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Background: Previous studies have established a connection between obesity 
and obstructive sleep apnea (OSA), novel surrogate markers of adipose 
accumulation may serve as more critical and reliable factors for consideration. 
Consequently, this study aims to explore and elucidate the correlation between 
metabolic score for visceral fat (METS-VF) and OSA.

Methods: In this cross-sectional study, the data from the National Health and 
Nutrition Examination Survey (NHANES) during the period from 2013 to 2020 
were adopted. Through multivariate logistic regression, restricted cubic spline 
regression (RCS), subgroup analyses and sensitivity analyses, the correlation 
between METS-VF and OSA was explored.

Results: Among 8,284 subjects, 4,176 of them were categorized as having OSA. 
It was observed that the quartile range of METS-VF increased, with a notable 
rise in the prevalence of OSA (32.8% vs. 49.8% vs. 56.9% vs. 62.1%, p < 0.001). 
Logistic regression analyses showed a significant positive correlation between 
METS-VF and the risk of having OSA, even after accounting for potential 
confounders (OR = 2.436, 95% CI: 2.065, 2.874). Subgroup analyses further 
revealed a stronger correlation between OSA and METS-VF among subjects 
who were female, younger, and Mexican Americans. RCS regression identified 
a positive linear correlation, without threshold effects. Sensitivity analyses with 
stop breathing (OR = 2.283, 95%CI: 1.169, 3.070) or snoring (OR = 2.716, 95%CI: 
2.273, 3.246) as outcomes reaffirmed the positive correlation with METS-VF.

Conclusion: Elevated METS-VF demonstrated a linear correlation with the 
increased incidence of OSA, suggesting the potential utility as a predictive index 
for OSA.
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Introduction

OSA is characterized by the complete or partial collapse of the upper airway for at least 
10 s during sleep, leading to complete cessation (apnea) or decreased airflow (hypoventilation). 
Excessive daytime drowsiness is a prominent symptom of OSA (1, 2). Epidemiological data 
indicate that OSA affects approximately 17% of females and 34% of males aged 30 to 70 in the 
United  States (3). Without any treatment in time, OSA will result in serious health 
complications such as cardiovascular diseases (4, 5), hypertension (6) and diabetes mellitus 
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(DM) (7). Therefore, identifying precise and novel biomarkers for the 
early detection of OSA is crucial.

OSA is widely recognized as a significant complication correlated 
with obesity (8). Obesity is typified by the accumulation of visceral 
adipose tissues (VAT). Conventional metrics, such as body mass index 
(BMI), can only provide a general assessment on obesity and fail to 
distinguish visceral from subcutaneous fat. In recent developments, 
Bello-Chavolla et al. (9) introduced a novel visceral adiposity score, 
termed METS-VF, which is markedly superior to traditional obesity 
indexes in estimating VAT. METS-VF, encompassing variables such as 
WHtR, BMI, HDL-C, FPG, TG, gender, and age, can offer a 
comprehensive assessment on VAT and its metabolic implications, 
which can not only evaluate the glycolipid metabolism and 
distribution of body fat, but also incorporate gender and age-specific 
variations in VAT. Recent research has highlighted the superiority of 
METS-VF compared to traditional obesity indexes in predicting and 
assessing the risk of metabolic diseases, such as hyperuricemia, 
hypertension, DM, and chronic kidney dysfunction (CKD) (10–14). 
To date, however, no published studies have explored the correlation 
between METS-VF and the prevalence of OSA.

In this study, the data from the NHANES database were analyzed 
to explore the correlation between METS-VF and the prevalence of 
OSA in a nationally representative sample.

Methods

Research population

NHANES, conducted by NCHS (15), is a comprehensive study 
designed to assess the correlation between nutrition, health promotion, 
and disease prevention. The survey shall be conducted every 2 years 
by taking physical examinations, interviews, and various sections 
covering dietary, demographic, examination, and laboratory data.

