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Objective: To develop predictive models for neonatal respiratory distress 
syndrome (NRDS) using machine learning algorithms to improve the accuracy 
of severity predictions.

Methods: This double-blind cohort study included 230 neonates admitted to the 
neonatal intensive care unit (NICU) of Yantaishan Hospital between December 
2020 and June 2023. Of these, 119 neonates were diagnosed with NRDS and 
placed in the NRDS group, while 111 neonates with other conditions formed 
the non-NRDS (N-NRDS) group. All neonates underwent lung ultrasound and 
various clinical assessments, with data collected on the oxygenation index (OI), 
sequential organ failure assessment (SOFA), respiratory index (RI), and lung 
ultrasound score (LUS). An independent sample test was used to compare the 
groups’ LUS, OI, RI, SOFA scores, and clinical data. Use Least Absolute Shrinkage 
and Selection Operator (LASSO) regression to identify predictor variables, and 
construct a model for predicting NRDS severity using logistic regression (LR), 
random forest (RF), artificial neural network (NN), and support vector machine 
(SVM) algorithms. The importance of predictive variables and performance 
metrics was evaluated for each model.

Results: The NRDS group showed significantly higher LUS, SOFA, and RI scores 
and lower OI values than the N-NRDS group (p <  0.01). LUS, SOFA, and RI scores 
were significantly higher in the severe NRDS group compared to the mild and 
moderate groups, while OI was markedly lower (p  <  0.01). LUS, OI, RI, and 
SOFA scores were the most impactful variables for the predictive efficacy of 
the models. The RF model performed best of the four models, with an AUC of 
0.894, accuracy of 0.808, and sensitivity of 0.706. In contrast, the LR, NN, and 
SVM models have lower AUC values than the RF model with 0.841, 0.828, and 
0.726, respectively.

Conclusion: Four predictive models based on machine learning can accurately 
assess the severity of NRDS. Among them, the RF model exhibits the best 
predictive performance, offering more effective support for the treatment and 
care of neonates.

KEYWORDS

NRDS, machine learning, risk factor, clinical indicator, prediction model

OPEN ACCESS

EDITED BY

Luigi Vetrugno,  
University of Studies G. d’Annunzio Chieti and 
Pescara, Italy

REVIEWED BY

Yunhuan Liu,  
Tongji University, China
Fabrizio Tritapepe,  
University of Studies G. d’Annunzio Chieti and 
Pescara, Italy

*CORRESPONDENCE

Hongxia Zhang  
 aerkaterru@163.com

RECEIVED 16 August 2024
ACCEPTED 18 October 2024
PUBLISHED 01 November 2024

CITATION

Huang C, Ha X, Cui Y and Zhang H (2024) A 
study of machine learning to predict NRDS 
severity based on lung ultrasound score and 
clinical indicators.
Front. Med. 11:1481830.
doi: 10.3389/fmed.2024.1481830

COPYRIGHT

© 2024 Huang, Ha, Cui and Zhang. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 01 November 2024
DOI 10.3389/fmed.2024.1481830

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1481830&domain=pdf&date_stamp=2024-11-01
https://www.frontiersin.org/articles/10.3389/fmed.2024.1481830/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1481830/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1481830/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1481830/full
mailto:aerkaterru@163.com
https://doi.org/10.3389/fmed.2024.1481830
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1481830


Huang et al. 10.3389/fmed.2024.1481830

Frontiers in Medicine 02 frontiersin.org

Introduction

Neonatal respiratory distress syndrome (NRDS) significantly 
contributes to neonatal mortality, primarily due to a deficiency of 
pulmonary surfactant, a critical factor in its complex pathogenesis (1). 
Timely diagnosis and intervention are crucial for improving the 
prognosis of affected neonates. Currently, the primary methods for 
diagnosing NRDS include clinical symptom assessment, imaging 
studies, and blood gas analysis to monitor respiratory and multi-organ 
function (2, 3). OI and RI are critical indicators of pulmonary function, 
widely used to assess the severity of respiratory distress in neonates, and 
are strongly associated with pulmonary developmental abnormalities (4, 
5). These metrics objectively reflect the oxygenation status of neonates 
and are vital tools for assessing pulmonary ventilation and gas exchange.

