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Objective: To investigate the ability of ultrasomics to noninvasively predict 
epidermal growth factor receptor (EGFR) expression status in patients with 
hepatocellular carcinoma (HCC).

Methods: 198 HCC patients were comprised in the study (n  =  138  in the 
training dataset and n  =  60 in the test dataset). EGFR expression was detected 
by immunohistochemistry. Ultrasomics features from gray-scale ultrasound 
images were extracted. Intra-class correlation coefficient (ICC) screening, 
variance filtering, mutual information method, and extreme gradient boosting 
(XGboost) embedding method were applied for selecting the best features. 
Random forest (RF), XGBoost, support vector machine (SVM), decision tree 
(DT), and logistic regression (LR) 5 machine learning algorithms were used 
to construct clinical models, ultrasomics models, and clinical-ultrasomics 
combined models, respectively. Area under the receiver operating characteristic 
curve (AUC), sensitivity, specificity, accuracy, decision curve analysis (DCA), and 
calibration curve were used to assess the predictive performance of the model.

Results: In 198 patients, high EGFR expression was observed in 100 patients 
and low EGFR expression was observed in 98 patients. The RF machine learning 
ultrasomics model was found to perform well, with the AUC of the training and 
test dataset being 0.929 (95%CI, 0.874–0.966) and 0.807 (95%CI, 0.684–0.897) 
respectively, the sensitivity being 0.843 and 0.767 respectively, the specificity 
being 0.857 and 0.800 respectively, and the accuracy being 0.850 and 0.783, 
respectively. The predictive performance of the combined model established 
by integrating ultrasomics features and clinical baseline characteristics was 
improved, with the AUC, sensitivity, specificity, and accuracy of the RF machine 
learning combined model for the training and test dataset reaching 0.937 
(95%CI, 0.884–0.971), 0.822 (95%CI, 0.702–0.909); 0.857, 0.833; 0.857, 0.800; 
0.857, 0.817, respectively.

Conclusion: To predict the status of EGFR expression in HCC patients, the 
ultrasomics model and combined model created by five machine learning 
algorithms can be  utilized as efficient and noninvasive techniques, and the 
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ultrasomics model and combined model established by RF classifier have the 
best predictive performance.
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the three leading 
cancers with the lowest survival rates worldwide (1). In China, liver 
cancer is burdened and has an insidious onset, and most HCC patients 
are in advanced stages at presentation, particularly those with cirrhosis 
or severe liver fibrosis, often losing the opportunity for surgical 
resection (2). Tyrosine kinase inhibitors (TKIs) and other systemic 
treatments were made the preferred choice for patients with advanced 
hepatocellular carcinoma (aHCC) (3, 4). However, the molecular 
biological and genetic changes during the division of cancer cells 
endowed HCC with heterogeneous characteristics (5, 6), which 
affected the therapeutic effects and prognosis of the patients (7).

Epidermal growth factor receptor (EGFR) is located on the cell 
membrane surface and is a receptor for cell proliferation and signal 
transduction, and its expression status is related to tumor progression 
and prognosis (8, 9). EGFR high expression (EGFRhigh) status activates 
more downstream signaling pathways and promotes proliferation, 
metastasis and invasiveness of tumor cells, resulting in poor tumor 
prognosis (10, 11). EGFR is highly expressed in 40–70% of HCC 
patients, and it has been shown that HCC patients with EGFRhigh have 
a poor prognosis and have a shorter survival time than those with low 
EGFR expression (EGFRlow) (12, 13). A recent study published in 
Nature found that HCC patients with EGFRhigh were more likely to 
develop resistance to TKIs, particularly lenvatinib (12). Only in HCC 
patients with EGFRhigh, lenvatinib induces the feedback activation of 
EGFR and its downstream PAK2-ERK5 signaling pathway by 
inhibiting FGFR and downstream ERK1/2 (14), and simultaneously 
activates the downstream signaling pathway MEK1/2-ERK1/2, which 
is common with FGFR, resulting in strong proliferation ability of 
HCC cells while lenvatinib was administered. EGFR inhibitors 
effectively blocked feedback activation, and combined with Lenvatinib, 
produced synergistic antitumor effects, indicating that HCC patients 
with EGFRhigh could benefit from this combination (12, 15). Thus, 
prediction of EGFR expression status not only allows assessment of 
HCC prognosis, but also enables precise treatment strategies for risk 
stratification of patients.

