically relevant time points 
across all three datasets. The 14-day survival predictions showed 

AUCs of 0.903, 0.772, and 0.714 for the training, validation, and test 
sets, respectively (Figure 4C). Similarly, for 28-day survival, the model 
achieved AUCs of 0.886, 0.731, and 0.646 (Figure 4D).

Identification of key prognostic features in 
patients with S-AKI

To identify vital factors influencing prognosis in S-AKI patients, 
we evaluated feature importance within the GBM model using SHAP 
values. Figure 5A illustrates the mean SHAP values for the top 10 

FIGURE 2

Propensity score matching analysis and survival outcomes stratified by CRRT initiation timing. (A) Standardized mean differences of baseline covariates 
pre-and post-propensity score matching. (B) Propensity score distribution in early versus late CRRT cohorts before and after matching. (C–H) Kaplan–
Meier survival estimates comparing early versus late CRRT initiation: MIMIC-IV cohort at (C) 14 days, (D) 28 days, and (E) 90 days; eICU cohort at 
(F) 14 days, (G) 28 days, and (H) 90 days post-CRRT initiation. Early versus late CRRT initiation was dichotomized at the median time interval from AKI 
onset to CRRT initiation. Shaded areas represent 95% confidence intervals. Log-rank test p values compare survival distributions between groups. At-
risk tables display the number of patients under observation at specified time points.
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features and the duration from AKI onset to CRRT initiation (AKI 
CRRT Interval), ranked by their impact on prediction. Maximum 
lactate emerged as the most influential factor (mean SHAP value: 
0.182), followed by age (0.153), minimum SpO2 (0.122), and SOFA 
score (0.117). Notably, the AKI CRRT Interval showed the smallest 
impact (mean SHAP value: 0.024) among all analyzed features.

The beeswarm plot (Figure 5B) visualized the distribution of both 
feature values and their corresponding SHAP values across the patient 
cohort. Higher maximum lactate values (shown in purple) were 
associated with higher SHAP values, indicating increased mortality 
risk. Age and minimum SpO2 also showed strong influences on 
outcome prediction, with clear patterns in their SHAP 
value distributions.

To explore potential relationships among patient characteristics, 
we  conducted a hierarchical clustering analysis based on these 
features. The resulting heatmap (Figure 5C) revealed distinct patient 
clusters, highlighting the heterogeneity within the S-AKI population. 
The clustering pattern suggested complex interactions between clinical 
parameters and outcomes.

We further investigated feature interactions through detailed 
SHAP dependency plots. The relationship between maximum lactate 
levels and SHAP values (Figure 5D) showed a positive correlation, 
with higher lactate levels associated with higher SHAP values; notably, 
early CRRT interventions were more common in patients with 
elevated lactate levels. Age demonstrated a positive correlation with 
SHAP values (Figure 5E), though CRRT timing was evenly distributed 
across age groups. Minimum SpO2 (Figure 5F) exhibited a negative 
correlation with SHAP values, with early CRRT being more frequent 
in cases of severe hypoxemia. SOFA scores (Figure 5G) showed a 
notable increase in SHAP values at higher severity levels (7–9), where 
early CRRT interventions were more commonly observed, suggesting 
disease severity significantly influenced CRRT timing decisions.

Discussion

This study offers valuable insights into the optimal timing of 
CRRT initiation in patients with S-AKI, providing important findings 

FIGURE 3

Stratified analysis of 28-day survival outcomes by SOFA score and creatinine levels. Kaplan–Meier survival analyses comparing early versus late CRRT 
initiation stratified by disease severity markers. (A–C) SOFA score stratification: (A) Low SOFA (≤10), (B) Medium SOFA (11–15), and (C) High SOFA (>15). 
(D–F) First-day maximum serum creatinine stratification: (D) Low Cr (≤3 mg/dL), (E) Medium Cr (3–5 mg/dL), and (F) High Cr (>5 mg/dL). Late and 
early CRRT initiation groups are represented by blue and yellow curves, respectively. Shaded areas indicate 95% confidence intervals. Log-rank test 
p-values are shown for between-group comparisons. Numbers at risk are displayed below each curve at corresponding time points.
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that may influence clinical decision-making. First, while late CRRT 
initiation is associated with improved survival, it comes at the cost of 
increased healthcare resource utilization. Second, we  developed a 
robust GBM model to predict overall survival, highlighting that 
prognosis in S-AKI patients undergoing CRRT is shaped by multiple 
organ system factors, rather than just renal parameters. Third, the 
timing of CRRT initiation has minimal impact on survival prediction 
compared to other clinical parameters, suggesting that the focus on 
optimal CRRT timing may be less critical than previously thought.

The timing of CRRT initiation in S-AKI has been a contentious 
issue, with various studies offering conflicting recommendations. 
Some research advocates for early CRRT initiation, suggesting it may 
improve 28-day survival rates (11), enhance SOFA scores, and 
expedite renal function recovery (12). However, other studies, 
including those by Barbar et al. (15) and Gaudry et al. (16, 17), found 
no significant survival benefit from early CRRT initiation and even 
reported higher rates of catheter-related bloodstream infections in 
these groups. The inconsistency in these findings likely stems from 

differences in study design, patient populations, and definitions of 
“early” versus “late” initiation.

Our study contributes significant insights to the ongoing debate 
regarding optimal CRRT timing in S-AKI through analysis of large-
scale datasets with robust statistical methodology. After propensity 
score matching to balance baseline characteristics, we observed that 
late CRRT initiation was associated with increased survival probability. 
However, this survival advantage came with longer hospital and ICU 
stays, as well as extended duration of mechanical ventilation, 
suggesting a complex trade-off between survival benefits and 
healthcare resource utilization.