A total of 44,960 subjects were included in the NHANES database 
during the period from 2013 to 2020. By rigorous exclusion and 
inclusion criteria, 8,284 American adults from NHANES 2013–2020 
were identified as samples. Specifically, 17,306 individuals under 
20 years old, 5,798 individuals missing OSA data, and 12,207 
individuals missing METS-VF were excluded from the study (as 
shown in Figure 1).

Assessment of OSA

Consistent with prior research, high-risk for OSA was defined 
when an individual affirmed a positive response to at least one of the 
three questions of NHANES (16): (1) Daylight sleepy, characterized 
by excessive drowsiness while awake, despite sleeping for at least 7 h 
per night, reported between 16 to 30 times; (2) Stopped breathing, 
with episodes occurring three or more times per week; (3) Snoring: 
snoring on three or more occasions per week.

Measurement of covariates

The demographics and lifestyle data came from the household 
interview questionnaires administered by highly trained medical 

personnel. Anthropometric indexes and biochemical parameters were 
obtained through medical examinations and subsequent laboratory 
assessments in the Mobile Examination Centre (MEC). According to 
previous studies (17, 18), potential confounding factors correlated 
with OSA and METS-VF were incorporated into the final analysis. 
These factors included demographic variables (age, height, race, blood 
pressure, gender, waist circumference, educational attainment, weight, 
and physical activities). Questionnaire surveys included alcohol 
consumption, hypertension, lipid-lowering drugs (LLDs) and 
DM. TC, UA, HbA1c, albumin, LDL-C, ALT, TG, GGT, AST, 
creatinine, and HDL-C were collected in blood samples. Less than 3% 
of values missed in total. Multiple imputation was performed for 
missing values. Self-reported race was categorized into the following 
five races: non-Hispanic Black, non-Hispanic White, other Hispanic, 
Mexican Americans, and other races. Educational level was divided 
into two levels: high school or above, less than high school. Alcohol 
consumption was assessed by using a question: “In 1 year, have 
you  had at least 12 drinks of any type of alcoholic beverage?” 
Participants who answered ‘yes’ were identified as alcohol drinkers. 
Participants having diabetes mellitus were identified by having any of 
the following conditions: Have been told by a doctor or health 
professional having diabetes mellitus, HbA1c ≥ 6.5%, fasting plasma 
glucose≥7.0 mmoL/L, two-hour OGTT blood glucose≥11.1 mmoL/L, 
and use of diabetes mellitus medication or insulin. Hypertension in 
participants was defined based on any of the following: ever been told 
by a doctor or a health professional that had hypertension, mean 

FIGURE 1

Flowchart of the sample selection from the 2013–2020 NHANES.
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systolic blood pressure ≥ 140 mmHg, and mean diastolic blood 
pressure ≥ 90 mmHg. Detailed measurements and data acquisition for 
each variable can be accessed at www.cdc.gov/nchs/nhanes.

Calculation formula of METS-VF

The metabolic score for IR (METS-IR) was calculated with the 
following formula: METS-IR = Ln [TG (mg/dL) +2 × FPG (mg/
dL)] × BMI (kg/m2) / Ln [HDL-C (mg/dL)] (19);

METS-VF was calculated with the following formula: 
METS-VF = 3.239 × [Ln (WHtR)]3 + 0.011 × [Ln (METS-
IR)]3 + 0.319 × gender (male = 1, female = 0) +4.466 + 0.594 × [Ln 
(Age) (year)] (9).

