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Atopic dermatitis (AD) is a prevalent inflammatory skin disorder characterized 
by chronic inflammation, skin barrier dysfunction, and microbial dysbiosis, with 
Staphylococcus aureus playing a significant role in its pathogenesis. This paper 
explores the strain diversity and microevolution of S. aureus within AD patients, 
emphasizing how specific strains adapt to the altered skin environment, exacerbating 
the condition. The review emphasizes the significance of variation in specific 
functional genes among S. aureus strains, which enhances their ability to adapt 
to different microenvironments and shapes their pathogenic potential. It also 
discusses how mobile genetic elements, particularly prophages, contribute to 
genetic diversity and drive the virulence and antibiotic resistance of S. aureus 
in AD, highlighting the clinical challenges posed by these strain-specific factors 
in managing the disease. The paper advocates for the integration of advanced 
genomic tools such as whole-genome sequencing and machine learning to 
develop targeted therapies. By focusing on the genetic adaptability of S. aureus and 
its impact on AD, this review underscores the need for strain-specific diagnostics 
and personalized treatment strategies to improve patient outcomes.
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1 Introduction

S. aureus is a highly adaptable and versatile bacterium known for its ability to inhabit a 
wide range of hosts, including humans (1), livestock, and domestic pets (2, 3), suggesting a 
potential for cross-species transmission. It has also been detected in various environmental 
settings (4). This bacterium has a long evolutionary history as both a commensal and an 
opportunistic pathogen, reflecting its remarkable ability to thrive in diverse ecological niches. 
In humans, S. aureus commonly colonizes the nose, ear, and skin as a commensal bacterium 
in about 20–30% of the population (1). However, its presence is not purely neutral; S. aureus 
is also associated with several atopic diseases, such as AD (5) and hay fever in the nose (6), 
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demonstrating its dual role in human health as both a harmless 
inhabitant and a potential trigger for allergic reactions.

The ability of S. aureus to exist in such a wide range of 
environments and hosts raises significant questions about its genetic 
adaptability: does the core genome of S. aureus, which includes genes 
common to all strains, provide the necessary flexibility for adaptation 
and phenotypic changes across different ecological niches, or is it 
possible that the pan-genome, which encompasses the entire set of 
genes present across various strains of S. aureus, allows specific strains 
to colonize distinct niches? For example, in the context of AD, the 
affected skin regions can be considered as a distinctive environment 
with an increased selection pressure, which might promote the 
evolution of S. aureus (7, 8). Therefore, understanding the drivers for 
microevolution of S. aureus will improve our understanding of the 
commensal or pathogenic nature of strains which will allow for a more 
precise identification of pathogenic strains, which might facilitate in 
the future the development of new forms of therapy for AD patients.

In this paper, we summarize the current stage of knowledge on 
strain diversification of S. aureus in AD patients and vote for a strain-
specific identification of S. aureus also for diagnostic purposes.

2 Discussion

2.1 Staphylococcus aureus prevalence in 
AD patients

AD stands as a significant clinical and public health concern 
worldwide, characterized by chronic inflammation, intense itching, and 
a compromised skin barrier (9). The global prevalence of AD has been 
increasing over the past decades, affecting over 20% of children and 10% 
of adults worldwide (10). The 2019 Global Burden of Diseases data 
shows 171 million cases of AD worldwide, with a 28.6% increase in 
prevalence since 1990 (133 million) and a strong association with higher 
socioeconomic development (11). This rise not only highlights the 
pressing need for effective management strategies but also underscores 
the multifactorial nature of AD, influenced by genetic, immunological, 
psychological, and environmental factors like the skin microbiome (12).

Central to this discussion on AD pathology is the role of S. aureus. 
While S. aureus often coexists harmlessly with its host, its colonization 
is not just prevalent in individuals with AD but also plays a pivotal role 
in exacerbating the condition. Numerous studies have revealed a 
significantly higher rate of S. aureus colonization in AD patients 
compared to healthy individuals (13–15). The primary source of 
S. aureus contamination in AD patients is self-colonization from the 
nasal passages (11), spreading to the skin through direct contact, 
especially in areas with a compromised skin barrier. Research indicates 
that up to 70–90% of AD patients are colonized by S. aureus on lesional 
skin, a strong contrast to 20–30% in healthy individuals colonized by 
S. aureus in the nose (16, 17). This heightened prevalence is not limited 
to lesional skin; non-lesional skin of AD patients also exhibits higher 
colonization rates (17, 18). AD is more prevalent and severe in children, 
particularly infants and young children aged 5–9 years, while adults 
experience a lower prevalence and more localized symptoms as they age. 
In pediatric AD patients, the prevalence of S. aureus nasal colonization 
ranges from 46.4 to 82.2%, compared to 19.4 to 34.1% in the control 
group, while in adults with AD, nasal colonization rates are between 62.0 
and 69.8% (19). For skin colonization, the rate of S. aureus increases 

with age in AD patients, with colonization rates of 50% in infants, 80% 
in children, and 87.5% in adults for acute lesions, and 18.5% in infants, 
41.8% in children, and 48.9% in adults for chronic lesions (20). This 
increased burden of S. aureus correlates with both skin microbiome 
dysbiosis and heightened disease severity during flares (13, 14).

