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Introduction: Large Language Models (LLMs) are sophisticated algorithms 
that analyze and generate vast amounts of textual data, mimicking human 
communication. Notable LLMs include GPT-4o by Open AI, Claude 3.5 Sonnet 
by Anthropic, and Gemini by Google. This scoping review aims to synthesize 
the current applications and potential uses of LLMs in patient education and 
engagement.

Materials and methods: Following the PRISMA-ScR checklist and methodologies 
by Arksey, O’Malley, and Levac, we conducted a scoping review. We searched 
PubMed in June 2024, using keywords and MeSH terms related to LLMs 
and patient education. Two authors conducted the initial screening, and 
discrepancies were resolved by consensus. We employed thematic analysis to 
address our primary research question.

Results: The review identified 201 studies, predominantly from the United States 
(58.2%). Six themes emerged: generating patient education materials, 
interpreting medical information, providing lifestyle recommendations, 
supporting customized medication use, offering perioperative care 
instructions, and optimizing doctor-patient interaction. LLMs were found to 
provide accurate responses to patient queries, enhance existing educational 
materials, and translate medical information into patient-friendly language. 
However, challenges such as readability, accuracy, and potential biases were 
noted.

Discussion: LLMs demonstrate significant potential in patient education 
and engagement by creating accessible educational materials, interpreting 
complex medical information, and enhancing communication between 
patients and healthcare providers. Nonetheless, issues related to the 
accuracy and readability of LLM-generated content, as well as ethical 
concerns, require further research and development. Future studies should 
focus on improving LLMs and ensuring content reliability while addressing 
ethical considerations.
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1 Introduction

Large Language Models (LLMs) are sophisticated algorithms 
that analyze and generate extensive textual data (1). These models 
leverage vast corpora of unlabeled text and incorporate 
reinforcement learning from human feedback to discern syntactical 
patterns and contextual nuances within languages. Consequently, 
LLMs can produce responses that closely mimic human 
communication when presented with diverse, open-ended queries 
(2–4). Several notable LLMs have emerged recently, including 
GPT-4o by Open AI (5), Claude 3.5 Sonnet by Anthropic (6), and 
Gemini by Google (7).

LLMs have demonstrated significant potential in medicine, 
with transformative applications across various domains, 
including clinical settings. These AI-powered systems can 
streamline clinical workflows, help with clinical decision-making, 
and ultimately improve patient outcomes. Recent studies highlight 
the utility of LLMs in clinical decision support, providing valuable 
insights that enable healthcare teams to make more informed 
treatment decisions (8–10). LLMs also show promise as 
educational tools by enhancing the quality and accessibility of 
materials. However, from a patient’s perspective, they present both 
opportunities and risks. The varying levels of medical knowledge 
among patients may impede their ability to critically assess the 
information provided by LLMs, unlike clinicians who are trained 
to do so.

As of July 2024, there was limited synthesis of knowledge 
regarding the evidence base, applications, and evaluation 
methods of LLMs in patient education and engagement. This 
scoping review aims to address this gap by mapping the available 
literature on potential applications of LLMs in patient education 
and identifying future research directions. Our primary research 
question is: “What are the current and potential uses of LLMs in 
patient education and engagement as described in the literature?” 
This review seeks to enhance future discussions on using LLMs 
for patient care, including education, engagement, workload 
reduction, patient-centered health customization, 
and communication.

2 Materials and methods

This study employed a scoping review methodology, adhering to 
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses Extension for Scoping Reviews (PRISMA-ScR) checklist 
(11). The review process was based on the methodological framework 
developed by Arksey and O’Malley (12), with further refinements as 
proposed by Levac et al. (13).

2.1 Literature search

A literature search was conducted in June 2024 using the 
PubMed database. The search strategy, detailed in 
Supplementary Methods S1, combined relevant keywords and 
Medical Subject Headings (MeSH) terms related to LLMs and 
patient education.

2.2 Study selection

Citation management was facilitated by Covidence software 
(Veritas Health Innovation). The inclusion criteria encompassed 
studies addressing the use, accuracy, relevance, or effectiveness of 
LLMs in patient education, patient engagement, answering 
patient-specific questions, or generating patient education 
materials. Studies were excluded if they did not primarily focus 
on LLMs for patient education, engagement, or answering patient 
questions; did not assess LLMs in healthcare settings or had only 
indirect relations to patients; or focused solely on technical 
aspects or architecture of LLMs without considering their 
application in patient education or engagement. A detailed 
description of the inclusion and exclusion criteria is provided in 
Supplementary Methods S2.

The selection process involved two stages. In the initial 
screening, two authors (SA and VV) independently reviewed the 
titles and abstracts of retrieved articles. Studies passing the initial 
screening were then read in full by both authors. Studies deemed 
eligible by both reviewers were included in the analysis. In cases 
of disagreement, a third author (MK) was consulted to 
resolve discrepancies.