The SOFA score is a clinical tool used to evaluate the degree of 
multi-organ dysfunction in pediatric patients, widely applied in 
intensive care units and for assessing critically ill neonates. In clinical 
practice, the severity of NRDS is typically assessed using the OI, RI, 
and SOFA scoring systems (6). Pulmonary ultrasound effectively 
reflects pulmonary ventilation, and LUS is well-documented for 
quantifying ventilation status, particularly in adults (7). Several scoring 
systems are available for quantitatively assessing pulmonary ultrasound 
in adults. Studies indicate that LUS scoring in pulmonary ultrasound 
examinations effectively reflects NRDS severity (8). In some regional 
hospital ICUs, pulmonary ultrasound has almost replaced traditional 
chest radiography (9). However, some studies suggest that due to 
various factors influencing pulmonary ultrasound results, traditional 
chest radiographs may be more effective for diagnosing NRDS. The 
clinical applications of quantitative ultrasound methods for diagnosing 
pulmonary diseases and assessing their severity are now widespread.

Recent years have shown significant potential for applying artificial 
intelligence in the medical field (10, 11). Machine learning, a vital tool for 
data mining, offers greater flexibility and scalability than traditional 
statistical methods, effectively handling multivariable interactions and 
collinearity (12). Machine learning uses existing medical testing or 
patient survey data to establish risk models, enabling disease prediction, 
diagnosis, and severity assessment (13). Research shows that machine 
learning algorithms in AI can develop efficient diagnostic and predictive 
tools, improving tumor diagnosis accuracy by 15 to 20% (14–16). In 
many prospective studies, machine learning models perform better than 
medical experts (17, 18). This could be  due to the reduced human 
intervention in AI, minimizing biases and subjective errors in predictions.

This study aims to develop four machine learning models to 
predict NRDS severity based on clinical indicators and LUS, 
identifying the most effective models to support NRDS treatment. It 
will enhance understanding of the relationship between pulmonary 
pathology, respiratory function, and systemic organ function in 
neonates with NRDS. This will provide clinicians with a more precise 
basis for assessing affected neonates and offer a scientific foundation 
for diagnosing and treating respiratory diseases.

Methods

Experimental design

This double-masked cohort study was conducted in the NICU to 
assess NRDS severity in neonates using LUS and other clinical indicators. 

The entire research process was conducted within the NICU to ensure 
legality and ethical integrity. NICU clinical management adhered to local 
guidelines, with the study not directly influencing clinical practices. 
Researchers ensured neonates received appropriate treatment and care 
while collecting clinical data and LUS scores for subsequent analysis. 
Researchers used the STROBE checklist during manuscript preparation 
to ensure the study’s reliability and scientific rigor.

Patients

This study involved 336 pediatric patients admitted to the NICU at 
Yantaishan Hospital from December 2020 to July 2023. Neonates were 
selected based on strict inclusion criteria to ensure they met the 
diagnostic standards for NRDS. From the original cohort, 106 patients 
were excluded for reasons including an unclear diagnosis, withdrawal 
from treatment, congenital anomalies, tuberculosis, or congestive heart 
failure. As a result, 230 neonates remained in the study, with 119 
identified as having NRDS and 111 categorized as N-NRDS. The 
diagnostic procedures were carried out using a Philips CX50 portable 
ultrasound machine equipped with a linear array probe, operating at a 
frequency range of 8 to 12 MHz. The study protocol adhered to medical 
ethical standards and received approval from the Medical Ethics 
Committee of Yantai Mountain Hospital (approval number: 20220001), 
with informed consent obtained from the patients’ families. All data 
collection and processing followed relevant guidelines and standards.