2.2 Pathogenic mechanisms of 
Staphylococcus aureus in AD patients

The impact of S. aureus colonization on AD symptoms is profound 
and multifaceted, involving the direct effects of bacterial colonization, the 
impact of toxins produced by S. aureus, and the induction of inflammatory 
responses that worsen AD symptoms (Figure  1). The abnormal 
proliferation of S. aureus in AD leads to dysbiosis of the skin microbiome, 
significantly reducing overall microbial diversity and weakening the skin 
barrier. This increases susceptibility to irritants, allergens, and pathogens 
(21), disrupts the skin immune response, and exacerbates inflammation 
(22). Recent studies reveal that early-onset barrier dysfunction triggers 
immune responses to commensal organisms, with S. aureus forming 
antimicrobial-resistant biofilms that influence keratinocyte biology and 
contribute to AD-associated inflammation (23). In addition, IL-9 is 
differentially produced by skin-tropic and extracutaneous memory T cells 
in response to various allergens like house dust mites and staphylococcal 
enterotoxin B, enabling patient stratification based on allergen 
sensitization and highlighting the key role of S. aureus in immune 
polarization in AD patients (24). Genetic mutations, such as those in the 
filaggrin gene, impair the skin barrier and create a favorable environment 
for S. aureus colonization (25). Psychological factors like stress impose 
unneglectable influences on the skin’s immune response, as stress-
induced neuropeptide mediators affect immune and skin cells, increasing 
mast cell activity and nerve interactions (26, 27). Yet, direct studies 
specifically linking stress to particular strains of S. aureus are limited. The 
altered skin microenvironment in AD, including reduced antimicrobial 
peptide production (28) and increased skin pH, further supports S. aureus 
proliferation in a pH-dependent manner (29).

S. aureus binds more efficiently to AD skin due to specific 
receptors and binding proteins like fibronectin-and fibrinogen-
binding proteins, which are upregulated in AD’s inflammatory milieu 
(30, 31). Once colonized, S. aureus exacerbates AD through the 
production of virulence factors (VF) that act as superantigens, 
inducing a disproportionate immune response and increased 
inflammation (30, 32). S. aureus also secretes enzymes like proteases 
and lipases that degrade crucial skin barrier proteins, increasing 
permeability and facilitating the entry of other allergens and pathogens 
(33, 34). Furthermore, the ability of S. aureus to form biofilms 
complicates eradication, as biofilms resist antimicrobial agents and 
host immune responses, making colonization persistent (35). These 
interactions highlight the need for targeted therapies addressing both 
the pathogen and immune dysregulation to effectively manage AD.

2.3 Strain diversity, microevolution, and 
geographical scale for Staphylococcus 
aureus diversification

The clinical implications of S. aureus in AD are significantly 
influenced by its strain diversity. Previous research has shown 
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significant differences between S. aureus strains from AD patients 
and healthy individuals (14, 36, 37), indicating that AD-associated 
strains have a selective advantage in inflamed skin. Additionally, 
studies further revealed a high degree of strain diversity of 
S. aureus within AD (7, 8), with specific strains or clonal 
complexes (CC) of S. aureus like CC1 being more frequently 
associated with AD (36, 38), highlighting the significance of 
strain diversity.

The diversity of S. aureus strains complicates the management of 
AD in several ways.

 1. Certain strains might be more pathogenic than others due to 
their secretion of strain-specific VFs. Understanding these 
strain-specific factors is crucial for developing targeted 

interventions. For instance, some strains exhibit heightened 
virulence through the production of specific toxins or enzymes 
that support cell wall anchoring and thus further disrupt the 
skin barrier or modulate the immune response more 
aggressively, leading to more severe AD flare-ups (25, 39). The 
variation in superantigens activates distinct subsets of T cell 
receptors, giving S. aureus strains unique T cell-avoidance 
capabilities, resulting in persistent infections and chronic 
inflammation (40).