2.3 Thematic analysis

We employed thematic analysis, following the methodology 
proposed by Braun and Clarke (14), to address our primary 
research question. The process began with an author (SA) reading 
and coding 25 randomly selected articles, focusing on content 
related to the potential uses of LLMs in patient education and 
engagement. Subsequently, two authors (SA and MK) examined the 
remaining manuscripts, seeking additional themes or data that 
could either reinforce or challenge the established themes. This 
iterative process facilitated further refinement of the themes 
through group discussions centered on patient education 
and engagement.

3 Results

3.1 Literature search

The initial search strategy yielded 661 papers. After removing one 
duplicate, 660 papers remained for screening. Based on title and 
abstract screening, 365 papers (55.3%) were excluded. Full-text review 
was conducted for 295 papers (44.7% of the initial pool), resulting in 
201 papers (30% of the initial pool) meeting the study inclusion 
criteria (Supplementary Figure S1). Supplementary Data S1 presents 
all of the included papers.

3.2 Descriptive analysis

The geographical distribution of the studies revealed a 
predominance from the United  States, accounting for 58.2% 
(117/201) of the articles. Turkey and China followed, each 
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contributing 6.4% (13/201) of the articles (Figure 1A). The studies 
spanned 35 medical specialties, with general medicine representing 
the largest proportion at 12.9% (26/201), closely followed by 
orthopedic surgery at 12.4% (25/201), and otolaryngology at 9.4% 
(19/201) (Figure 1B).

3.3 Thematic analysis

Our analysis identified six main themes with associated 
subthemes regarding the use of LLMs in patient education 
and engagement:

FIGURE 1

(A) Geographical distribution of studies on large language models (LLMs) in patient education. (B) Specialty distribution of studies on large language 
models (LLMs) in patient education.

https://doi.org/10.3389/fmed.2024.1477898
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Aydin et al. 10.3389/fmed.2024.1477898

Frontiers in Medicine 04 frontiersin.org

 1 Generating Patient Education Materials
 a Answering Patient Questions
 b Enhancing Existing Patient Education Materials
 c Translation of Patient Education Materials

 2 Interpreting Medical Information from a Patient Perspective
 3 Providing Lifestyle Recommendations and Improving 

Health Literacy
 4 Customized Medication Use and Self-Decision
 5 Providing Pre-, Peri-, and Post-Operative Care Instructions
 6 Optimizing Doctor-Patient Interaction

 a Facilitating Understanding of Consent Forms
 b Enhancing Communication Establishment

Table  1 presents these six themes as represented across the 
analyzed articles, along with illustrative quotes. Supplementary Data S2 
indicates the theme to which each paper belongs.

The theme “Generating Patient Education Materials” was 
predominant, encompassing 80.5% (162/201) of the articles across 
its three subthemes. Within this theme, “Answering Patient 
Questions” was the most prevalent subtheme, representing 71.6% 
(144/201) of all articles. The remaining themes were distributed as 
follows: “Interpreting Medical Information from a Patient 
Perspective” and “Providing Lifestyle Recommendations and 
Improving Health Literacy” each accounted for 4.5% (9/201) of the 
articles. “Providing Pre-, Peri-, and Post-Operative Care 
Instructions” was represented in 6.9% (14/201) of the articles, while 
“Optimizing Doctor-Patient Interaction” appeared in 2.5% (5/201) 
of the articles. The least represented theme was “Customized 
Medication Use and Self-Decision,” accounting for 1% (2/201) of 
the articles.

3.3.1 Theme 1: generating patient education 
materials

The generation of patient education materials emerged as a 
prominent theme, with three key subthemes: answering patient 
questions, enhancing existing materials, and translating medical 
content. Answering patient questions was the most significant 
subtheme, representing 71.6% of the articles (8, 15–157). In these 
studies, LLMs created educational content by responding to common 
questions, direct patient inquiries, and expert-formulated queries, 
demonstrating their potential to address diverse patient 
information needs.

Most studies found LLMs provided accurate responses to patient 
queries. Almagazzachi et al. reported 92.5% accuracy for ChatGPT’s 
answers to hypertension questions (18). However, accuracy varied by 
specialty. In a study on pediatric in-toeing, Amaral et al. found 46% 
of responses were excellent, and 44% were satisfactory with minimal 
clarification needed (19). These findings suggest LLMs’ potential in 
patient education, while highlighting performance differences across 
medical fields.