Statistical analysis

METS-VF values were categorized into quartiles (Q1: ≤6.27; Q2: 
6.27–6.69; Q3: 6.69–7.00; Q4: ≥7.00). Categorical characteristics were 
expressed as proportions, whereas continuous variables were 
summarized by standard errors and means. Differences among 
quartile groups were assessed with chi-square tests or Kruskal-Wallis 
H test. Bonferroni test was adopted for the intergroup comparison. 
Variables demonstrating clinical and statistical significance in the 
univariate analyses (p < 0.05) were incorporated into the multivariate 
analyses. Multiple logistic regression models were employed to explore 
ORs and 95% CIs between OSA and METS-VF. The analysis 
incorporated three models: Model 1 (unadjusted), Model 2 (adjusted 
for age, race, and gender), and Model 3 (fully adjusted for drinking, 
educational level, TC, moderate physical activities, DM, albumin, SBP, 
DBP, ALT, AST, creatinine, GGT, LLDs and uric acid). Potential 
modifications of the correlation by covariates were explored with 
interaction tests and subgroup analyses. Additionally, whether the 
correlation between METS-VF and OSA was linear was determined 
through restricted cubic spline (RCS) analysis. Finally, the robustness 
of the findings were assessed through three sensitivity analyses: (1) 
Excluding subjects taking lipid-lowering drugs potentially affecting 
METS-VF, (2) taking “stopped breathing” as the dependent variable, 
and (3) taking “snoring” as the dependent variable. Data analyses were 
performed with R software (version 3.4.3) and Free Statistics software 
(version 1.9.2), with a significance threshold at p < 0.05 for all 
statistical tests.

Results

Baseline characteristics of subjects

A total of 8,284 subjects aged between 20 and 80 years old were 
included in this study, with a prevalence of OSA of 50.4%. 
Demographic characteristics, stratified by METS-VF quartiles, are 
presented in Table  1. Subjects in the highest METS-VF quartile 
exhibited a higher prevalence of DM, OSA, hypertension and elevated 
ALT, weight, uric acid, BMI, TG, SBP, waist circumference, and FPG, 
compared to those in the lowest quartile. Conversely, subjects in the 
highest quartile showed lower levels of HDL-C and albumin 
(p < 0.01) (as presented in Table 1). As illustrated in Figure 2, the 

prevalence of OSA increased across quartiles: 32.8% in Q1, 49.8% in 
Q2, 56.9% in Q3, and 62.1% in Q4, along with a rise in OSA 
symptoms such as daytime sleepiness, stopped breathing, 
and snoring.

Correlation between METS-VF and 
metabolic parameters

Spearman’s correlation analysis (as presented in Table 2) revealed 
that METS-VF was positively correlated with FPG, DBP, TG, uric acid, 
SBP, uric acid and LDL-C, and negatively correlated with HDL-C (all 
p < 0.05).

Logistical correlation between METS-VF 
and OSA

In order to explore the correlation between OSA and 
METS-VF, three multiple regression models were developed (as 
presented in Table 3). Model 1, the unadjusted model, indicated a 
statistically significant positive correlation between OSA and 
METS-VF, which remained evident after adjusting for all 
covariates in Model 3 (OR = 2.436, 95% CI: 2.065, 2.874, 
p < 0.001). According to the sensitivity analysis, METS-VF was 
categorized into quartiles, showing that in the fully adjusted 
Model 3, subjects in the second, third, and fourth quartiles had a 
statistically significant increase in the risk of having OSA by 0.945, 
1.601, and 2.481, respectively, compared to those in the lowest 
quartile. To further explore the correlation between METS-VF 
and OSA, restricted cubic spline smoothing curve fitting with 
Model 3 was conducted. The results depicted in Figure 3 revealed 
a linear correlation between METS-VF and OSA, without 
threshold effects.

Subgroup analysis

Through comprehensive subgroup analyses and interaction tests, 
the robustness of the correlation between METS-VF and OSA was 
evaluated, to identify potential population variations (as shown in 
Figure 4). The results consistently demonstrated a notable correlation 
between METS-VF and OSA within various subgroups. It is 
particularly noteworthy that there were significant interaction effects 
between METS-VF and age, gender and race (all interaction p < 0.05). 
The correlation between METS-VF and OSA was more pronounced 
in subjects who were female, younger, and Mexican Americans.

