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Background and Aims: The risk of disease progression in MASH increases 
proportionally to the pathological stage of fibrosis. This latter is evaluated 
through a semi-quantitative process, which has limited sensitivity in reflecting 
changes in disease or response to treatment. This study aims to test the clinical 
impact of Artificial Intelligence (AI) in characterizing liver fibrosis in MASH 
patients.

Methods: The study included 60 patients with clinical pathological diagnosis of 
MASH. Among these, 17 received a medical treatment and underwent a post-
treatment biopsy. For each biopsy (n  =  77) a Sirius Red digital slide (SR-WSI) was 
obtained. AI extracts >30 features from SR-WSI, including estimated collagen 
area (ECA) and entropy of collagen (EnC).

Results: AI highlighted that different histopathological stages are associated with 
progressive and significant increase of ECA (F2: 2.6%  ±  0.4; F3: 5.7%  ±  0.4; F4: 
10.9%  ±  0.8; p: 0.0001) and EnC (F2: 0.96  ±  0.05; F3: 1.24  ±  0.06; F4: 1.80  ±  0.11, 
p: 0.0001); disclosed the heterogeneity of fibrosis among pathological 
homogenous cases; revealed post treatment fibrosis modification in 76% of the 
cases (vs 56% detected by histopathology).

Conclusion: AI characterizes the fibrosis process by its true, continuous, and 
non-categorical nature, thus allowing for better identification of the response 
to anti-MASH treatment.
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1 Introduction

Metabolic Dysfunction-Associated Steatotic Liver Disease 
(MASLD) is the most common cause of chronic liver disease 
worldwide, with a global prevalence of 25% in the adult population, 
60% in patients with type 2 diabetes and 80% in obese individuals (1, 
2). Only a small proportion of MASLD cases progress to cirrhosis and 
severe complications, but biomarkers predicting patients at risk are 
still lacking. Conversely, in patients where steatosis is complicated by 
inflammation and cellular damage (i.e., MASH  - Metabolic 
Dysfunction-Associate Steatohepatitis), the possibility of severe liver 
diseases increases proportionally with the amount of fibrosis, as 
estimated by the pathological stage (3, 4). In keeping with this, the 
histopathological reduction of fibrosis is one of the main endpoints for 
clinical trials on MASH patients (5–7). However, the histopathological 
assessment of fibrosis stage in chronic liver disease, including MASH 
(8, 9), is a descriptive and semi-quantitative process with moderate 
reproducibility even among expert liver pathologists (10, 11). 
Moreover, the limited categories used for pathological staging scarcely 
illustrate a disease driven by a continuum of injury, resulting in limited 
sensitivity to reflect changes in disease severity over time (11).

Approaches based on whole slide digital images (WSI) and Artificial 
Intelligence (AI) have been applied successfully to the evaluation of 
morphological features of MASH, including fibrosis (12–18). Notably, 
two methods have shown clinically meaningful results. Collagen 
Proportionate Area (CPA), a quantitative assessment of collagen area 
expressed as the ratio of collagen-stained pixels over full-biopsy-pixels, 
demonstrated its superiority over semi-quantitative staging in 
predicting clinical decompensation (19, 20). Second Harmonic 
Generation (SHG) analysis, which focuses on the possibility to visualize 
collagen allowing its quantification on a continuous scale and evaluation 
of spatial relationship with the surrounding cells (14, 21), demonstrated 
its superiority over pathological staging in detecting treatment-
associated reduction of fibrosis (15). These new methods, allowing to 
characterize minimal difference in the quantitative features of the 
fibrous tissue, pave the way to precision medicine also in hepatology (11).

The aim of this study is to test the clinical impact of an AI-based 
approach in characterizing liver fibrosis features in a series of 
MASH patients.

2 Materials and methods

2.1 Study cohort

We searched the files of the Departments of Hepatology and 
Pathology of IRCCS, Humanitas Clinical Institute (Rozzano, Italy), for 
all cases with a matched clinical and pathological diagnosis of 
MASH. Specifically, we selected only cases fulfilling the following 
criteria: (1) clinical diagnosis of MASLD or MetALD (MASLD 

predominant), (2) histopatological diagnosis of steato-hepatitis (8, 9); 
(3) biopsy tissue of >15 mm length, showing >10 portal spaces.