In our subgroup analyses stratified by disease severity, 
we observed consistent trends favoring late CRRT initiation across 
all SOFA score categories. This survival advantage was most 
pronounced in patients with high SOFA scores (>15, p = 0.058), 
where early CRRT was associated with notably lower survival rates 
by day 28. Similar patterns were observed in both medium (11–15, 
p = 0.055) and low SOFA groups (≤10, p = 0.063), with late CRRT 

FIGURE 4

Machine learning model construction and performance analysis. (A) C-index heatmap comparing model performance across training, validation, and 
test datasets, with mean C-index values displayed. (B) UpSet plot illustrating the intersection of key model features with occurrence frequency greater 
than 3. (C) Time-dependent ROC curves for the GBM model at 14 days across training, validation, and test datasets. (D) Time-dependent ROC curves 
for the GBM model at 28 days across training, validation, and test datasets.
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consistently showing higher survival probabilities throughout the 
follow-up period.

When stratified by creatinine levels, we found a significant survival 
advantage for late CRRT in patients with low creatinine levels (≤3 mg/
dL, p < 0.0001), while no significant differences were observed in 
medium (3–5 mg/dL, p = 0.57) or high creatinine groups (>5 mg/dL, 
p = 0.18). These findings challenge the intuitive assumption that earlier 

intervention would yield better outcomes, particularly in patients with 
severe kidney injury. Instead, our results suggest that the optimal timing 
of CRRT initiation should be personalized, with particular attention to 
overall disease severity rather than relying solely on renal parameters (29).

It is crucial to recognize that initiation time is just one of many 
factors influencing the prognosis of patients with S-AKI (30). By 
integrating multidimensional patient information, including vital 

FIGURE 5

SHAP value analysis of features in the validation dataset. (A) Ranking of feature importance based on mean absolute SHAP values, showing top 10 
clinical parameters and AKI-to-CRRT interval. (B) SHAP value distribution for key features with color gradient indicating feature values; points represent 
individual cases. (C) Feature value heatmap showing standardized (z-score) distribution across the validation cohort. (D–G) SHAP value interaction 
plots demonstrating the relationship between AKI-to-CRRT interval and: (D) maximum lactate levels, (E) age, (F) minimum SpO2, and (G) SOFA score. 
Color gradients represent AKI-to-CRRT interval levels (0–9).
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signs, laboratory tests, demographics, and comprehensive severity 
scores, we developed various machine learning models for prognostic 
prediction. Particularly, the GBM model provided robust survival 
predictions. The SHAP value analysis revealed that maximum lactate 
levels, age, and minimum SpO2 were the most influential predictors 
of survival, followed by SOFA score and maximum PTT. Notably, 
while the interval from AKI onset to CRRT initiation was included in 
our analysis, it showed the lowest SHAP value among all evaluated 
features, suggesting that CRRT timing plays a less critical role in 
determining patient outcomes compared to markers of systemic 
illness severity and organ dysfunction.

Our machine learning analysis identified maximum lactate level as 
the strongest predictor of mortality in S-AKI patients requiring CRRT, 
followed by age. The paramount importance of lactate aligns with its 
well-established role as a marker of tissue hypoperfusion and cellular 
dysfunction in sepsis. In the context of S-AKI, elevated lactate levels not 
only reflect compromised macro-hemodynamics but also indicate 
profound cellular metabolic derangement and mitochondrial 
dysfunction. This finding suggests that the degree of tissue hypoperfusion 
and metabolic crisis, rather than traditional renal parameters, may be the 
primary determinant of survival in these patients. The significant impact 
of age as the second most important predictor likely reflects decreased 
physiological reserve and impaired ability to recover from severe 
systemic illness in older patients. Together, these findings emphasize that 
the prognosis of patients with S-AKI is more strongly influenced by 
markers of systemic illness severity and host factors than by parameters 
directly related to kidney injury or CRRT timing.

In terms of clinical implementation, our GBM model has several 
practical considerations. While the model demonstrates robust 
predictive performance, it requires standardized data input from 
electronic health records and has a long processing time. Although 
SHAP analysis enhances interpretability by identifying key predictive 
features like maximum lactate and age, the model’s complexity 
presents challenges for routine clinical use. Future validation across 
diverse healthcare settings and prospective studies are needed to 
evaluate the model’s real-world clinical utility.

Furthermore, the clustering analysis revealed distinct patient 
subgroups based on clinical features, with patients receiving later 
CRRT initiation tending to cluster together. This suggests that the 
timing of CRRT may be a proxy for overall clinical status rather than 
an independent determinant of outcomes. It underscores the 
importance of personalized decision-making based on a 
comprehensive assessment of patient condition rather than adhering 
to a one-size-fits-all approach to CRRT timing (31).

Our study has several limitations that warrant consideration. First, 
as an observational study using retrospective data, it is subject to 
potential confounding factors and selection bias, despite our rigorous 
propensity score matching approach. Second, while we used the eICU 
database as external validation, which strengthens our findings, the 
generalizability of our results to all healthcare settings requires further 
investigation. Additionally, our analysis was limited to the variables 
available in these databases, and there might be  other important 
factors not captured in our models.

In conclusion, our study demonstrates that later initiation of 
CRRT in patients with S-AKI is associated with improved survival, 
though this benefit comes with increased healthcare resource 
utilization. Our machine learning analysis reveals that systemic illness 
markers, particularly maximum lactate levels and age, are the strongest 

predictors of mortality, while CRRT timing plays a less crucial role 
than previously thought. These findings suggest that clinical decision-
making regarding CRRT initiation should focus more on overall 
illness severity and patient characteristics rather than adhering to 
strict timing protocols. Future prospective, multicenter studies are 
needed to validate these findings and develop more personalized 
approaches to CRRT initiation in patients with S-AKI.
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