EGFR expression requires immunohistochemical detection by 
surgical resection specimens or biopsies. However, such invasive and 
less reproducible modality is not suitable for patients with 
aHCC. Radiomics is a specific algorithm that performs feature 
extraction and deep mining of standard medical images not only 
quantifies image features, but also analyzes the molecular phenotype 
of tumor cells to explore tumor heterogeneity in a non-invasive and 
reproducible manner (16, 17). Previous researches have reported that 
computed tomography (CT), magnetic resonance imaging (MRI) and 
Ultrasound (US) based on radiomics features have the ability to 
noninvasively characterize biomarkers such as cytokeratin 19 (CK19), 
vascular endothelial growth factor receptor (VEGFR), and P53 and 
have achieved promising predictive results (18–20). Up to now, there 

are few reports on the use of radiomics features to predict EGFR 
expression in patients with HCC. Since ultrasound is non-invasive, 
non-radiative, highly repeatable, and reasonably priced, it is one of the 
most often used techniques for liver testing (20). Thus, the current 
study is intended to investigate the value of ultrasomics features based 
on gray-scale ultrasound images for noninvasive prediction of EGFR 
expression status in patients with HCC, thus providing more objective 
evidence for precise treatment of aHCC.

2 Materials and methods

2.1 Study population

735 HCC patients who underwent surgical resection in Henan 
Provincial People ‘s Hospital from January 2021 to December 2023 
were retrospectively analyzed. Inclusion criteria (1) pathological 
diagnosis of HCC; (2) liver ultrasound examination within 4 weeks 
before surgery; (3) complete ultrasound and clinical image data. 
Exclusion Criteria (1) previous treatment with local, systemic or liver 
transplantation; (2) having tumors in other organs; (3) poor image 
quality, incomplete lesion display. Finally, 198 HCC patients were 
included in the study. These 198 patients were randomly stratified 
(7:3) into a training dataset (n = 138) and a test dataset (n = 60). The 
training dataset was processed for imbalanced dataset using the 
Synthetic Minority Over-sampling Technique (SMOTE) (21).

Age, gender, maximum tumor diameter, tumor number, Child-
Pugh(A/B/C), cirrhosis (yes/no), HbsAg/HbcAb (positive/negative), 
portal hypertension (yes/no), Edmondson-steiner grade, alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), total 
bilirubin (TBIL), glutamyl transpeptidase (GGT), serum alpha-
fetoprotein (AFP), neutrophil-to-lymphocyte ratio (NLR) and other 
clinical data were derived from medical records. A flow chart of 
patient selection was shown in Figure 1.

2.2 EGFR immunohistochemical analysis

Liver cancer was surgically excised from all patient, regarding the 
preparation of the immunohistochemical sections provided in 
Supplementary material 1.

Without knowledge of the patient ‘s information, two observers 
analyzed the membrane staining intensity of each section and the 
percentage of number cells at various staining intensities under a 
light microscope with scores calculated by the H- score formula, 
and any disagreement assessed by a third observer. Staining 
intensity was graded into four grades: 0 as no staining; 1+ as weak 
staining (light brown membrane staining); 2+ as moderate staining 
(between 1+ and 3+); and 3+ as strong staining (dark brown linear 
membrane staining) (22). H-score formula: 1× (% of 1+ 
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cells) + 2 × (% of 2+ cells) + 3 × (% of 3 + cells) (23). The score was 
0–300 points and the threshold was set at 200 points, and HCC 
patients were divided into low-expression (H < 200 points) and 
high-expression (H ≥ 200 points) groups according to score (12, 22) 
(Figures 2C,F).

2.3 Image acquisition

Image scans were performed by physicians with over 8 years of 
abdominal ultrasound experience, and ultrasound image imaging 
features were qualitatively assessed: (1) Lesion margin (clear/unclear); 
(2) Lesion echo (Hypo/Iso/hyper-echoic). Tumor images of the largest 
diameter were stored in Digital Imaging and Communications in 
Medicine (DICOM) format for further study (as shown in 

Figures  2A,D). Ultrasonographic parameters were presented in 
Supplementary material 2.