The readability of LLM-generated content varied considerably 
across studies. ChatGPT’s responses often required a higher reading 
level, potentially limiting accessibility for some patients. Campbell 
et  al. demonstrated that ChatGPT’s unprompted answers on 
obstructive sleep apnea had a mean Flesch–Kincaid grade level of 
14.15, which decreased to 12.45 when prompted (32). This indicates 
that even with specific instructions, the content remained at a college 

reading level. In contrast, other LLMs showed better readability in 
some cases. Chervonski et al. reported that Google BARD produced 
more accessible content, with responses on vascular surgery diseases 
achieving a mean Flesch Reading Ease score of 58.9, indicating 
improved readability (40). When compared to traditional search 
engines, LLMs revealed a trade-off between comprehensiveness and 
readability. Cohen et al. found that while ChatGPT provided more 
detailed and higher-quality responses to cataract surgery FAQs 
compared to Google, these responses were at a higher reading level 
(42). These findings suggest that while LLMs may offer more 
comprehensive information, they do not always improve accessibility 
for the average patient.

LLMs show promise in transforming existing materials into more 
readable, patient-centered formats (158–174). Numerous studies 
demonstrate their ability to enhance readability across various medical 
education materials (158–161, 163–165, 168, 170–172, 174). Fanning 
et  al. found comparable performance between ChatGPT-3.5 and 
ChatGPT-4 in improving plastic surgery material readability (166). 
Moons et al. reported Google BARD surpassed GPT in readability 
improvement but tended to omit information (169). Some studies, 
however, found no improvement or decreased readability (162, 167), 
indicating variability in LLM effectiveness. Interestingly, Sudharshan 
et al. noted LLMs were more accurate in creating readable Spanish 
materials (173), suggesting potential for addressing language-
specific challenges.

Research on LLMs for translating patient education materials 
remains limited. However, a significant study by Grimm et al. showed 
ChatGPT-4’s ability to produce accurate, understandable, and 
actionable translations of otorhinolaryngology content in English, 
Spanish, and Mandarin (175). This finding suggests LLMs’ potential 
in overcoming language barriers in patient education.

3.3.2 Theme 2: interpreting medical information 
from a patient perspective

Nine studies investigated LLMs’ capacity to interpret complex 
medical information, evaluating their feasibility, accuracy, readability, 
and effectiveness in translating medical jargon. He  et al. found 
ChatGPT-4 outperformed other LLMs and human responses from 
Q&A websites in accuracy, helpfulness, relevance, and safety when 
answering laboratory test result questions (176). However, Meyer et al. 
reported that ChatGPT, Gemini, and Le Chat were less accurate and 
more generalized than certified physicians in interpreting laboratory 
results (177), highlighting the variability in LLM performance across 
different contexts.

LLMs demonstrate potential in improving radiological 
information interpretation and communication. Kuckelman et  al. 
found ChatGPT-4 produced generally accurate summaries of 
musculoskeletal radiology reports, noting some variability in human 
interpretation (82). Lyu et al. showed ChatGPT-4 enhanced translated 
radiology report quality and accessibility, despite occasional 
oversimplifications (178). Sarangi et  al. reported ChatGPT-3.5 
effectively simplified radiological reports while maintaining essential 
diagnostic information, though performance varied across conditions 
and imaging modalities (179). Several other studies support these 
findings, suggesting LLMs’ promising role in radiology 
communication (180–182).

Zaretsky et al. evaluated ChatGPT-4’s ability to convert discharge 
summaries into patient-friendly formats. The transformed summaries 
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TABLE 1 Representative quotes illustrating key themes identified in studies on the use of large language models (LLMs) in patient education.

Theme Representative quotes

 1. Generating Patient 

Education Materials

 a. Answering 

Patient Questions

 b. Enhancing Existing 

Patient 

Education Materials

 c. Translation of Patient 

Education Materials

New Frontiers in Health Literacy: Using ChatGPT to Simplify Health Information for People in the Community [Ayre et al. (159)]

Ayre et al. evaluated ChatGPT-3.5’s ability to simplify health information for individuals with low literacy. The study found that ChatGPT effectively reduced text complexity by lowering the reading level, using simpler 

language, and decreasing passive voice usage. It retained about 80% of key messages, with more complex texts seeing greater improvements. However, most simplified texts still did not meet recommended health literacy 

targets. The researchers concluded that ChatGPT could provide a useful “first draft” of plain language health information, which could then be refined through human review.

Enhancing Readability of Online Patient-Facing Content: The Role of AI Chatbots in Improving Cancer Information Accessibility [Abreu et al. (158)]

Abreu et al. assessed ChatGPT-4’s effectiveness in improving the readability of cancer-related content from NCCN Member Institutions. The AI-generated outputs significantly reduced the reading level from university 

freshman to high school freshman level. This improvement in accessibility did not compromise content accuracy or quality. The simplified text featured shorter sentences and simpler words, earning a “good” quality rating on 

the DISCERN instrument. This study demonstrates AI’s potential to make complex medical information more accessible to patients.