 2. S. aureus strains might possess distinct unique antibiotic 
resistance (ABR) profiles, which compounds the challenge of 
targeting S. aureus, especially for severe inflammatory AD 
conditions. In the UK, researchers found a higher prevalence of 
specific S. aureus CCs in AD patients, with over 80% of these 

FIGURE 1

Schematic diagram of the multifaceted impact of microevolution on the pathogenicity of Staphylococcus aureus in AD. Normal skin is clinically intact 
with balanced diverse bacteria and physiological traits. AD skin exhibits the disrupted epidermal barrier like the flaggrin gene mutation, reduced skin 
microbiome diversity, increased water loss, and elevated pH. In affected skin areas where the altered microenvironment exerts significant selection 
pressure on certain Staphylococcus aureus strains, these strains proliferate, and heightened immune responses are triggered: Langerhans cells and 
inflammatory epidermal dendritic cells, which carry specific IgE attached to the high-affinity IgE receptor, as well as dermal dendritic cells, facilitate the 
introduction of allergens and antigens. Cytokines IL-4, IL-13, and IL-31 of the type-2 class directly stimulate sensory nerves, leading to itchiness. These 
changes make AD skin more susceptive to allergens, irritants, and pathogens. Mutation and HGT may occur in certain AD-associated strains, which 
result in increased production of VFs, and acquisition of ABR genes, and genetic variations that allow better adhesion (capD gene mutation), enhanced 
metabolic capabilities (trp operon), biofilm formation. Proposed therapeutic approaches include phage therapy, probiotics, and the integration of WGS 
and ML to develop targeted treatments. WGS, whole genome sequencing. ML, machine learning. ABR, antibiotic resistance. VF, virulence factor. HGT, 
horizontal gene transfer. DC, dendritic cell. IFN, interferon. IL, interleukin. ILC, innate lymphoid cell. Teff, effector T cell. Th, T-helper cell. TNF, tumor 
necrosis factor.
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strains carrying a plasmid with the ß-lactamase gene, conferring 
penicillin resistance—an attribute not found in the control 
group (36). Similarly, S. aureus isolates from AD showed higher 
fusidic acid resistance (41), making infections harder to treat.

 3. S. aureus may possess strain-specific functions or pathways that 
confer a selective advantage in the AD microenvironment. A 
cohort study from Japan discovered that dysfunctional 
mutations in the accessory gene regulatory (Agr) quorum-
sensing system were more common in the HE group, linking a 
functional Agr system to AD (42). An Japanese study 
discovered that only ST97A, a subclade of S. aureus detected in 
lesional AD skin, possessed the complete tryptophan (trp) 
operon, enabling bacterial survival without exogenous trp on 
AD skin, where the trp level was significantly reduced (43). A 
recent global study revealed that adaptive capsule loss via capD 
mutations, essential for S. aureus capsular polysaccharide 
synthesis, was more common in AD, enhancing adherence to 
AD skin (7). Studies also showed that S. aureus strains exhibit 
heterogeneous siderophore production within the host (44). In 
the context of AD, S. aureus strains with robust siderophore 
production can dominate the skin microbiome by outgrowing 
other bacteria with less efficient iron scavenging mechanisms. 
This competitive edge can lead to a higher relative abundance 
of S. aureus in AD patients, exacerbating the condition due to 
its pathogenic potential.

These results underscore the critical importance of strain-level 
variation in S. aureus, highlighting the need for precise and individualized 
approaches in managing AD. Furthermore, these findings emphasize the 
necessity of considering geographical scale when examining the 
diversification mechanisms of S. aureus strains. Most observed 
differences have been region-specific, suggesting these adaptations are 
spontaneous rather than indicative of a general distinction between AD 
and HE  strains. The broader question of whether these genomic 
differences and adaptations occur locally or globally remains unresolved. 
Additionally, a recent study revealed that patient co-factors such as age, 
sex, and race also significantly impact the variation (5). This raises 
relevant questions: to what extent do health status, geographical location/
scale, and patient co-factors influence S. aureus diversification? Which 
factors are more critical? Furthermore, given the frequent interactions 
between humans, livestock, and pets, could these animals serve as 
hotspots for microevolutionary changes? These questions underscore the 
complex interplay of factors affecting S. aureus diversification.

2.4 Role of prophages in Staphylococcus 
aureus adaptability and pathogenicity

Overall, around 15–20% of S. aureus genome is characterized by 
the presence of numerous mobile genetic elements such as plasmids, 
transposons, and bacteriophages (45). This genomic plasticity could 
be  a key driver of its pathogenic potential. These MGEs facilitate 
genetic exchanges, conferring new metabolic capabilities and enabling 
the rapid acquisition of genes encoding ABRs and VFs. Such genomic 
adaptability allows S. aureus to swiftly respond to environmental 
selective pressures, making it a formidable pathogen.