Sensitivity analyses

The results of the sensitivity analysis are presented in Table 4. 
Sleep-related outcomes were taken as dependent variables in the 
adjusted Model 3, finding that METS-VF was correlated to stopped 
breathing (OR, 2.283; 95% CI, 1.697, 3.070) and snoring (OR, 2.716; 
95% CI, 2.273, 3.246). After excluding subjects who received lipid-
lowering drugs, the correlation between METS-VF and OSA remained 
stable (OR, 2.493; 95% CI, 2.091, 2.974).
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TABLE 1 Weighted characteristics of the study population based on METS-VF quartiles.

Characteristic Q1 Q2 Q3 Q4 p value

Number 2071 2068 2064 2081

Age, year 37.0 ± 14.3 46.1 ± 15.7 54.0 ± 14.5 65.3 ± 10.6 <0.001

Race, n% <0.001

Mexican American 198 (9.6) 337 (16.3) 339 (16.4) 299 (14.4)

Other Hispanic 165 (8.0) 236 (11.4) 258 (12.5) 256 (12.3)

Non-Hispanic White 636 (30.7) 658 (31.8) 666 (32.3) 852 (40.9)

Non-Hispanic Black 518 (25.0) 420 (20.3) 488 (23.6) 498 (23.9)

Other Race 554 (26.8) 417 (20.2) 313 (15.2) 176 (8.5)

Moderate activities, n% <0.001

Yes 1,008 (48.7) 909 (44) 862 (41.8) 632 (30.4)

No 1,063 (51.3) 1,159 (56) 1,201 (58.2) 1,447 (69.6)

Diabetes, n% <0.001

Yes 47 (2.3) 178 (8.8) 367 (18.4) 718 (36.2)

No 1990 (97.7) 1839 (91.2) 1,627 (81.6) 1,267 (63.8)

Hypertension, n%

Yes 279 (13.5) 602 (29.2) 886 (43) 1,365 (65.6)

No 1789 (86.5) 1,462 (70.8) 1,174 (57) 716 (34.4)

Education level, n% <0.001

Less than high school 271 (13.1) 411 (19.9) 480 (23.3) 522 (25.1)

High school or above 1800 (86.9) 1,657 (80.1) 1,584 (76.7) 1,559 (74.9)

Drinking, n% 0.502

Current or ever, % 1,279 (61.8) 1,314 (63.5) 1,278 (61.9) 1,319 (63.4)

Never 792 (38.2) 754 (36.5) 786 (38.1) 762 (36.6)

LLDs, % 78 (3.8) 302 (14.6) 512 (24.8) 911 (43.8) <0.001

Male, n% 1,079 (52.1) 1,094 (52.9) 974 (47.2) 868 (41.7) <0.001

OSA, n% 680 (32.8) 1,029 (49.8) 1,175 (56.9) 1,292 (62.1) <0.001

Weight, cm 66.7 ± 13.5 80.0 ± 17.3 87.7 ± 21.8 96.4 ± 22.4 <0.001

Body mass index, Kg/m2 23.2 ± 3.3 28.3 ± 4.7 31.6 ± 6.3 35.6 ± 6.9 <0.001

Height, cm 169.0 ± 9.7 167.5 ± 9.7 166.0 ± 10.1 164.2 ± 9.8 <0.001

Waist circumference, cm 82.5 ± 8.5 97.0 ± 9.8 106.0 ± 12.9 116.8 ± 13.3 <0.001

Systolic blood pressure, mmHg 116.1 ± 14.9 123.7 ± 18.3 128.8 ± 18.8 134.6 ± 19.6 <0.001

Diastolic blood pressure, mmHg 68.6 ± 11.2 71.5 ± 12.3 72.7 ± 13.1 69.3 ± 14.8 <0.001