2.2 Adjudication of ground truth

For each biopsy, we obtained a recut and stained all of them in a 
single batch for Sirius Red (SR). All the SR slides were then digitized 
using Ultra Fast Scanner (Philips, Netherlands). Imaging was 
performed with an Olympus 40x air objective (NA = 0.75, Plan Apo) 
with a pixel-size of 0.25 𝜇m.

SR digital slides (SR-WSI) were then evaluated using the Philips 
viewer independently by four pathologists (two senior, expert in liver 
pathology; two young, without specific experience in liver pathology). 
Each of them evaluated the pathological stage according to the CNR 
NASH semi-quantitative system (8, 9). Discordant diagnoses were 
reviewed in a consensus session.

Inter-observer variability was evaluated using Fleiss’s kappa value, 
κ (22, 23). Kappa values indicate slight agreement when the value 
ranges between 0.01 and 0.20, fair agreement (0.21–0.40), moderate 
agreement (0.41–0.60), substantial agreement (0.61–0.80), and almost 
perfect agreement when the values are >0.81. This process allowed to 
quantify inter-observer concordance and to establish a conclusive 
microscopic-stage for each case (ground truth).

2.3 AI-based analysis

Once labeled with a conclusive histopathological stage, each 
SR-WSI underwent an AI-based analysis to carefully measure several 
fibrosis features (see Supplementary material for details). Dependent 
t-test (called the paired-samples t-test) was then used in order to 
assess differences for each fibrosis feature. Statistical significance has 
been calculated for all paired categories and considered significant 
when p-value less than 0.05. This approach allowed to explore 
differences existing in the fibrosis features in cases labeled with the 
same histopathological stage.

2.4 Assessment of treatment effect: 
histopathology versus AI

We then focused our attention on a subset of cases from the study 
series, specifically those who received a liver biopsy before and after 
medical therapy for MASH within a clinical trial. In particular, 
we compared the impact of AI versus histopathology in assessing 
changes in fibrosis, specifically the increase or reduction of fibrosis, to 
evaluate the treatment effect in paired biopsy.

2.5 Validation

To validate the clinical findings emerging from the study 
cohort, particularly the impact of AI in assessing an increase or 
reduction of fibrosis, we  collected an adequate external series. 
We  searched the files of the Departments of Hepatology and 
Pathology at IRCCS, Ca′ Granda, Ospedale Maggiore Policlinico 
(Milano, Italy) for cases fulfilling the following criteria: (1) clinical 

Abbreviations: MASLD, Metabolic Dysfunction-Associated Steatotic Liver Disease; 

MASH, Metabolic Dysfunction-Associate Steatohepatitis; WSI, Whole slide digital 

images; AI, Artificial intelligence; CPA, Collagen proportionate area; SHG, Second 

Harmonic Generation; SR, Sirius Red; SR-WSI, Sirius red-digital slides; ECA, 

Estimated collagen area; EnC, Entropy of collagen.
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diagnosis MASLD or metALD (MASLD predominant); (2) 
histopatological diagnosis of steatohepatitis (8, 9); (3) biopsy tissue 
of >15 mm length, showing >10 portal spaces; (4) liver biopsy 
obtained before and after medical treatment within a clinical trial 
for MASH. Once the cases were selected and recuts obtained, all 
samples were stained in a single batch for Sirius red (SR) at the 
original Institution. All the SR slides were then digitized using the 
same scanner of the study cohort. Once generated, SR-WSIs were 
evaluated by the same AI solution used in the study cohort. In the 
validation cohort, the original pathological stage, based on CNR 
NASH semi-quantitative system, evaluated by an expert liver 
pathologist, was considered as truth.

2.6 Assessment of clinical outcomes

We assessed clinical outcomes in terms of weight loss. A clinical 
outcome was defined as a weight reduction of more than 10% between 
the baseline biopsy and the follow-up biopsy, based on its known 
association with improvements in liver histology in terms of liver 
fibrosis in MASH patients (24). This criterion was applied to both the 
study and validation cohorts. Written informed consent was obtained 
from the individuals for the publication of any potentially identifiable 
images or data included in this article.