Leveraging large language models for generating responses to patient messages – a subjective analysis [Liu et al. (94)]

Liu et al. compared fine-tuned LLaMA-based models (CLAIR-Short and CLAIR-Long) with ChatGPT in generating responses to patient messages. CLAIR-Long, fine-tuned with a mix of local patient messages and open-

source data, performed comparably to ChatGPT-4 in empathy, responsiveness, and accuracy. CLAIR-Short, fine-tuned only with local data, produced concise responses similar to healthcare providers but less detailed. While 

ChatGPT-4 generally ranked highest, the study showed that fine-tuned models, especially CLAIR-Long, could be effective for patient education and empathetic communication.

Assessing the Accuracy and Reliability of AI-Generated Responses to Patient Questions Regarding Spine Surgery [Kasthuri et al. (76)]

Kasthuri et al. evaluated the GPT-4-enhanced Bing search engine’s responses to common spine surgery questions. Spine surgeons found the responses generally accurate and complete, with re-querying improving initially inaccurate 

answers. The study highlighted GPT-4-based models’ ability to provide useful summaries from web sources, but noted concerns about response quality variability. Most information came from commercial websites, with no significant 

correlation between response accuracy and source type. This research underscores the need for ongoing evaluation and refinement of LLMs for clinical use.

Easing the Burden on Caregivers-Applications of Artificial Intelligence for Physicians and Caregivers of Children with Cleft Lip and Palate [Chaker et al. (199)]

Chaker et al. tested ChatGPT-3.5’s ability to assist caregivers of children with cleft lip and palate. The AI achieved a 69% accuracy rate compared to senior pediatric plastic surgeons when answering common postoperative 

questions. While information-related errors were the AI’s main weakness, the study emphasized AI’s potential to ease caregiver burden by generating educational materials and offering perioperative support. This research 

highlights both the promise and current limitations of AI in specialized medical fields.

The utility of ChatGPT as a generative medical translator [Grimm et al. (175)]

Grimm et al. explored GPT-4’s utility in translating otolaryngology-related medical content into English, Spanish, and Mandarin. Using the Patient Education Materials Assessment Tool (PEMAT), they found that GPT-4 

produced translations with comparable accuracy, understandability, and actionability across all three languages. This study suggests that LLMs like GPT-4 could play a valuable role in bridging language barriers in healthcare, 

potentially improving access to medical information for diverse patient populations.

 2. Interpreting Medical 

Information from a 

Patient Perspective

Quality of Answers of Generative Large Language Models Versus Peer Users for Interpreting Laboratory Test Results for Lay Patients: Evaluation Study [He et al. (176)]

He et al. conducted a comprehensive evaluation of several LLMs in interpreting laboratory test results for lay patients. The study compared GPT-4, GPT-3.5, LLaMA 2, MedAlpaca, and ORCA_mini across multiple metrics 

including accuracy, relevance, helpfulness, and safety. GPT-4 emerged as the top performer in all categories, followed closely by GPT-3.5. LLaMA 2, while providing detailed explanations, ranked third. MedAlpaca and 

ORCA_mini were less effective, with MedAlpaca showing the poorest performance. This study highlights the current superiority of GPT-4 and GPT-3.5 in translating complex medical information for patient understanding, 

suggesting their potential utility in healthcare communication.

Translating musculoskeletal radiology reports into patient-friendly summaries using ChatGPT-4 [Kuckelman et al. (82)]

Kuckelman et al. explored GPT-4’s capability in simplifying musculoskeletal radiology reports for patients. The AI successfully generated summaries that were both readable and concise, with independent readers generally 

rating them as accurate and complete. GPT-4 demonstrated proficiency in simplifying medical jargon, making reports more accessible to patients. While there was some variation in accuracy and completeness ratings among 

readers, indicating a degree of subjectivity, the overall results were positive. The study suggests that GPT-4 could be a valuable tool in enhancing patient comprehension of radiology results, potentially reducing the immediate 

need for physician explanation.

Generative Artificial Intelligence to Transform Inpatient Discharge Summaries to Patient-Friendly Language and Format [Zaretsky et al. (183)]

Zaretsky et al. investigated GPT-4’s ability to transform complex inpatient discharge summaries into more patient-friendly formats. The AI-transformed summaries showed marked improvements in readability, with the 

Flesch–Kincaid Grade Level decreasing from 11.0 to 6.2. Understandability scores, measured by PEMAT, increased significantly from 13 to 81%. However, the study revealed mixed results in terms of accuracy and 

completeness. While 54% of reviews gave the highest accuracy rating, 18% identified safety concerns due to omissions or incorrect information (hallucinations). These findings indicate that while GPT-4 can greatly enhance 

the accessibility of discharge information, further refinement is necessary to ensure consistent accuracy and safety for practical use in healthcare settings.