Inclusion criteria and exclusion criteria

The inclusion criteria for this study were grounded in the Berlin 
criteria, encompassing clinical symptoms, arterial blood gas analysis, 
and chest X-ray results. A diagnosis of NRDS was confirmed by 
evaluating clinical signs, arterial blood gas measurements, and 
radiographic evidence. Eligible neonates were those born within 6 to 
12 h before disease onset, showing severe respiratory distress, cyanosis, 
expiratory grunting, inspiratory retractions, and related symptoms. 
Arterial blood gas analysis required evidence of hypoxemia, defined 
as an arterial oxygen partial pressure below 60 mmHg, or hypercapnia, 
indicated by a carbon dioxide partial pressure exceeding 50 mmHg. 
Chest X-rays showed decreased lung transparency, increased lung 
markings, evenly distributed granulation and reticular opacities, 
blurred cardiac and diaphragmatic outlines, bronchial aeration, and 
signs of severe pneumonia in both lung fields. Inclusion required that 
the neonate have a complete clinical medical record.

The exclusion criteria for this study include neonates with 
congenital disorders such as complex respiratory malformations, 
congenital heart disease, congenital mental disorders, or chromosomal 
abnormalities. Neonates showing signs of cardiogenic pulmonary 
edema or persistent pulmonary hypertension. Neonates with severe 
intracranial hemorrhage, sepsis, severe hypoxic–ischemic 
encephalopathy, severe sepsis, septic shock, or other serious illnesses 
and multi-system complications. Neonates diagnosed with pulmonary 
hemorrhage, neonatal wet lung, pneumothorax, meconium aspiration 
syndrome, neonatal infectious pneumonia, or other respiratory 
disorders. Additionally, neonates were excluded if factors led to 
increased measurement errors or significantly compromised 
ultrasound image quality.

https://doi.org/10.3389/fmed.2024.1481830
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Huang et al. 10.3389/fmed.2024.1481830

Frontiers in Medicine 03 frontiersin.org

Observation and evaluation indicator

Lung ultrasound score has diverse applications in clinical assessment 
(19). This study employed a 12-region scoring system, dividing the 
pediatric chest into 12 zones, with each lung region systematically 
scanned and scored based on specific ultrasound images, leading to the 
calculation of the LUS score. The scoring criteria outlined in Table 1 
provide a standardized approach for the quantitative evaluation of 
pulmonary diseases and their severity. Continuous, smooth A-lines or 
the presence of fewer than three isolated B-lines are assigned a score of 
0, indicating normal lung status. A score of 1 is given when three or more 
scattered, distinct B-lines reflect a mild abnormality. A score of 2 is 
assigned for diffusely confluent B-lines appearing in a waterfall pattern, 
indicating moderate abnormality. Lung consolidation, with a score of 3, 
indicates severe abnormality. The total LUS score ranges from 0 to 36, as 
depicted in Figure 1, which presents representative images from our 
institution’s assessment of NRDS scores between 0 and 3 (20).

The OI is a critical measure for assessing the severity of NRDS, 
calculated as the ratio of arterial oxygen partial pressure (PaO2) to the 
fraction of inspired oxygen (FiO2) (21). The formula for its calculation is 
OI = PaO2/FiO2. Typically, the normal range for the oxygenation index is 
between 400 and 500 mm Hg; lower scores suggest worsening pulmonary 
function and oxygenation capacity in the neonate, thereby indicating the 
severity of the condition. RI is crucial for assessing children’s respiratory 
function. It is calculated as the ratio of the alveolar-arterial oxygen 
pressure difference (A-aDO2) to PaO2. The formula for its calculation is 
RI = A-aDO2/PaO2. RI between 0.8 and 1.2 is considered normal, 
indicating good respiratory function, regular lung activity, and sufficient 
gas exchange. An RI between 1.2 and 1.6 suggests mild abnormalities, 
potentially indicating mild dyspnea due to respiratory muscle fatigue or 
upper respiratory tract infection. An RI of 1.6 to 2.0 indicates moderate 
abnormalities, usually signifying moderate dyspnea and pulmonary 
function decline, possibly due to conditions like chronic obstructive 
pulmonary disease. An RI exceeding 2.0, particularly above 3.0, indicates 
severe abnormalities, often reflecting significant respiratory dysfunction, 
potentially due to severe pulmonary diseases or respiratory acidosis, 
leading to substantial dyspnea and critically impaired lung function.