2.4 Image segmentation

HCC lesions were defined as regions of interest (ROIs). The 
ITK-SNAP program (version 3.8.0, Figure, www.itksnap.org) was 
used to import all ultrasound pictures, the delineation process was 
performed independently by two sonographers with 10 and 15 years 
of experience in the field, confirmed by a senior sonographer (with 
25 years of expertise), and the clinical data about the patient was 
blinded by the three physicians to avoid differences between and 
within observers affecting the results. Thirty ultrasound images 
were randomly selected to assess interobserver reproducibility. The 

FIGURE 1

The patients were screened and enrolled according to the established exclusion criteria.
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intra-class correlation coefficient (ICC) was used to evaluate the 
characteristic, and features with ICC ≥ 0.80 were defined as having 
good agreement (20, 24) to improve the repeatability of features. 
Segmented images of the lesions were shown in Figures 2B,E.

2.5 Feature extraction

Before feature extraction, raw images were preprocessed using 14 
filters to obtain corresponding derived images to reduce the impact of 
different ultrasound devices on features. Pyradiomics 2.1.2, an open-
source software program, was utilized to take information out of all 
raw and derived images and convert it into quantitative features. The 
feature extraction taken was presented in Supplementary material 3.

2.6 Feature selection

After extracting all features, missing values for each feature were 
filled with means. Features in higher dimensions may have problems 
with low computational efficiency and overfitting (16, 25). Z-score 
normalization was used to eliminate dimensional differences in the 
data before feature selection. Features with ICC ≥ 0.8 were first selected, 
indicating that the feature was reproducible. Features with zero 
variance (i.e., features without any contribution to classification) were 
removed using variance filtering. Linear and nonlinear correlations 
between features and tags were captured using mutual information 
method, excluding features with maximal information coefficient 
(MIC) zero. Ultimately, the most valuable ultrasomics features were 
selected in combination with XGBoost embedding method.

2.7 Modeling and performance evaluation

5 machine learning algorithms, RF, XGBoost, SVM, DT, and 
LR, were used to construct clinical models, ultrasomics models, 
and clinical-ultrasomics combined models, respectively, for a 
total of 15.

Firstly, univariate analysis was performed for characteristics 
between EGFRhigh and EGFRlow groups, including clinical data [Age, 
gender, maximum tumor diameter, tumor number, Child-
Pugh(A/B/C), HbsAg/HbcAb (positive/negative), cirrhosis (yes/no), 
portal hypertension (yes/no), Edmondson-steiner grade, ALT, AST, 
TBIL, GGT, NLR, AFP] and qualitative imaging characteristics [lesion 
margin (clear/unclear), lesion echo (Hypo/Iso/hyper-echoic)]. 
Independent predictors were analyzed by including variables with 
p < 0.05 in univariate analysis into univariate and multivariate logistic 
regression. The above independent predictors were used to construct 
the clinical model by five machine learning algorithms.

The most valuable ultrasomics features extracted were used to 
construct the ultrasomics model through five machine learning 
algorithms. Finally, ultrasomics features were fused with clinical 
baseline features to build five combined models to investigate whether 
the accuracy of the model in predicting EGFR expression status could 
be improved.

The predictive ability of the model was evaluated through the area 
under the curve (AUC) value as well as its sensitivity, specificity, and 
accuracy. To evaluate the clinical practicability and efficiency of 
models, decision curve analysis (DCA) and calibration curve analyses 
were employed. Within the Python environment, the scikit-learn 
0.23.2 package was used for both the model construction and 
evaluation. The workflow was illustrated as shown in Figure 3.

FIGURE 2

Representative images of lesion segmentation (arrow pointing) and corresponding pathological images of two HCC patients. (A–C) Show the gray-
scale ultrasound image, lesion segmentation image, and EGFRlow pathological image of a 63-year-old male patient (H<200); (D–F) Show the gray-scale 
ultrasound image, lesion segmentation image, and EGFRhigh pathological image of a 55-year-old male patient (H  ≥  200).
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2.8 Statistical analysis

Statistical analysis was conducted using SPSS 26.0 and R 4.4.1. 
Continuous variables that were normally distributed were assessed 
using the independent sample t-test, while non-normal distributions 
were evaluated using a Mann–Whitney U test. Categorical variables 
were assessed using the chi-square test or Fisher’s exact test. A 
p-value of less than 0.05 was considered to indicate 
statistical significance.