3 Results

The study cohort consisted of 52 patients (Table 1). Among them, 
9 underwent a post-treatment biopsy. Therefore, the total number of 
cases was 61. The results of the pathologists’ agreement in staging 
these cases are shown in Figure 1. The agreement was fair for F1a, 
F1b and F1c (respectively κ: 0.19, 0.15 and 0.17), moderate for F2 (κ: 
0.43) and F3 (κ: 0.58) and substantial for F4 (κ: 0.73). The overall 
agreement was only moderate (κ: 0.44 Figure 1A, rising to κ: 0.55 
when grouping all F1 classes into a single category, Figure 1B). After 
the adjudication, the series was represented by 9 F1 (a,b,c: 4,1,4), 19 
F2, 28 F3 and 5 F4. These diagnoses were then considered as the 
ground truth.

3.1 Homogeneous histopathological stages 
are finely dissected by AI-based analysis

The AI-based analysis finely dissected the histopathological 
category of “fibrosis” into several parameters (n = 33, see 
Supplementary Table S1 for a detailed list). Significant differences 
along the spectrum F1-F4 were observed for 14 parameters (see 
Supplementary Table S2 for details). Among these latter, we focused 
our interest on Estimated Collagen Area (ECA) and Entropy of 
Collagen (EnC), since both have an easy reference to a morphological 
counterpart. Figure  2 illustrates and explains the transition from 
histopathological stage to ECA and EnC.

TABLE 1 Demographic and clinical features of the study cohort (n  =  52).

All patients*

(n  =  52)

Age, mean (std) 56.6 (10.4)

Male sex, n (%) 33 (63.4)

Ethnicity, n (%)

  Caucasian 51 (98%)

  Hispanic 1 (2%)

Body mass index (kg/m2), mean(std) 29.2 (4.7)

  Overweight, n (%) 21 (40%)

  Obesity, n (%) 20 (38.4%)

Hypertension, n (%) 22 (42.3)

DM, n (%) 9 (17.3)

Dyslipidemia, n (%) 22 (42.3)

MASLD, n (%) 49 (94.2%)

MetALD, n (%) 3 (5.8%)

  MASLD predominant, n (%) 3 (5.8%)

Liver-related events, n (%) 0

Extrahepatic events, n (%) 0

std, standard deviation; DM, diabetes mellitus; MASLD, Metabolic Dysfunction Associated 
Steatotic Liver Disease; MetALD, Metabolic alcohol-related fatty liver disease.

FIGURE 1

Agreement between pathologists in the evaluation of NASH stage. In panel (A), the subgroups of F1, namely F1a, F1b, F1c, have been considered 
separately, while in panel (B) they have been grouped. The overall Fleiss’s Kappa agreement is 0.44 for panel A and 0.55 for panel B. The agreement for 
each category is reported over the column. The hypothesis that the agreement is caused by random chance can be rejected (*** p  ≤  0.001).
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FIGURE 3

AI features (ECA and EnC) of single cases according to histopathological NASH stage. The figure shows for each biopsy, grouped according to the 
histopathological stage, the results of AI evaluation. Panel (A) illustrates the Estimated Collagen Area (ECA), panel (B) describes the evaluation of 
Entropy of Collagen (EnC). Significant differences between subgroups are assessed by one-way ANOVA corrected by a Tukey post hoc test. (** 
p  ≤  0.01; *** p  ≤  0.001; **** p  ≤  0.0001). Error bars represent the standard error of mean.

3.1.1 Estimated collagen area compared to 
microscopic stages

The mean values of ECA were progressively higher and 
significantly different in F2, F3 and F4 categories (Figure 3A; 
Supplementary Table S3). Interestingly, ECA of individual cases 
within the same histopathological stage showed considerable 
heterogeneous values; some values overlapped with those of cases 
in adjacent stages. This heterogeneity characterized in particular 

F3 cases, where ECA ranged between 2.8 and 10% (mean 5.7%, 
standard deviation ±0.4%, IQR 2.3). The heterogeneity of ECA in 
two exemplificative cases is shown in Figure 4.