FPG, mmol/L 5.49 ± 1.11 6.05 ± 1.95 6.48 ± 2.18 7.18 ± 2.62 <0.001

ALT, U/L 20.2 ± 20.1 24.4 ± 17.8 24.9 ± 17.0 22.6 ± 14.9 <0.001

AST, U/L 22.7 ± 18.4 23.0 ± 13.2 23.1 ± 11.8 22.7 ± 20.8 0.832

GGT, U/L 24.1 ± 34.2 32.0 ± 41.9 34.1 ± 65.2 35.0 ± 44.9 <0.001

Albumin, g/dl 4.24 ± 0.35 4.11 ± 0.36 4.05 ± 0.33 3.96 ± 0.34 <0.001

Creatinine, umol/L 74.0 (61.0, 86.0) 72.0 (60.0, 86.0) 72.0 (61.0, 86.0) 77.0 (64.0, 94.0) <0.001

Uric acid, umol/L 291.5 (243.9, 345.0) 315.2 (261.7, 368.8) 321.2 (267.7, 386.6) 345.0 (291.5, 404.5) <0.001

Total cholesterol, mmol/L 4.69 ± 1.01 5.02 ± 1.08 4.99 ± 1.14 4.74 ± 1.11 <0.001

Triglycerides, mmol/L 0.87 (0.66, 1.22) 1.22 (0.82, 1.77) 1.29 (0.95, 1.87) 1.42 (1.06, 1.90) <0.001

HDL-cholesterol, mmol/L 1.56 ± 0.46 1.38 ± 0.43 1.34 ± 0.41 1.32 ± 0.36 <0.001

LDL-cholesterol, mmol/L 2.68 ± 0.85 3.01 ± 0.91 2.98 ± 0.96 2.75 ± 0.95 <0.001

METS-VF 5.66 ± 0.52 6.50 ± 0.12 6.85 ± 0.09 7.16 ± 0.10 <0.001

Values are mean ± SD or number (%). p < 0.05 was deemed significant. BMI, body mass index; FPG, fasting blood glucose; TC, total cholesterol; TG, triglyceride; HDL-c, High density 
lipoprotein cholesterol; LDL-c, Low density lipoprotein cholesterol; LLDs, lipid-lowering drugs; GGT, glutamyl transpeptidase; METS-VF, metabolic score for visceral fat.
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FIGURE 2

The prevalence of OSA and OSA symptom across quartiles of METS-VF.

TABLE 2 Spearman’s correlation of METS-VF levels with clinical and biochemical parameters.

Variable METS-VF

r p

SBP 0.393 <0.001

DBP 0.046 0.003

FPG 0.454 <0.001

TC 0.018 0.104

TG 0.339 <0.001

HDL-C −0.212 <0.001

LDL-C 0.027 0.015

Uric acid 0.238 <0.001

TABLE 3 Association between METS-VF and OSA in logistic regression analysis.

Model1 OR (95% CI)
p value

Model II OR (95% CI)
p value

Model III OR (95% CI)
p value

METS-VF 2.188 (2.024, 2.365), <0.001 2.740 (2.478, 3.030), <0.001 2.436 (2.065, 2.874), <0.001

METS-VF (Quartile)

Q1 Reference Reference Reference

Q2 2.026 (1.786, 2.298), p < 0.001 2.206 (1.934, 2.517), <0.001 1.954 (1.607, 2.376), <0.001

Q3 2.704 (2.382, 3.068), p < 0.001 3.246 (2.815, 3.743), <0.001 2.601 (2.087, 3.243), <0.001

Q4 3.350 (2.949, 3.805), p < 0.001 4.591 (3.897, 5.408), p < 0.001 3.481 (2.678, 4.526), <0.001

P for trend <0.001 <0.001 <0.001

Model I: None covariates were adjusted; Model II: gender, age and race were adjusted; Model III: gender, age, race, drinking, educational level, TC, moderate physical activities, diabetes, 
albumin, SBP, DBP, ALT, AST, creatinine, GGT, LLDs and uric acid were adjusted.
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Discussion

This cross-sectional study encompassing 8,284 representative 
adults identified a notable positive correlation between METS-VF and 
the probability of having OSA. This correlation was particularly 
pronounced among subjects who were female, younger and Mexican 
Americans. Notably, linear correlation was identified between OSA 
and METS-VF, without threshold effects.