3 Results

3.1 Clinical features

In the present study, 198 patients were included, with an average 
age of 57.07 ± 9.02 years, of whom 77.8% (n = 154) were male. There 

was no statistically significant difference in EGFR expression status 
and clinical baseline characteristics between the training and test 
dataset (p > 0.05). Table  1 summarized the clinical baseline 
characteristics of all patients.

3.2 Feature extraction and selection

A total of 1,409 features were taken out of the original and derived 
images. 285 features with ICC less than 0.8 were excluded. Using 
variance filtering and mutual information techniques, the remaining 
1,124 features, 16 features with 0 in order variance, and 495 features 
with nil mutual information characteristics were eliminated. 602 
features were further excluded using the embedded method of 
XGBoost, ultimately identifying 11 of the most valuable ultrasomics 
features, including original, shape, first-order, second-order texture, 
square, exponential, gradient, and higher-order (wavelet features, 

FIGURE 3

The ultrasomics workflow and study flowchart. (A) Clinical data. (B) Image segmentation, feature extraction and selection. (C) Model building. 
(D) Model evaluation.
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TABLE 1 Patient clinical baseline characteristics of the training and test datasets.

Variables Training dataset (n =  138) Test dataset (n =  60) P P *

EGFRhigh 
(n =  70)

EGFRlow 
(n =  68)

EGFRhigh (n =  30) EGFRlow (n =  30) 0.925

Age (years)a 55.96 ± 9.30 59.72 ± 8.69 53.77 ± 10.02 56.93 ± 6.39 0.077 0.005

Genderb 0.173 0.102

  Male 54 (77.1) 57 (83.8) 19 (63.3) 24 (80.0)

  Female 16 (22.9) 11 (16.2) 11 (36.7) 6 (20.0)

Child-Pughb 0.078 0.648

  A 58 (82.9) 55 (80.9) 28 (93.3) 27 (90.0)

  B or C 12 (17.1) 13 (19.1) 2 (6.7) 3 (10.0)

Edmondson-steiner gradeb 0.074 0.751

  I 3 (4.3) 1 (1.5) 1 (3.3) 2 (6.7)

  II 46 (65.7) 44 (64.7) 16 (53.3) 13 (43.3)

  III 21 (30.0) 23 (33.8) 13 (43.3) 15 (50.0)

Etiology of liver diseaseb 0.927 0.734

  HBV positive 60 (85.7) 62 (91.2) 28 (93.3) 27 (90.0)

  HCV positive 8 (11.4) 2 (2.9) 0 (0) 3 (10.0)

  None or other 2 (2.9) 4 (5.9) 2 (6.7) 0 (0)

Tumor numberb 0.586 0.962

  1 62 (88.6) 61 (89.7) 28 (93.3) 27 (90.0)

  ≥2 8 (11.4) 7 (10.3) 2 (6.7) 3 (10.0)

Marginsb 0.811 0.013

  Obscure 32 (45.7) 23 (33.8) 17 (56.7) 8 (26.7)

  Clear 38 (54.3) 45 (66.2) 13 (43.3) 22 (73.3)

Echogenicityb 0.837 0.693

  Hypo-echoic 42 (60.0) 33 (48.5) 14 (46.7) 16 (53.3)

  Iso-echoic 9 (12.9) 9 (13.2) 3 (10.0) 5 (16.7)

  Hyper-echoic 19 (27.1) 26 (38.2) 13 (43.3) 9 (30.0)

Portal hypertensionb 0.719 0.131

  Positive 41 (58.6) 45 (66.2) 17 (56.7) 22 (73.3)

  Negative 29 (41.4) 23 (33.8) 13 (43.3) 8 (26.7)

Cirrhosisb 0.187 0.653

  Yes 61 (87.1) 62 (91.2) 29 (96.7) 28 (93.3)