3.1.2 Entropy of collagen compared to 
microscopic stages

EnC also showed a statistically significant increase from F2 to F4 
(Figure 3B; Supplementary Table S4), with considerable heterogeneity 

FIGURE 2

Correlation between histopathological NASH stage and features of fibrosis generated by AI. The figure illustrates the process of transition from the 
original image (SR-WSI) to AI-features and the comparison of the histopathological NASH stage (F1 to F4) to a heatmap generated by the AI for ECA 
and EnC. After preprocessing (see Supplementary Figure S1), the original SR-WSI is analyzed to segment collagen. The quantification process involves 
the extraction of both intensity and textural features at pixel level and within Regions of Interest (ROIs). Estimated Collagen Area (ECA) is computed as a 
fraction of collagen pixels (Sirius Red positive) over the total number of pixels representing the tissue section. Entropy of Collagen (EnC) is a textural 
parameter that encodes for the randomness of SR optical density values with respect to its neighborhood in terms of intensity distribution. Low 
entropy values correspond to a uniform and homogeneous image.
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of values within homogenous pathological categories. In particular, F3 
cases exhibited EnC levels ranging between 0.86 and 2.04 (mean: 1.24; 
standard deviation: ±0.06; IQR: 0.4), while F4 cases ranged between 
1.56 and 2.12 (mean: 1.8; standard deviation ±0.1; IQR: 0.5). 
Supplementary Figure S2 illustrates the heterogeneity of EnC in two 
exemplificative cases.

3.2 AI-based analysis highlights treatment 
efficacy

In the study cohort, 9 patients underwent a liver biopsy before 
and after medical treatment for MASH (see 
Supplementary Table S5a for clinical data). We  compared the 
ability of histopathology (stage) and AI (ECA and EnC) to 
recognize changes due to therapy. The results are shown in Table 2. 
Briefly, 56% of cases showed a stage change according to 
pathologist-based evaluation, compared to 100% depicted by 
AI. According to AI analysis, all post treatment biopsies differed 
from their paired pretreatment counterparts in terms of ECA and 
EnC. Among cases without changes at the microscopic level, 75% 
were characterized by a homogenous decrease of ECA and EnC, 
while the remaining 25% had homogeneous increase in both AI 
values. Among cases that showed a stage change at the microscopic 
level, 80% had congruous modifications in both ECA and EnC; in 

the remaining 20%, ECA and EnC were congruous but opposite 
to the histopathological finding. At clinical level two patients (n° 
2 and 6) achieved a weight loss greater than 10% between the 
baseline and post-treatment biopsy; in both cases, AI 
demonstrated a congruous reduction in ECA and EnC while 
histopathology recognize a change of stage (reduction) only in 
one case.

In the validation cohort, there were 8 patients who received liver 
biopsy before and after medical treatment for MASH (see 
Supplementary Table S5b for clinical data). Changes in pathological 
stage, ECA and EnC observed in these patients are reported in Table 3. 
Similar to the study cohort, histopathological evaluation disclosed 
stage change after treatment in 50% of cases as compared to 100% 
detected by AI. Among cases without changes at microscopic level, 
50% were characterized by a clear and homogenous decrease of both 
ECA and EnC. Among cases with a proven change of stage at 
histopathology, 50% had congruous modifications of both ECA and 
EnC. In the validation cohort, no patient achieved the >10% weight 
loss threshold.

The heatmap shown in Figure 5 offers an overview of the impact 
of AI, compared to histopathology, in the assessment of treatment 
efficacy, using the post-treatment biopsy as a reference. Briefly, 
histopathology proved 29% responders (decreasing stage), 24% 
non-responders (increasing stage), but was not conclusive in 47% of 
cases (no change in stage). In contrast, AI identified 53% of cases as 

FIGURE 4

ECA heterogeneity in cases with homogenous histopathological NASH stage. (A,B) SR-WSI of two cases labeled as F2 at histopathological level by all 
pathologists (perfect agreement). (C,D) Overlay between the original WSI and the Estimated Collagen Area (ECA) heatmap for each case. AI shows that 
in the first case (heatmap C) the percentage of tissue area covered by collagen (ECA) is 1.67% while in the second case (heatmap D) this percentage is 
to 3.85%. (E,F) SR-WSI of two cases labeled as F3 at histopathological level, after the adjudication process. (G,H) AI computes, that the area covered by 
collagen is lower in the first case (heatmap G, ECA  =  3.83%) as compared to the second (heatmap H, ECA  =  9.95%).
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FIGURE 5

Impact of AI, as compared to histopathology, in the assessment of 
treatment efficacy taking as reference the post treatment biopsy. The 
figure compares the results of histopathology and AI in assessing the 
response to treatment for MASH. Results shown refers to post 
treatment biopsy (PTB). Histopathology: green = reduction of stage in 
PTB (responder at histopathology); yellow = no change of stage in PTB 
(not conclusive at histology); red = increase of stage in PTB (not 
responder at histopathology). AI (ECA and EnC): green = reduction of 
value in PTB; red = increase of value in PTB; cases with congrous 
decrease of ECA and EnC are responders, with congrous decrease not 
responders, and discordant case as not conclusive, according to AI 
analysis.

responders (congruous decrease of both EC and EnC), 23% 
non-responders (congruous increase of both EC and EnC) and 24% 
as not conclusive (discordant ECA and EnC). Figure 6 illustrates the 
impact of AI on the evaluation of fibrosis modification due 
to treatment.