METS-VF, a novel estimator of VAT recently developed by Bello 
Chavolla OY et al. (9) has been meticulously developed and validated, 
as documented in prior literature. Due to the computational simplicity 
and high accuracy of METS-VF in predicting visceral obesity, 
increasing researchers have explored and validated its superior efficacy 
in assessing and predicting the risk of having the diseases correlated 
with visceral obesity. In the study, Yu et  al. demonstrated that 
METS-VF can exhibit a robust predictive capacity for CKD compared 
to other markers of central adiposity (10). Additionally, compared to 
other obesity evaluation indexes, METS-VF can exhibit both 
applicability and reliability as a predictor of DM and hypertension 
within Chinese population (11, 12). A study involving 36,876 subjects 

identified a positive correlation between asthma and METS-VF (20). 
For non-obese females, METS-VF has been proven to be beneficial in 
guiding the management and prevention of hyperuricemia (13). 
Numerous studies have corroborated the strong correlation between 
these diseases and OSA (21–23). These findings provide indirect 
evidence of the robust diagnostic capability of METS-VF for 
identifying OSA. This study revealed a significant linear positive 
correlation between METS-VF and the probability of having OSA in 
a nationally representative sample for the first time.

The correlation between OSA and obesity is characterized by a 
complex interdependence (8). Notably, obesity, particularly the 
accumulation of excess abdominal fat, is a major risk factor for the 
exacerbation and development of OSA. Abdominal obesity can not 
only elevate intra-abdominal pressure and reduce lung volume, 
thereby heightening the risk of upper airway collapse (24), but it is 
also correlated with an increase in visceral fat, secreting various 
inflammatory and adipose-derived factors, leading to oxidative 
stress and systemic inflammation. These processes affect muscle 
activities in the upper respiratory tract, promote the proliferation 
of adipose tissues around the upper respiratory tract, and thus 

FIGURE 3

Restricted cubic spline fitting for the association between METS-VF index levels and OSA.
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increase the risk of having OSA (25, 26). In addition, irregular 
sleep patterns and frequent awakenings correlated with OSA can 
disrupt hormonal regulation, leading to increased hunger and a 
preference for high-calorie foods (27–29). Additionally, evidence 

indicates that OSA can alter the lipid profile (30), which can 
exacerbate lipid abnormalities by enhancing inflammatory 
responses. And OSA itself can exacerbate lipid abnormalities by 
increasing IR and inflammatory responses, thereby creating a 

FIGURE 4

Association between METS-VF and the risk of OSA in various subgroups.
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negative feedback loop (31, 32). Furthermore, aging is correlated 
with the accumulation of senescent adipocytes in adipose tissues, 
leading to disruptions in lipid metabolism, glucose metabolism, 
immune regulation and endocrine function, within adipose tissues 
(33, 34). METS-VF can incorporate the aforementioned parameters 
(WHtR, age, lipid profile, and insulin resistance) to evaluate the 
metabolic status of visceral fat, which may can partially indicate 
the risk of having OSA.

Subgroup analyses in this study have uncovered a novel finding 
that elevated METS-VF was significantly correlated with an increased 
prevalence of OSA in individuals under 50 years old. This increased 
risk may be correlated with age-related physiological and metabolic 
changes, including alterations in lipid distribution and related 
metabolic markers (35, 36). Older adults are more prone to have 
hypertension, cardiovascular diseases, and DM, which can affect both 
metabolic indexes and sleep quality, which may consequently 
attenuate the correlation between METS-VF and OSA. Notably, Hai 
Deng et al. (8) have elucidated this phenomenon by proposing that the 
divergent effects of adipose tissue distribution in older adults may 
account for this discrepancy. Furthermore, it was identified that 
gender influences the correlation between METS-VF and 
OSA. Females typically exhibit a higher proportion of body fat 
compared to males and experience a reduction in estrogen levels after 
menopause, which may increase the risk of having OSA during 
menopause (37, 38).