  No 9 (12.9) 6 (8.8) 1 (3.3) 2 (6.7)

Maximum diameter (mm)c 37.00 (26.75,54.50) 39.00 (24.25,57.50) 31.50 (19.00,47.50) 47.50 (32.00,78.00) 0.548 0.082

ALT (U/L)c 31.30 (21.10,45.93) 29.80 (16.98,59.20) 24.15 (17.32,50.85) 26.80 (16.17,52.17) 0.380 0.838

AST (U/L)c 30.10 (22.65,44.30) 35.50 (23.47,47.77) 33.50 (22.05,56.80) 27.70 (21.02,54.30) 0.712 0.714

GGT (U/L)c 48.20 

(28.75,116.47)

47.25 (30.40,95.10) 46.55 (28.50,73.80) 57.20 (30.15,114.80) 0.879 0.442

AFP (ng/ml)c 91.82 

(7.42,1467.75)

29.97 (5.06,408.30) 69.09 (15.14,1063.50) 34.41 (6.27,285.55) 0.688 0.041

NLRc 2.38 (1.50,2.94) 2.12 (1.47,2.83) 2.62 (1.81,3.28) 1.82 (1.56,2.13) 0.896 0.031

EGFRhigh, EGFR high expression; EGFRlow, EGFR low expression; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, glutamyl transpeptidase; AFP, serum alpha-
fetoprotein; NLR, neutrophil-to-lymphocyte ratio; P represents the comparison of features between training and test datasets; P * represents the comparison of features between dataset with 
high and low EGFR expression.
aData are x±SD.
bData are n (%), N indicates the number of participants for which data is available.
cData are median (25th–75th percentile).
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etc.). The feature extraction and selection process were detailed in 
Supplementary materials 3, 4.

3.3 Predictive performance of clinical 
models

Through univariate analysis of characteristics between EGFRhigh 
and EGFRlow groups, there were significant differences in three clinical 
data (age, AFP, NLR) and one qualitative imaging feature (lesion 
margin) (p < 0.05). Univariate and multiple logistic regression analyses 
of these variables showed age (OR = 0.958, 95% CI 0.926–0.991, 
p = 0.013) and focus margin characteristics (OR = 2.114, 95% CI 1.164–
3.839, p = 0.014) as independent predictors (Table  2). The above 
variables were used to construct the clinical model using five machine 
learning algorithms, and the clinical model with good predictive 
performance was RF and XGBoost classifier. AUC in the test dataset 
was 0.713 (95%CI, 0.582–0.823) and 0.733 (95%CI, 0.603–0.839), 
respectively (Figures 4A,D), sensitivity was 0.700 and 0.700, specificity 
was 0.767 and 0.633, and accuracy was 0.733 and 0.667, respectively. 
The clinical model of RF classifier was higher than the clinical model 
of XGBoost classifier in specificity and accuracy, showed that the RF 
classifier established a clinical model with good predictive 
performance. In the test dataset, 21 of 30 EGFRhigh patients and 23 of 
30 EGFRlow patients were identified by the clinical model of RF 
classifier (Figure 5).

3.4 Predictive performance of ultrasomics 
and combined models

11 most valuable ultrasomics features were analyzed and 
ultrasomics models were built by five machine learning algorithms. 
The results showed that the Ultrasomics model of RF classifier 
performed well in predicting EGFR expression in HCC patients, with 
AUC of 0.929 (95%CI, 0.874–0.966) and 0.807 (95%CI, 0.684–0.897) 
(Figure 4B), sensitivity of 0.843 and 0.767, specificity of 0.857 and 
0.800, and accuracy of 0.850 and 0.783 in the training and test dataset, 
respectively. In the test dataset, 23 of 30 EGFRhigh patients and 24 of 30 
EGFRlow patients were identified by the ultrasomics model of RF 
classifier (Figure 5).

Finally, the predictive performance of the model was further 
optimized by fusing ultrasomics features with clinical baseline features 
to build a combined model, and in the test dataset, the AUC of the 
combined model established by the five machine learning algorithms 
was RF (0.822), XGboost (0.811), DT (0.753), SVM (0.751), and LR 
(0.733), and the combined model predictive performance of RF 

classifier was better than that of the other models (Figures 4C,F). In 
the test dataset, 25 of 30 EGFRhigh patients and 24 of 30 EGFRlow 
patients were identified by the combined model of RF classifier 
(Figure  5). Performance evaluation measures for the model were 
shown in Table 3.