4 Discussion

Histopathological characterization of fibrosis is the only parameter 
that correlates with the evolution of steatohepatitis (5–7). A reduction 
in fibrosis is one of the goals of the treatments for steatohepatitis, as well 
as one of the parameters used by the FDA for drug approval (25). 
Nonetheless, the evaluation of fibrosis modification under the 
microscope has some limitations. First, the assessment is a highly 
subjective process: numerous studies have demonstrated good but not 
exceptional agreement even among expert hepato-pathologists (26). 
Then, the system in use classifies into defined categories, similar to 
impermeable compartments, a process, the appearance, and modulation 
of fibrosis, which in nature appears as continuous (27). Finally, liver 
fibrosis remodeling is a slow event that might not be depicted properly 
by the few categories of current staging systems. To overcome these 
limitations, some studies started using AI to quantify fibrosis in a more 
objective way and as a continuous parameter, or to identify specific 
parameters that might not be defined by histopathology, for example 
the entropy of collagen fibers (13, 16, 28, 29).

The results of the present study, conducted on MASH biopsy 
confirm that AI-based evaluation characterizes at the deepest level, 
compared to classic histopathological evaluation, the fibrotic process 
occurring in patients with MASH. In particular, we showed that cases 
consistently labeled as belonging to the same histopathological stage 
might show significant differences in collagen amount. Thus, cases 
classified as F3 might present values identical to a F2- or to a F4- cases. 
This infinitesimal evaluation of the collagen amount likely represents 
the result of the multi-resolution approach we adopted in the study. 
Indeed, the AI we designed combined features related to texture and 
intensity obtained at two clearly separated spatial scales: single pixel 
and ROI (32x32pixel). Interestingly, Taylor-Weiner et al. (16), using a 
similar approach, a deep-learning method able to measure the amount 

TABLE 3 Histopathological stage, ECA and EnC in pre- and post- 
treatment biopsy (validation cohort).

Case Histopathological 
Stage

ECA (%) EnC

1 Pre 2 3.48% 0.99

1 Post 3 5.06% 0.74

2 Pre 3 5.75% 1.94

2 Post 3 5.00% 1.69

3 Pre 3 5.18% 1.66

3 Post 2 5.09% 1.46

4 Pre 1a 1.33% 0.67

4 Post 2 3.34% 0.60

5 Pre 3 6.17% 0.69

5 Post 3 2.04% 1.21

6 Pre 3 6.10% 1.86

6 Post 3 1.55% 0.90

7 Pre 3 3.86% 1.48

7 Post 3 4.13% 0.75

8 Pre 4 9.03% 1.64

8 Post 2 1.87% 0.74

TABLE 2 Histopathological stage, ECA and EnC in pre- and post- 
treatment biopsy (study cohort).

Case Histopathological 
stage

ECA (%) EnC

1 pre 4 8.6% 1.56

1 post 3 6.3% 1.38

2 pre 3 5.8% 0.87

2 post 2 3.9% 0.84

3 pre 3 6.5% 1.16

3 post 2 6.6% 1.33

4 pre 3 9.6% 1.48

4 post 3 8.0% 1.42

5 pre 1a 2.0% 0.86

5 post 2 2.7% 0.95

6 pre 3 9.8% 2.04

6 post 3 4.8% 1.42

7 pre 3 5.8% 1.08

7 post 3 5.9% 1.29

8 pre 3 3.2% 1.25

8 post 4 13.4% 1.92

9 pre 3 5.2% 1.04

9 post 3 5.0% 0.98
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and distribution of fibrosis across the whole biopsy at different 
resolutions, proved a significant heterogeneity across patients with the 
same stage. A significant heterogeneity across patients with the same 
stage was also proved by Wang et al. (29) and Forlano et al. (13) using 
Collagen Proportionate Area (CPA). Interestingly enough the values 
of CPA reported by these two studies for specific MASH stages (F2: 
3.3 and 2.1%; F3: 6.8 and 5.5%; F4: 12.4 and 11.1%) overlap those of 
ECA in our study (F2: 2.6%; F3: 5.7% and F4: 10.9%).