Bacteriophages, known for their host specificity and diverse 
functional gene repertoire (46), significantly influence bacterial 

evolution. Embedded within the bacterial genome, prophages are 
bacteriophage DNA that can be  lytic or lysogenic. In particular, 
lysogenic prophages, dormant within the host genome, could 
introduce new genes, enhance bacterial metabolic capabilities, and 
potentially increase pathogenicity, leading to important clinical 
implications (47). Research indicates that the primary mechanism of 
horizontal gene transfer in S. aureus is bacteriophage-mediated 
transduction (48). Therefore, prophages play a pivotal role in the 
diversification and pathogenicity of S. aureus, significantly 
influencing its genetic diversity, virulence, and ABR (57). For 
example, prophages in S. aureus sequence type 398 carry a set of 
genes encoding VFs, including a tyrosine recombinase linked to 
biofilm-associated staphylococcal infections, an ATP-dependent Clp 
protease, and an autolysin Atl involved in mediating adhesion to host 
tissue (49). Despite advances in understanding S. aureus genetic 
diversity, the extent to which prophages contribute to this genetic 
diversity and their link to AD severity remains underexplored. 
Therefore, profiling the prophages in S. aureus strains is crucial for 
understanding the relationship between genomic composition, 
phage-driven adaptation, and resultant phenotypic outcomes of 
S. aureus strains.

2.5 Future directions in research and 
treatment

AD is a prevalent and complex condition posing a significant 
global public health challenge. The diverse strains of S. aureus in AD, 
varying in virulence, ABR, and metabolic potential, call for advanced 
research methodologies and innovative treatment strategies.

Traditional treatments for AD, such as systemic 
glucocorticosteroids and ciclosporin, remain effective for more severe 
cases. In addition, therapies like topical or systemic antibiotics, topical 
corticosteroids, calcineurin inhibitors, and supportive options like 
bleach baths or antiseptics washes are often recommended. However, 
frequent use of antiseptics can disrupt the balance of the skin’s 
microbial community, thus should be limited to specific cases and 
combined with strategies aimed at restoring and maintaining a healthy 
skin microbiome. Meanwhile, new therapies have been introduced, 
including biologics like dupilumab and tralokinumab, along with 
Janus kinase inhibitors such as abrocitinib, baricitinib, and 
upadacitinib, which offer targeted immunomodulatory effects (50). 
Addressing psychological stress through behavioral therapy and 
psychopharmacologic agents (e.g., anxiolytics) could be  an 
additional measure.

Whole-genome sequencing (WGS) and machine learning (ML) 
technologies offer unprecedented opportunities to decipher the 
subtle differences between S. aureus strains from AD and HE (51, 
52). WGS has revolutionized our understanding of the genetic 
diversity of S. aureus, allowing for the detailed characterization of 
strain-specific markers and the identification of VF and ABR genes 
(53). When coupled with ML algorithms, WGS data can be analyzed 
to predict strain pathogenicity, ABR profiles, and potential VFs with 
high accuracy. This integrative approach facilitates the identification 
of novel biomarkers for S. aureus strains that are specifically 
associated with AD severity, enabling the development of more 
advanced diagnostic tools and personalized treatment approaches. 
Additionally, high-throughput isolation techniques are needed, as 
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current molecular data may lack the necessary resolution for strain-
level analyses. Moreover, creating and studying mutants can offer 
valuable insights into gene functions by allowing researchers to 
observe the effects of specific gene deletions or modifications, 
which can uncover potential targets for therapeutic intervention. 
To gain a systematic perspective, a global approach to characterizing 
strain variation and S. aureus’s role in AD across different 
populations and regions can provide valuable insights. Furthermore, 
alternative therapies like phage therapy and probiotics show 
promise in restoring skin microbiome balance (54–56) and reducing 
the risk of dysbiosis associated with broad-spectrum antibiotics. By 
employing these advanced methods, we can potentially uncover 
new therapeutic targets or diagnostic markers, facilitating 
personalized treatment approaches and the development of 
targeted therapies.

3 Conclusion

In conclusion, this review underscores the critical role of S. aureus 
strain diversity and microevolution in the pathogenesis of AD. The 
variation in specific functional genes among S. aureus strains enables 
these bacteria to adapt to the unique microenvironment of 
AD-affected skin, contributing to their increased pathogenic potential. 
Additionally, the presence of MGEs, especially prophages, further 
drives the genetic variability and virulence of these strains, 
complicating the clinical management of AD. The review highlights 
the necessity of incorporating advanced genomic tools, such as WGS 
and ML, to better understand the complex interactions between 
S. aureus and the host, ultimately leading to more precise diagnostics 
and personalized treatment strategies. Addressing these strain-specific 
factors is essential for developing effective therapies that target the 
root causes of S. aureus pathogenicity in AD, potentially improving 
patient outcomes and reducing disease burden.
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