The SOFA score includes six systems: respiratory, coagulation, 
liver, circulatory, central nervous, and renal (22). Each system is 
scored from 0 to 4, with the total SOFA score being the sum of these 
scores. Table 2 shows that when evaluating the SOFA score in children 
with NRDS, special attention should be given to each system’s score, 
as a higher total score indicates more severe organ dysfunction. 
According to the criteria, the SOFA score typically ranges from 0 to 24.

Machine learning model

Figure 2 shows the flowchart of this study. This study addresses a 
binary classification problem ideally suited for supervised learning in 

machine learning. Supervised learning techniques encompass a 
variety of algorithms such as linear and LR, SVM, Naive Bayes, 
extreme gradient boosting, decision trees, and RF. In this research, 
we selected LR, RF, NN, and SVM as the training models commonly 
used in medical treatment.

Machine learning model building process

Data sets with statistically significant differences were selected to 
construct machine learning metrics. Subsequently, 161 cases (70%) 
were randomly chosen from the entire sample as the training set. The 
remaining 69 cases (30%) were used as the test set. The training set 
data underwent five-fold cross-validation to achieve the optimal 
training model. The advantage of cross-validation is that it uses all 
data for both training and validation sets, with each subset 
independently validated, providing a more robust reflection of the 
training model. Finally, an independent external validation set was 
selected, consisting of 44 NRDS and 43 N-NRDS patients, to test and 
evaluate the model’s accuracy.

Statistical analysis

Data entry was performed using SPSS software. Continuous 
variables that followed a normal or approximately normal distribution 
were expressed as mean ± standard deviation (x±s), with group 
comparisons made using the independent samples t-test. For continuous 
variables not following a normal distribution, data were reported as 
median (interquartile range), and group differences were assessed using 
non-parametric rank-sum tests. All data analyses and the construction 
of machine learning models were performed using R software (version 
4.0.3). All models were built using the Caret package, with the importance 
of predictive variables assessed through the vamp function within Caret. 
In this study, a p-value of <0.05 was considered statistically significant.

Results

Comparison of primary clinical data

Table 3 presents the baseline characteristics of the two groups. In 
the NRDS cohort, 47.90% of the participants were male, and the 
median gestational age was 32 (27,36) weeks. The mean birth weight 
was 2013 ± 622 g, and 60.50% of deliveries were by cesarean section. 
In the N-NRDS group, the proportion of males was 60.30%, the 
median gestational age was 35 (30,39) weeks, the mean birth weight 
was 2,291 ± 741 g, and cesarean deliveries accounted for 54.05% of the 
total deliveries.

Comparison of clinical indicators among 
different cohorts

The LUS and clinical score variations across different 
patient groups were compared, as shown in Table  4. 
The NRDS group exhibited higher LUS, SOFA, and RI values than the 
N-NRDS group, while OI values were lower (p < 0.01).

TABLE 1 LUS evaluation criteria (20).

Score

Lung consolidation 3

Numerous integrated B-lines (waterfall sign) 2

Scattered on clear B-lines (≥3) 1

Smooth A-lines or fewer than 3 isolated B-lines 0

https://doi.org/10.3389/fmed.2024.1481830
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Huang et al. 10.3389/fmed.2024.1481830

Frontiers in Medicine 04 frontiersin.org

Comparison of different severity of NRDS 
patients

Patients with NRDS were categorized based on the severity of 
their pulmonary disease into mild, moderate, and severe groups. 
Table  5 displays LUS levels and clinical scores corresponding to 
various degrees of NRDS, revealing significant statistical differences 
among the groups (p < 0.01). The severe NRDS group showed 
significantly elevated LUS, SOFA, and RI scores relative to the mild 
and moderate groups, whereas the OI was notably lower.