The present study also confirmed that AI allows a more accurate 
identification of minimal changes conditioned by the therapy in 
MASH patients. In fact, while histopathology identified stage changes 
in 53% of cases, the congruous combination of two AI features 
representing the amount and entropy of collagen highlighted the 
presence of changes in 76% of the cases. These findings are strictly in 
keeping with the few similar data available in the literature. Naoumov 
et al. (15) proved a change in stage in 97% of cases using digital 
quantification on SHG as compared to 40% detected by 
histopathology. In specific, stage regression was observed in 69% of 
F2 and F3 cases treated with the optimal dose of drug. Taylor-Wayner 
et al. (16) calculated 27 and 40% of responders using, respectively, a 
rigorous or less-stringent thresholds as compared to none detected 
by histopathology. In our series, AI proved a stage regression in 53% 
of cases; histopatology in 29%; weight loss greater than 10%, a clinical 

feature that has been associated with improvements in liver fibrosis 
in MASH (24), in 12%. We also showed that the reduction in absolute 
terms of collagen was frequently accompanied by a reduction of 
entropy of collagen (EnC). This latter is a textural parameter that 
translates the randomness of Sirius Red optical density values with 
respect to its neighborhood in terms of the intensity distribution. 
Low entropy values correspond to more uniform and homogeneous 
image thus to more grouped collagen fibers. Interestingly enough, 
our findings overlap the description of regressing fibrosis reported by 
Sanyal et al. (7) characterized by the narrowing or even disappearance 
of the fibrotic bridge; as well as that described by Naoumov et al. (15) 
showing that after treatment septa became thin and compact, with 
sharp borders. Once inserted into this framework, our results, 
although limited to a small series of post treatment biopsy, do not 
appear random but rather representative of the important role played 
by AI in highlighting changes caused by medical therapy.

Finally, we showed that some post treatment liver biopsy totally 
unchanged under the microscope, have only minimal changes also in 
the parameters extracted by AI. This result mirrors those of a SHG study 
showing that fibrosis regression starts in a piecemeal manner (15). 
Interestingly enough, a recent paper, based on the spatial information 
returned by SHG proved, in a murine model of steatohepatitis, that this 
minute fibrosis regression is induced by a reduction in food amount (30).

FIGURE 6

Evaluation of treatment efficacy on fibrosis modification. The figure illustrates the microscopic (SR-WSI, left) and AI (segmentation, ECA and EnC, right) 
features in pre- and post- treatment biopsy in three patients (A, B, C). In patient A (case 6, Table 2), the pre treatment biopsy (A1) was diagnosed as 
stage F3, AI reveled a ECA of 9.8% and EnC of 2.04; post treatment biopsy (A2) was still diagnosed as F3 at histopathological level; however AI revealed 
that EC decreased to 4.8% and EnC to 1.42. In patient B (case 4, Table 2), the pre treatment biopsy (B1) was diagnosed as F3, with ECA of 9.6% and EnC 
of 1.48; after treatment (B2) the histopathological stage did not change (F3), but AI disclosed a reduction for both ECA (8.0%) and EnC (1.42). In Patient 
C (case 1, Table 2), the histopathological evaluation disclosed a stage reduction from F4 seen in pre-treatment (C1) to F3 seen in post treatment biopsy 
(C2); AI features were consistent with this reduction (ECA from 8.6 to 6.3%; EnC from 1.56 to 1.38).
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In conclusion, our data confirm that AI allows a better 
characterization of the fibrosis process by its true, continuous, and 
non-categorical nature. Of clinical importance is also the possibility, 
guaranteed by AI algorithms, of identifying among the cases that the 
pathologist would have judged as unchanged, those in which there was 
actually a response to treatment. Finally, it does not appear irrelevant 
to observe that there is a certain percentage of cases where the objective 
parameters generated by AI highlight an initial process of modification 
of the fibrosis. Taken together, the intrinsic possibilities of AI, pave the 
way for renewed staging system, where the information generated by 
pathological description (site of fibrosis; formation of septa) would 
benefit of an integration with data generated by AI.
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