(Continued)
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TABLE 1 (Continued)

Theme Representative quotes

 3. Providing Lifestyle 

Recommendations 

and Improving 

Health Literacy

Examining the role of ChatGPT in promoting health behaviors and lifestyle changes among cancer patients [Alanezi et al. (184)]

Alanezi et al. explored ChatGPT-3.5’s potential in promoting health behavior changes among cancer patients. The study found that the AI significantly improved health literacy, enhanced self-management practices, and 

provided valuable emotional and motivational support. Patients appreciated the AI’s ability to address their concerns, offer personalized suggestions, and connect them with relevant resources. However, the research also 

identified challenges, including privacy concerns, limitations in deep personalization, and occasional reliability issues. Despite these drawbacks, ChatGPT-3.5 proved effective in facilitating positive health behaviors and 

lifestyle changes, particularly in helping patients better understand and manage their conditions.

Assessing the Accuracy of Generative Conversational Artificial Intelligence in Debunking Sleep Health Myths: Mixed Methods Comparative Study With Expert Analysis [Bragazzi et al. (185)]

Bragazzi et al. assessed GPT-4’s accuracy in debunking common sleep-related myths. The AI correctly identified 85% of the presented myths as either “false” or “generally false,” demonstrating a sensitivity of 85% and a 

positive predictive value of 100%. GPT-4’s performance in identifying false statements was comparable to that of sleep experts, with high interrater agreement (ICC = 0.83). However, the AI sometimes struggled with nuanced 

scenarios, particularly myths containing partial truths or complex scientific concepts. The study concluded that while GPT-4 is a reliable tool for addressing sleep-related misinformation, it should not replace expert opinion 

in more nuanced areas.

Is ChatGPT an Effective Tool for Providing Dietary Advice? [Ponzo et al. (190)]

Ponzo et al. evaluated ChatGPT-3.5’s ability to provide accurate and appropriate dietary advice for various non-communicable diseases (NCDs). The AI’s advice was generally appropriate, with correctness rates ranging from 

55.5% for sarcopenia to 73.3% for non-alcoholic fatty liver disease (NAFLD). However, the study revealed limitations in complex scenarios involving multiple overlapping conditions, where ChatGPT-3.5 sometimes provided 

contradictory or inappropriate recommendations. The researchers concluded that while ChatGPT-3.5 shows promise as a supplementary tool for dietary advice, it cannot yet replace personalized guidance from healthcare 

professionals, especially in managing complex cases.

 4. Customized 

Medication Use and 

Self-Decision

Snakebite Advice and Counseling From Artificial Intelligence: An Acute Venomous Snakebite Consultation With ChatGPT [Altamimi et al. (192)]

Altamimi et al. evaluated ChatGPT-3.5’s performance in providing information for managing venomous snakebites. The AI offered clear, evidence-based advice on initial first aid, the importance of seeking urgent medical 

attention, potential symptoms, and the role of antivenom. However, the study identified several limitations in the AI’s capabilities. These included a lack of personalization, outdated information, and an inability to account for 

regional variations in snake species and venom characteristics. While ChatGPT-3.5 proved effective in delivering general advice and preliminary guidance, the researchers emphasized that it should not replace professional 

medical consultations, especially in critical situations like snakebites. The study concluded by recommending future developments focus on addressing these limitations to enhance the AI’s utility in such scenarios.

Automating untruths: ChatGPT, self-managed medication abortion, and the threat of misinformation in a post-Roe world [McMahon et al. (193)]

McMahon et al. investigated the accuracy of ChatGPT-3.5’s responses regarding self-managed medication abortion (SMMA). The study revealed a concerning discrepancy in the AI’s information provision. While 

ChatGPT-3.5 correctly described clinician-managed medication abortion as safe and effective, it inaccurately portrayed SMMA as significantly more dangerous, exaggerating the risks of complications. This misrepresentation 

contradicts substantial evidence supporting SMMA’s safety and effectiveness. The researchers highlighted the potential dangers of such misinformation, noting it could increase stigma and deter individuals from seeking safe 

abortion methods, thereby posing a threat to public health. These findings emphasize the critical need for improving AI models to ensure they provide accurate and reliable health information, particularly on sensitive topics 

with significant public health implications.

(Continued)
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TABLE 1 (Continued)

Theme Representative quotes

 5. Providing Pre-, Peri-, 

and Post-Operative 

Care Instructions

Enhancing Postoperative Cochlear Implant Care With ChatGPT-4: A Study on Artificial Intelligence (AI)-Assisted Patient Education and Support [Aliyeva et al. (194)]

Aliyeva et al. evaluated ChatGPT-4’s effectiveness in providing postoperative care information for cochlear implant patients. The AI demonstrated high accuracy, clarity, and relevance in answering common postoperative 

questions. Its responses aligned well with current medical guidelines, ensuring patients received accurate and comprehensible information. The study found ChatGPT-4 to be a valuable supplementary resource, especially 

when access to healthcare professionals is limited. While emphasizing that ChatGPT-4 cannot replace professional medical advice, the researchers noted its potential to support patient education and reduce anxiety by 

providing timely information in resource-constrained settings.