Model training process

To develop the NRDS predictive model, four commonly used 
machine learning algorithms were employed: LR, RF, NN, and 
SVM. Based on this foundation, ensemble and cascading methods 

were used to combine the individual classification models, and the 
performance of the integrated classifier was subsequently evaluated.

Importance of predictors of different 
models

We visualized the top eight variables according to their weights. 
The length of the bars is directly proportional to the importance of 
each variable. The results indicate that the model’s key variables fall 
into two groups, with the first group—LUS, OI, SOFA, and RI—
significantly impacting predictive performance. LUS is the most 
influential variable in the LR, RF, and NN models. LUS is the most 
influential variable for the LR, RF, and NN models. The second group 
consists of cesarean birth, gestational age, weight, and gender, which 
have a relatively minor impact on prediction; detailed information is 
provided in Figure 3.

FIGURE 1

Depicts the four distinct lung ultrasound scoring patterns. (A) A score of 0 is assigned when only A lines are visible or fewer than 3 B lines. A vertical 
arrow indicates A-lines. (B) A score of 1 is given when there are 3 or more well-spaced B-lines, shown with horizontal arrows. (C) Score 2 was line B 
with many fusions, with or without subpleural consolidation. (D) 3 points are defined as “hepatoid” lung tissue or accompanied by an air bronchogram, 
represented by an oval.
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Evaluation results of different machine 
learning algorithms

This research utilizes five key performance metrics, the AUC, 
accuracy, sensitivity, specificity, and the F1 score, to assess the 
effectiveness of four machine learning algorithms, as detailed in Table 6. 
ROC curves were plotted using models constructed from the training 
dataset (Figure 4), with test set AUC values as follows: LR (AUC = 0.841, 
95% CI: 0.712–0.881), RF (AUC = 0.894, 95% CI: 0.811–0.976), NN 
(AUC = 0.828, 95% CI: 0.701–0.935), and SVM (AUC = 0.726, 95% CI: 
0.623–0.887). The RF model demonstrated the highest performance of 

the four models, with an AUC of 0.894, accuracy of 0.808, and sensitivity 
of 0.706. In contrast, the AUC values for the LR, NN, and SVM models 
were notably lower. Given the superior performance of the RF model, it 
was selected as the final model for this study.

Verification of the model

This study used calibration curves to evaluate the accuracy of the 
model. Figure 5 depicts the calibration curves for the training, internal 
validation, and external validation sets. The results show that the 

TABLE 2 SOFA score table.

System Evaluation index Score

Coagulation system

>150 0

100 ~ 150 1

50 ~ 100 2

20 ~ 50 3

<20 4

Central nervous system

<110 0

110 ~ 170 1

171 ~ 299 2

300 ~ 440 3

>440 4

Liver

<20 0

20 ~ 32 1

33 ~ 101 2

102 ~ 204 3

>204 4

Respiratory system

>400 mmHg 0

300 ~ 400 mmHg 1

200 ~ 300 mmHg 2

100 ~ 200 mmHg 3

Kidney function

<110 0

110 ~ 170 1

171 ~ 299 2

300 ~ 440 3

>440 4

Cardiovascular system

Map ≥ 70 mmHg 0

Map < 70 mmHg 1

Dopamine ≤5 or dobutamine dose 2

Dopamine >5 or norepinephrine ≤0.1 3

Dopamine >15 or norepinephrine >0.1 4

FIGURE 2

Flow diagram of the study design for neonates.

TABLE 3 Characteristic parameters of patients.

NRDS 
group
n =  119

N-NRDS 
group
n =  111

P-value

Sex (%)

Male 57 (47.90%) 67 (60.30%) 0.131

Cesarean section (%) 72 (60.50%) 60 (54.05%) <0.01

Weight (g) 2013 ± 622 2,291 ± 741 <0.01

Gestational age (range) 32 (27,36) 35 (30,39) <0.01

<Number of children at 

28 weeks

76 (63.87%) 73 (65.77%) 0.107

<The Number of children 

with 1,500 grams

51 (42.86%) 40 (36.04%) 0.013

Apgar score

1 min (≤7) 74 (62.18%) 55 (49.55) 0.610

5 min (≤7) 48 (40.33%) 26 (18.92%) 0.861

Values are expressed as mean ± standard deviation, median (25th percentile; 75th percentile), 
or Number (%); the difference between groups was statistically significant (p < 0.05).
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TABLE 5 Comparison of LUS and clinical index scores of NRDS patients 
with different severity.