Among the five machine learning algorithms, the three models of 
RF classifier demonstrated the best prediction performance. The 
combined model, however, showed superior clinical net benefit, 
indicating greater applicability in clinical practice (Figure  4G). 
Additionally, its calibration curve demonstrated a sufficient degree of 
agreement between the predicted EGFR expression status and actual 
results (Figure 4H), showing more stable prediction performance.

4 Discussion

HCC is the most common type of liver cancer, with poor 
prognosis and 5-year survival rate of 18%, and is one of several 
malignancies with high fatality rate worldwide (3). Multiple molecular 
biomarkers such as EGFR, ki-67, VEGF, P53 have been identified as 
the main factors involved in HCC progression and affecting prognosis 
(24, 26–28), of which EGFR is often highly expressed in HCC and is 
involved in proliferation, invasion and metastasis of tumor cells, 
resulting in poor prognosis of HCC (29–31). EGFR was found highly 
expressed in 50.5% of HCC patients in the present study, which is 
close to previous findings (8, 10).

Recently, some studies have found that EGFRhigh in liver cancer 
cells is associated with resistance to targeted agents such as 
Lenvatinib (32, 33). Lenvatinib has been approved by Food and 
Drug Administration (FDA) as first-line treatment for 
aHCC. However, the objective response rate was only 24.1%, 
indicating lenvatinib needs to be combined with other drugs to 
improve its clinical benefit (34, 35). A study conducted by Jin et al. 
(12) found that lenvatinib, in HCC patients with high EGFR 
expression, induced feedback activation of EGFR and its 
downstream signaling pathways by inhibiting FGFR, leading to 
HCC cells still having strong proliferative capabilities. EGFR 
inhibitors could block the feedback-activated signaling pathways, 
enhancing the antitumor effect. A clinical trial initiated by Renji 
Hospital (NCT04642547) recruited aHCC patients with high EGFR 
expression, using a combination treatment of lenvatinib and EGFR 
inhibitors, and the clinical response rate reached 50% (12, 15, 36). 
Therefore, HCC patients with noninvasive identification EGFRhigh 
are important conditions for therapeutic management.

In the present study, we compared the predictive performance 
of five machine learning algorithms constructed clinical models, 
ultrasomics models, and combined models for noninvasive 

TABLE 2 Univariate and multivariate assessments of variables related to EGFR expression status.

Univariate Multivariate

OR (95%CI) P OR (95%CI) P

Age 0.955 (0.923–0.987) 0.006 0.958 (0.926–0.991) 0.013

Margins 2.077 (1.164–3.704) 0.013 2.114 (1.164–3.839) 0.014

AFP 1.000 (1.000–1.000) 0.085

NLR 0.992 (0.938–1.048) 0.771

AFP, serum alpha-fetoprotein; NLR, neutrophil-to-lymphocyte ratio neutrophil-to-lymphocyte ratio; CI, confidence interval; OR, odds ratio.
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FIGURE 4

(A) clinical model of the RF algorithm. (B) ultrasomics model of the RF algorithm. (C) combined model of the RF algorithm. (D) clinical model of the 
XGBoost algorithm. (E) AUC comparison of five machine learning algorithms constructed as combined models in the training dataset. (F) AUC 
comparison of five machine learning algorithms constructed as combined models in the test dataset. (G) DCA of three RF algorithm models. (H) The 
calibration curve for the RF algorithm’s combined model.
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prediction of EGFR expression in HCC patients. The findings 
demonstrated that the five machine learning algorithms’ 
ultrasomics features could successfully differentiate between the 
EGFR expression status of HCC patients in the training and test 
datasets (p < 0.05), and that the ultrasomics model and the 
combined model constructed with an RF classifier outperformed 

the others in terms of predictive performance (Figures  4E,F; 
Table 3).