Evaluation of large language model responses to Mohs surgery preoperative questions [Breneman et al. (206)]

Breneman et al. compared the performance of three large language models (ChatGPT-3.5, Google Bard, and Microsoft CoPilot) in answering preoperative questions about Mohs surgery. ChatGPT-3.5 outperformed the other 

models in accuracy (80%) and completeness (100%) of responses. However, its higher reading level (12.7) potentially made the information less accessible to some patients. Google Bard and Microsoft CoPilot, while less 

accurate and complete, provided more readable responses. The study highlighted the potential of LLMs like ChatGPT-3.5 in offering valuable preoperative information but cautioned about possible inaccuracies or irrelevant 

details, emphasizing the need for careful implementation in patient education.

Feasibility of GPT-3 and GPT-4 for in-Depth Patient Education Prior to Interventional Radiological Procedures: A Comparative Analysis [Scheschenja et al. (195)]

Scheschenja et al. conducted a comparative analysis of GPT-3 and GPT-4 in providing patient education for interventional radiology procedures. GPT-4 showed superior performance, with 35.3% of its responses rated as 

“completely correct” compared to GPT-3’s 30.8%. GPT-4 also had fewer “mostly incorrect” responses (2.3% vs. GPT-3’s 5.3%). Despite these differences, both models were considered safe and effective for patient education, 

with GPT-4 having a slight edge. The researchers concluded that while these AI tools can enhance patient understanding of complex procedures, they should be used cautiously due to the potential for inaccuracies or 

incomplete information.

 6. Optimizing Doctor-

Patient Interaction

 a. Facilitating 

Understanding of 

Consent Forms

 b. Enhancing 

Communication 

Establishment

Bridging the literacy gap for surgical consents: an AI-human expert collaborative approach [Ali et al. (208)]

Ali et al. investigated the use of GPT-4 to simplify surgical consent forms, aiming to make them more accessible to patients with varying health literacy levels. The study found that GPT-4 significantly improved the readability 

of consent forms from 15 academic medical centers, reducing the average reading level from college freshman to 8th-grade level. Moreover, GPT-4 generated procedure-specific consent forms that maintained medical and 

legal sufficiency, scoring perfectly on a validated rubric and passing expert review without changes. This research demonstrates the potential of AI-human collaboration in enhancing the clarity and comprehensibility of 

consent forms, ensuring patients receive clear, detailed information about their surgical procedures.

Generating Informed Consent Documents Related to Blepharoplasty Using ChatGPT [Shiraishi et al. (209)]

Shiraishi et al. evaluated ChatGPT’s performance in generating informed consent (IC) documents for blepharoplasty. While the study showed promise for LLMs in enhancing patient communication, it also highlighted areas 

needing improvement. Board-certified plastic surgeons rated AI-generated documents lower than original IC documents in accuracy, informativeness, and accessibility. Even after revisions, the AI-generated documents still 

scored lower in accuracy and accessibility. Interestingly, nonmedical staff found no significant difference between AI-generated and original documents. The study concluded that while ChatGPT has potential, it currently 

cannot replace human-generated IC documents due to issues with professional terminology and content accuracy, emphasizing the need for further refinement.

Putting ChatGPT’s Medical Advice to the (Turing) Test: Survey Study [Nov et al. (110)]

Nov et al. assessed laypeople’s ability to distinguish between medical advice from ChatGPT-3.5 and human healthcare providers. Participants could only weakly differentiate between the sources, correctly identifying them 

about 65% of the time. Trust in ChatGPT-3.5’s responses decreased with increasing medical complexity of the questions, with higher trust in logistical responses and lower trust in diagnostic and treatment-related responses. 

The study concluded that while ChatGPT-3.5 can provide credible advice for low-risk queries, it may not be reliable for more complex health issues, suggesting the need for further research to optimize its use in patient-

provider communications.

Can Large Language Models Generate Outpatient Clinic Letters at First Consultation That Incorporate Complication Profiles From UK and USA Aesthetic Plastic Surgery Associations? [Roberts et al. (211)]

Roberts et al. compared ChatGPT-4, ChatGPT-3.5, and Google Bard in generating outpatient clinic letters incorporating complication profiles from aesthetic plastic surgery associations. ChatGPT-4 showed the highest 

overall compliance, scoring 0.92 for BAAPS and 0.99 for ASPS compliance. However, its performance dropped to 0.52 for ASPS gold-standard profiles, indicating challenges with paywalled content. ChatGPT-3.5 and Google 

Bard demonstrated lower compliance overall. This study highlights the potential of advanced LLMs in generating compliant medical documentation, while also revealing limitations in accessing and integrating specialized, 

restricted information.
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showed significant improvements in readability and understandability. 
However, the study raised concerns about accuracy and completeness, 
noting instances of omissions and hallucinations (183).