LUS OI SOFA RI

Mild 38 14.68 ± 6.73 233.1 ± 83.6 10.79 ± 4.01 1.19 ± 0.79

Moderate 48 20.01 ± 5.47a 161.1 ± 69.1a 15.01 ± 4.83a 1.55 ± 0.56a

Serious 33 27.12 ± 7.1b 111.7 ± 57.8b 19.36 ± 5.11b 2.21 ± 1.12b

F 11.22 17.32 9.76 4.53

P <0.01 <0.01 <0.01 <0.01

Compared with the mild group, aP < 0.01. Compared with the moderate group, bP < 0.01.

FIGURE 3

Importance of predictors for different models.

nomogram’s predictive performance across all sets is closely aligned 
with ideal performance.

Discussion

In recent years, NRDS has garnered widespread attention. NRDS 
manifests as progressive respiratory distress and respiratory failure 
shortly after birth (23). Previous studies, both domestic and 
international, have shown that preterm neonates are at significantly 
higher risk of developing NRDS, posing a severe threat to neonatal 
health (24). For example, preterm neonates born at 28–29 weeks have 
an 81% probability of developing NRDS (25). Similar studies in 
Europe have yielded consistent results, showing an 80% incidence of 
NRDS among preterm neonates born before 28 weeks. Without timely 
intervention, NRDS can lead to bronchopulmonary dysplasia and 
even pose a life-threatening risk to the neonatal (26, 27). Therefore, 
early identification and timely intervention in neonates with NRDS 
are crucial for improving survival rates and outcomes.

Among clinical indicators, OI, SOFA, and RI are crucial for assessing 
NRDS in patients (28). OI assesses neonates’ respiratory function and 

TABLE 4 LUS and clinical scores of children in different cohorts.

Total
n =  330

NRDS 
group
n =  119

N-NRDS 
group
n =  111

t/Z P

LUS 21.33 ± 7.12 21.88 ± 6.87 20.51 ± 7.71 −0.33 <0.01

OI 181.7 ± 75.7 179.2 ± 75.3 183.5 ± 76.3 1.91 <0.01

SOFA 16.68 ± 4.21 17.3 ± 4.83 16.2 ± 3.81 0.97 <0.01

RI 1.51 ± 0.52 1.65 ± 0.56 1.29 ± 0.49 −0.59 <0.01

NRDS is neonatal respiratory distress syndrome, LUS is lung ultrasound score, OI is 
oxygenation index, RI is respiratory index, and SOFA is sequential organ failure assessment.
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oxygenation levels, making it a key parameter for determining NRDS 
severity and predicting outcomes (29). Monitoring OI during NRDS 
treatment helps assess the neonate’s oxygenation status promptly, 
enabling adjustments in treatment to enhance respiratory support and 
improve oxygenation. SOFA is a valuable clinical tool for evaluating the 
severity of multiple organ dysfunction in neonates with NRDS (30). 
SOFA scores various organs to assess disease severity and prognosis, 
offering crucial guidance for clinical decision-making. RI is another 
essential indicator for NRDS, calculated using gas exchange principles to 
reflect the lung’s ability to diffuse oxygen and exchange gasses. In healthy 
individuals, RI values generally range from 0.8 to 1.2. An RI value 
exceeding this range may signal problems like inadequate oxygenation 
or carbon dioxide retention, which could lead to respiratory failure.