The ultrasomics models developed according to five machine 
learning algorithms showed good predictive ability, with the RF 
classifier having the best predictive performance, and the AUC of 
the training and test datasets increased from 0.846 (95%CI, 

FIGURE 5

Number of true positive, false positive, true negative, and false negative events in the training and test dataset for clinical models, ultrasomics models, 
and combined models of RF algorithm.

TABLE 3 Predicted results of clinical models, ultrasomics models, and combined models.

Model Training dataset (n =  138) Test dataset (n =  60)

SEN SPE ACC AUC (95%CI) P SEN SPE ACC AUC (95%CI) P

Clinical

RF 0.729 0.800 0.764 0.846 (0.776–0.902) <0.0001 0.700 0.767 0.733 0.713 (0.582–0.823) 0.0032

XGBoost 0.714 0.729 0.721 0.803 (0.727–0.865) <0.0001 0.700 0.633 0.667 0.733 (0.603–0.839) 0.0004

SVM 0.843 0.886 0.864 0.945 (0.894–0.977) <0.0001 0.667 0.733 0.700 0.707 (0.575–0.817) 0.0028

DT 0.886 0.757 0.821 0.928 (0.872–0.965) <0.0001 0.700 0.667 0.683 0.713 (0.582–0.823) 0.0012

LR 0.714 0.729 0.721 0.790 (0.713–0.854) <0.0001 0.667 0.700 0.683 0.694 (0.562–0.807) 0.0061

Ultrasomics

RF 0.843 0.857 0.850 0.929 (0.874–0.966) <0.0001 0.767 0.800 0.783 0.807 (0.684–0.897) <0.0001

XGBoost 0.729 0.757 0.743 0.818 (0.744–0.878) <0.0001 0.733 0.700 0.717 0.740 (0.611–0.845) 0.0003

SVM 0.971 0.971 0.971 0.995 (0.965–1.000) <0.0001 0.733 0.700 0.717 0.747 (0.618–0.850) 0.0001

DT 0.971 0.843 0.907 0.979 (0.939–0.996) <0.0001 0.733 0.667 0.700 0.690 (0.557–0.803) 0.0045

LR 0.614 0.629 0.621 0.655 (0.570–0.733) 0.0008 0.667 0.700 0.683 0.690 (0.557–0.803) 0.0074

Combined

RF 0.857 0.857 0.857 0.937 (0.884–0.971) <0.0001 0.833 0.800 0.817 0.822 (0.702–0.909) <0.0001

XGBoost 0.957 0.971 0.964 0.995 (0.964–1.000) <0.0001 0.800 0.733 0.767 0.811 (0.689–0.901) <0.0001

SVM 0.857 0.929 0.893 0.962 (0.916–0.987) <0.0001 0.733 0.800 0.767 0.751 (0.623–0.854) 0.0002

DT 0.986 0.986 0.986 0.999 (0.972–1.000) <0.0001 0.733 0.733 0.733 0.753 (0.625–0.856) <0.0001

LR 0.714 0.757 0.736 0.819 (0.746–0.879) <0.0001 0.700 0.700 0.700 0.733 (0.603–0.839) 0.0005

AUC, Area under the receiver operating characteristic curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; P < 0.05 indicates a significant difference in the identification of EGFR 
expression status.
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FIGURE 6

Weighting coefficients of 11 of the ultrasomics features.

0.776–0.902) and 0.713 (95%CI, 0.582–0.823) to 0.929 (95%CI, 
0.874–0.966) and 0.807 (95%CI, 0.684–0.897), respectively, for 
the clinical model. The improvement in predictive performance 
is because ultrasomics can extract more features from images that 
are associated with tumor heterogeneity and assess them 
quantitatively (17, 37, 38). Wu et  al. developed an radiomics 
model based on energy-enhanced CT to predict EGFR expression 
status in peripheral lung cancer (39). Features such as the arterial 
phase Laplace of Gaussian Filter Glszm Small Area Low Gray 
Level emphasis and wavelet HHL gray level co-occurrence matrix 
(GLCM) MCC, and the venous phase wavelet LHL first-order root 
mean square were extracted. A multiphasic model established 
based on the features from both phases was found to have good 
predictive performance (AUC 0.950). The results show that 
imaging features, especially higher-order features, can better 
predict the expression of EGFR. In this study, 7 of the 11 best 
features are high-order features obtained by wavelet filtering, 
which indicates that higher-order features can obtain more EGFR-
related features, which is the same as previous research results. 
The seven wavelet transform features were primarily derived from 
gray-level size-zone matrix (GLSZM) features and first-order 
features. GLSZM was used to describe the spatial distribution of 