3.3.3 Theme 3: providing lifestyle 
recommendations and improving health literacy

Nine studies explored LLMs’ potential in offering lifestyle 
recommendations and enhancing health literacy. Alanezi et al. found 
ChatGPT effective in promoting health behavior changes among 
cancer patients, boosting health literacy and self-management (184). 
Bragazzi et al. showed ChatGPT’s capability to debunk sleep-related 
myths and provide accessible advice (185). In a follow-up study, they 
found Google BARD slightly outperformed ChatGPT-4 in identifying 
false statements and offering practical sleep-related advice (186). 
These findings suggest LLMs’ promising role in health education and 
lifestyle guidance.

Gray et al. demonstrated ChatGPT’s ability to generate realistic 
prenatal counseling dialogues (187). Minutolo et  al. proposed a 
conversational agent to enhance health literacy by making Patient 
Information Leaflets queryable (188). Mondal et al. found ChatGPT 
provided reasonably accurate responses to lifestyle-related disease 
queries (189). Ponzo et al. reported ChatGPT offered general dietary 
guidance for NCDs but struggled with complex, multi-condition cases 
(190). Willms et al. explored ChatGPT’s potential in creating physical 
activity app content, emphasizing the need for expert review (1). 
Zaleski et al. found AI-generated exercise recommendations generally 
accurate but lacking comprehensiveness and at a college reading level 
(191). These studies highlight LLMs’ diverse applications in health 
education while noting their limitations.

3.3.4 Theme 4: customized medication use and 
self-decision

Two studies explored LLMs’ potential in medication guidance and 
self-decision support. Altamimi et  al. found ChatGPT provided 
accurate advice on acute venomous snakebite management, while 
emphasizing the importance of professional care (192). In contrast, 
McMahon et al. observed ChatGPT accurately described clinician-
managed abortion as safe but incorrectly portrayed self-managed 
abortion as dangerous, highlighting potential misinformation risks 
(193). These findings underscore both the promise and pitfalls of 
using LLMs for sensitive medical information.

3.3.5 Theme 5: providing pre-/peri-/
post-operative care instructions

Studies investigated LLMs’ use in surgical patient education. 
Aliyeva et al. found ChatGPT-4 excelled in providing postoperative 
care instructions for cochlear implant patients, especially in remote 
settings (194). LLMs showed proficiency in offering postoperative 
guidance across various surgical specialties (180, 195–202). Dhar et al. 
noted ChatGPT’s accuracy in answering tonsillectomy questions, with 
some pain management inaccuracies (203). Patil et  al. reported 
ChatGPT provided quality preoperative information for ophthalmic 
surgeries, though occasionally overlooking adverse events (204). 
Meyer et al. found ChatGPT reliable for postoperative gynecological 
surgery instructions (205). Breneman et al. and Kienzle et al. evaluated 
ChatGPT for preoperative counseling in Mohs surgery and knee 
arthroplasty, finding it potentially useful but cautioning about 
non-existing references (206, 207).

3.3.6 Theme 6: optimizing doctor-patient 
interaction

This theme explores LLMs’ potential to enhance doctor-patient 
communication, particularly in simplifying consent forms and 
improving general medical communication. Ali et  al. found 
ChatGPT-4 successfully simplified surgical consent forms to an 
8th-grade reading level while maintaining accuracy (208). Shiraishi 
et  al. reported that revised ChatGPT-prepared informed consent 
documents for blepharoplasty were more desirable than 
originals (209).

LLMs also showed promise in broader doctor-patient 
communication. An et al. introduced an LLM-based education model 
that improved patients’ understanding of their conditions and 
treatments (210). Roberts et al. demonstrated LLMs could generate 
comprehensible outpatient clinic letters for cosmetic surgery, 
potentially saving clinicians’ time (211). Xue et al. found ChatGPT 
performed well in logical reasoning and medical knowledge education 
during remote orthopedic consultations (212). These studies highlight 
LLMs’ potential to enhance various aspects of medical communication.

4 Discussion

This scoping review synthesizes current applications and potential 
uses of LLMs in patient education and engagement, offering insights 
into their transformative potential and integration challenges in 
healthcare settings. LLMs demonstrate significant promise in creating 
patient education materials, with studies reporting that health-related 
questions were accurately answered over 90% of the time by systems 
like ChatGPT, covering a broad range of topics from hypertension to 
pediatric conditions (18, 31). The depth of these responses potentially 
offers substantial value to patients seeking detailed understanding of 
their ailments. However, readability remains a notable concern, 
potentially limiting accessibility for some patient populations.