Data analysis demonstrated that the NRDS group had higher LUS, 
RI, and SOFA scores than the N-NRDS group, while OI values were 
lower in the NRDS group. This implies that more severe cases of 
NRDS at admission are associated with reduced OI values and worse 
prognoses. The results suggest that integrating LUS, OI, RI, and SOFA 
scores could effectively predict the severity of NRDS, potentially 

leading to improved treatment strategies and better clinical outcomes. 
The NRDS neonates were categorized into mild, moderate, and severe 
groups based on pulmonary disease severity. Results demonstrated 
that neonates with severe NRDS had significantly higher LUS, SOFA, 
and RI scores and the lowest OI values compared to those with mild 
and moderate NRDS, with scores of 27.12 ± 7.1, 111.7 ± 57.8, 
19.36 ± 5.11, and 2.21 ± 1.12, respectively (p < 0.01).

The increasing incidence of neonatal pulmonary infections has 
made managing high-dimensional data with traditional statistical 
models increasingly tricky (29). In contrast, machine learning 
leverages large datasets to build highly efficient and precise 
mathematical models, reshaping traditional clinical practices and 
offering potentially optimal treatment solutions for patients. The 
integration of machine learning into clinical practice offers significant 
potential. For example, Khamzin et al. (31) investigated the use of 
machine learning for the intelligent analysis of CT and MRI images in 
medical imaging. Likewise, McCoubrey et al. (32) utilized machine 
learning to examine gut microbiome characteristics for evaluating 
drug metabolism. Currently, machine learning is also being used for 
sensitivity analysis in pneumonia. For example, Lu et al. (33) and Liu 
et al. (34) integrated machine learning with Raman spectroscopy and 
whole-genome sequencing to evaluate resistance levels in Klebsiella 
pneumoniae. Nevertheless, Raman spectroscopy and whole-genome 
sequencing still need to be standard practices in microbial identification.

The use of artificial intelligence methods, such as machine learning, 
in clinical practice remains in its early exploratory phase. Combining 
clinical expertise with ultrasound data shows promising potential as 
machine learning algorithms become more sophisticated and reliable. 
Various machine learning algorithms differ in characteristics such as 
fitting performance, algorithmic complexity, and the capacity to 
manage multi-feature data. This study aims to develop a low-cost, high-
precision diagnostic system for NRDS to aid clinicians in making 
timely and accurate decisions. To achieve this, the study constructed 
four machine-learning models to predict the severity of NRDS, 
including LR, RF, NN, and SVM. Among these models, the RF model 
performed the best in the training set, achieving an AUC value of 0.894. 
The RF model outperformed logistic regression, neural networks, and 

TABLE 6 The performance of different machine learning algorithm 
models.

AUC Accuracy Sensitivity Specificity F1

LR

Train 0.870 0.818 0.691 0.861 0.727

Test 0.841 0.771 0.613 0.877 0.661

RF

Train 0.872 0.801 0.679 0.871 0.704

Test 0.894 0.808 0.706 0.867 0.727

NN

Train 0.847 0.778 0.632 0.733 0.681

Test 0.828 0.786 0.593 0.851 0.653

SVM

Train 0.670 0.731 0.754 0.776 0.693

Test 0.726 0.766 0.704 0.801 0.686

FIGURE 5

Calibration curve of RF model for predicting the severity of NRDS 
patients A: training set; B: internal validation set; C: external 
validation set.

FIGURE 4

ROC curve analysis of different models in the test set.
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support vector machines in terms of speed and accuracy with large 
datasets. Conversely, the minimum prediction accuracy of SVM is 
0.766, compared to 0.771 for LR, 0.808 for RF, and 0.786 for NN. This 
performance discrepancy may be attributed to the small sample size, 
the limited number of variables, and the relatively homogeneous study 
population. Furthermore, the RF model offers several advantages, 
including fewer statistical assumptions, robust noise tolerance, reduced 
risk of overfitting, and minimal need for parameter tuning.

Conclusion

This study created four machine-learning models by combining 
clinical indicators with imaging features. The results show that the RF 
model exhibited the highest performance and is particularly effective 
in predicting NRDS severity. Furthermore, analyzing variable weights 
across the four algorithms revealed key predictors, including LUS, OI, 
SOFA, and RI. Using machine learning models can make more 
accurate clinical decisions for NRDS patients.
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