gray level values and the information about the size of regions in 
the image, while First-order features mainly described the 
symmetry, uniformity, and distribution changes of image voxels’ 
intensity (38, 40). Among the 11 features, the wavelet HLH first-
order Minimum, wavelet LHL first-order Median, square gray-
level run length matrix (GLRLM) RunEntropy, and wavelet HHL 
GLSZM Size Zone NonUniformity features were found to have the 
highest coefficients (Figure  6). The square feature involves 
squaring each pixel value in the image to enhance the contrast of 
gray level values (41). These results indicate that wavelet 
transform features could increase the predictive value of radiomic 
features, being more sensitive to the identification of tumor 
heterogeneity and can be used to predict the EGFR expression 
status (42). When clinical baseline characteristics were 
incorporated into the ultrasomics model, the RF machine learning 
combined model demonstrated better predictive performance, 
with AUCs of 0.937 (95%CI, 0.884–0.971) for the training dataset 
and 0.822 (95%CI, 0.702–0.909) for the test dataset, showing a 
slight improvement over the ultrasomics model alone. Therefore, 
the ultrasomics model and combined model established by the RF 
classifier can better predict the EGFR expression status in 
HCC patients.
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Qualitative characteristics of lesion margin on ultrasound images 
analyzed by multivariate logistic regression may serve as independent 
predictors of EGFR expression status. Unclear lesion boundary is a risk 
factor, which may be  related to EGFRhigh more aggressive and 
proliferative ability leading to changes in lesion morphology (40, 43). 
In univariate analysis, there was a significant difference between groups 
in serum AFP and NLR (p < 0.05), and correlation analysis showed that 
the correlation coefficients (r) between AFP and NLR and EGFR 
expression status were 0.146 and 0.154, respectively (p < 0.05) 
(Supplementary Figure S3), indicating that serum AFP and NLR had 
a low correlation with EGFR expression status. Fan et al. predicted 
VEGF expression in HCC patients based on MRI imageomics profiles, 
and multivariate logistic regression analysis showed that AFP, NLR, 
and irregular lesion boundaries were independent predictors, and AUC 
of the clinical model and imageomics model in the training and test 
dataset were 0.709, 0.725; 0.892, 0.800, respectively (44). The AUC of 
the RF machine learning clinical model in this study was 0.846 (95%CI, 
0.776–0.902) and 0.713 (95%CI, 0.582–0.823) in the training and test 
dataset, respectively, and compared to the ultrasomics model, the 
prediction accuracy was lower (AUC 0.929, 0.807). These data 
suggested that clinical baseline characteristics have limited predictive 
power for molecular tumor phenotypes.

Due to the limitations of EGFR immunohistochemical testing 
in the patients, in this present study, there was just a single center 
involved and lacked external validation to enhance the 
generalizability of the predictive model. Another limitation of the 
study was that manual segmentation was time-consuming and 
inefficient. Thus, in the future, there is a need for convenient, 
efficient, and repeatable automatic segmentation software that must 
be clinically validated. Third, the baseline images in this experiment 
were taken from different ultrasound instruments. Although the 
image is preprocessed before feature extraction, there may 
be confounding factors that affect the results. Finally, the present 
study only analyzed gray-scale ultrasound and did not assess in 
conjunction with contrast-enhanced ultrasound, elastography, and 
other imaging modalities. In our future work, multimodal imaging 
radiomics will be  explored for the EGFR expression levels in 
HCC patients.

5 Conclusion

In conclusion, the construction of ultrasomics based on gray-
scale ultrasound images by five machine learning algorithms can 
be used as noninvasive and effective diagnostic tools to predict 
EGFR expression status in HCC patients. Furthermore, the 
ultrasomics model and combined model established by RF 
classifier have the best predictive performance. The present study 
will provide a new noninvasive method for noninvasive prediction 
and precise treatment of EGFR expression status in patients 
with aHCC.
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