This study carries important implications for clinical practice, 
particularly given the increasing annual prevalence of cardiovascular 

and cerebrovascular diseases correlated with OSA (39). OSA has 
emerged as a notable health issue impacting public well-being. 
Nevertheless, the diagnosis of OSA is frequently a lengthy, resource-
intensive, and costly process for patients. Therefore, there is a 
pressing clinical necessity to pinpoint a convenient and effective 
diagnostic approach for OSA. METS-VF, a cost-efficient and readily 
measurable metric, satisfactorily fulfills these clinical needs. The 
results of this study provide important insights for healthcare 
professionals in efficiently evaluating the risk of having OSA 
in patients.

The study’s primary strength is its distinction as the first 
cross-sectional analysis to explore the correlation between 
METS-VF and OSA, supported by a sufficiently large and 
representative sample size. However, it is crucial to acknowledge 
the limitations inherent in this study. Firstly, the establishment of 
a causal relationship between METS-VF and OSA was not feasible 
through cross-sectional studies. As discussed above, a 
bidirectional relationship may exist. Secondly, its reliance on data 
solely from US adults, which may impede the generalizability of 
the results to other populations. Thirdly, there are numerous 
potential influencing factors for OSA and METS-VF. Although as 
many relevant covariates as possible have been incorporated into 
the models, it is still challenging to completely exclude the 
influence of other potential covariates, such as diet and genetic 
factors. Fourthly, in this study, the risk of having OSA was assessed 
through three questions, which suggests a high risk of having OSA 
rather than a confirmed diagnosis, and also lead to recall bias. 

TABLE 4 Sensitivity analyses.

OSA or OSA symptom, n (%) Adjusted OR (95 CI%)

Sensitivity analyses1

METS-IR (continuous) 963 (11.6) 2.283 (1.697, 3.070), <0.001

METS-IR

Q1 105 (5.1) 1.00 (Ref)

Q2 211 (10.2) 2.141 (1.493, 3.069), <0.001

Q3 273 (13.2) 2.721 (1.846, 4.012), <0.001

Q4 374 (18) 4.043 (2.597, 6.293), <0.001

Sensitivity analyses2

METS-IR (continuous) 3,782 (45.7) 2.716 (2.273, 3.246), <0.001

METS-IR

Q1 565 (27.3) 1 (Ref)

Q2 934 (45.2) 2.147 (1.748, 2.637), <0.001

Q3 1,093 (53) 2.921 (2.316, 3.683), <0.001

Q4 1,190 (57.2) 3.834 (2.910, 5.051), <0.001

Sensitivity analyses3

METS-IR (continuous)3 3,097 (47.8) 2.493 (2.091, 2.974), <0.001

METS-IR

Q1 637 (31.9) 1 (Ref)

Q2 856 (48.4) 1.941 (1.583, 2.380), <0.001

Q3 874 (56.3) 2.669 (2.109, 3.378), <0.001

Q4 730 (62.6) 3.852 (2.867, 5.175), <0.001

1Stopped breathing was used as the dependent variable. 2Snoring was utilized as the dependent variable. 3Participants taking Lipid-lowering drugs that potentially affect METS-VF were 
excluded.
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Ideally, diagnosing OSA requires overnight polysomnography or 
polygraphy. Future research should incorporate prospective 
cohort studies and richer datasets to overcome these limitations 
and should also aim at uncovering the underlying mechanisms 
linking these conditions.

Conclusion

This study revealed a notable correlation between elevated 
METS-VF and OSA. METS-VF can function as an independent 
predictor of OSA, aiding in early detection and diagnosis to mitigate 
the risks correlated with the conditions.
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