LLMs have demonstrated competence in interpreting complex 
medical information from laboratory reports, radiology results, and 
discharge summaries. ChatGPT-4, for instance, generated informative 
summaries of radiology reports, making them more accessible to 
non-medical professionals (82, 178). However, concerns about the 
quality and comprehensiveness of LLM-generated information persist. 
Issues such as hallucinations, omissions, or plausible but incorrect 
information have been noted. Zaretsky et  al. observed that while 
ChatGPT-4 could transform discharge summaries into more patient-
friendly formats, occasional inaccuracies, and omissions could 
potentially mislead patients (183). These findings underscore the 
necessity for professional oversight in deploying LLMs in healthcare 
settings to ensure the reliability and accuracy of AI-generated content.

LLMs show promise as lifestyle recommendations and health 
literacy tools, effectively encouraging healthy behaviors and dispelling 
health myths. Alanezi et al. found that ChatGPT provided significant 
support in developing health literacy among cancer patients, 
motivating self-management through emotional, informational, and 
motivational assistance (184). Bragazzi and Garbarino demonstrated 
ChatGPT’s effectiveness in debunking sleep-related misconceptions, 
accurately distinguishing between false and genuine health 
information (185). However, personalization and accuracy remain 
challenging. While AI can offer useful preliminary advice, it requires 
further development to provide relevant, situation-specific suggestions 
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tailored to individual patients. This customization is crucial for 
ensuring that patients can trust and adhere to the 
recommendations provided.

LLMs play a significant role in providing information on self-
medication and personalized drug utilization, offering detailed 
insights on drug interactions, correct usage, and potential side effects. 
Altamimi et al. found ChatGPT’s information helpful and accurate in 
guiding acute venomous snakebite management, though it 
appropriately emphasized the need for professional medical care 
(192). LLMs also show potential in patient triage, quickly analyzing 
symptoms and medical history to prioritize cases based on severity 
(10). However, the quality of LLM-provided information varies 
considerably. McMahon et al. reported that ChatGPT gave inaccurate 
and misleading information about self-managed medication abortion, 
incorrectly portraying it as dangerous despite evidence of its safety 
and efficacy (193). This inconsistency highlights the risks of relying on 
AI without professional oversight and underscores the need for LLMs 
to provide accurate, up-to-date, and context-sensitive information to 
support safe self-medication practices.

4.1 Implications and future research

The integration of LLMs into patient education and engagement 
shows significant potential for improving health literacy and 
healthcare delivery efficiency. However, this review highlights the 
need for continued improvement in the accuracy and personalization 
of AI-generated content. Future research should focus on developing 
more accurate LLM algorithms to enhance reliability as medical 
information sources, exploring multimodal LLMs, and establishing 
robust validation frameworks for their ethical use. Ensuring AI-based 
information aligns with the latest medical guidelines and is tailored 
for diverse patient populations is crucial. Conducting longitudinal 
studies to assess the long-term effects of LLMs on patient outcomes 
and satisfaction will provide valuable insights. Additionally, addressing 
ethical concerns, including data privacy and potential biases in 
LLM-generated content, is essential. These research directions are 
crucial for the responsible and effective integration of LLMs in 
healthcare settings. Finally, LLMs may carry biases from their training 
data, potentially propagating misinformation or reinforcing healthcare 
disparities. Future research should address these limitations by 
ensuring LLM tools are accurate, reliable, and equitable across diverse 
patient populations, while also exploring their long-term effects and 
ethical implications.

4.2 Limitations

This scoping review has several limitations. The quality of 
included studies varied, with some using small sample sizes or 
subjective assessments, potentially limiting result generalizability. 
Most studies were conducted in high-income countries, raising 
questions about their relevance to low-and middle-income settings 
with different healthcare needs and infrastructure. The evaluation of 
various LLMs and versions complicates drawing overarching 
conclusions. Inconsistent evaluation metrics across studies hindered 
result comparison and synthesis.

5 Conclusion

LLMs demonstrate transformative potential in patient education 
and engagement across various levels of medical care. Their ability to 
provide accurate, detailed, and timely information can significantly 
enhance patients’ understanding of their healthcare and promote 
active involvement. However, current limitations in accuracy and 
readability highlight the need for further refinement to ensure reliable 
integration with healthcare systems. Extensive research and 
development of AI tools are necessary to fully harness their potential 
for improving patient outcomes and healthcare efficiency. A critical 
priority for medical applications is to ensure the ethical and 
responsible use of these tools, necessitating robust supervision and 
validation processes.
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