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Background: The difference between the estimated glomerular filtration rate 
(eGFR) calculated from cystatin C and creatinine (eGFRdiff) serves as a biomarker 
of kidney function impairment. However, the role of eGFRdiff in cardiovascular–
kidney–metabolic (CKM) health and its impact on mortality in CKM syndrome 
patients has not yet been studied.

Methods: This study included 3,622 participants from the National Health and 
Nutrition Examination Survey (NHANES) conducted between 1999 and 2004. 
Weighted ordinal logistic regression was used to explore the link between 
eGFRdiff and CKM health, while weighted Cox regression was used to examine 
the relationship between eGFRdiff and mortality in CKM syndrome patients. 
Restricted cubic splines (RCSs) were used to analyze the dose–response 
relationship.

Results: The common odds ratio (cOR) per 10 mL/min/1.73m2 increase in 
eGFRdiff was 0.86 [95% confidence interval (CI), 0.81 to 0.91]. Compared to the 
midrange eGFRdiff, the cOR values for the negative and positive eGFRdiff were 
1.88 [95% CI, 1.23 to 2.88] and 0.69 [95% CI, 0.58 to 0.83], respectively. During 
a median follow-up of 201 months, 853 participants died from all causes, while 
265 died due to cardiovascular causes. The hazard ratios (HRs) per 10 mL/
min/1.73m2 increase in eGFRdiff were 0.88 [95% CI, 0.83 to 0.93] for all-cause 
mortality and 0.90 [95% CI, 0.81 to 1.00] for cardiovascular mortality cases. 
Compared to the participants with a midrange eGFRdiff, those with negative 
eGFRdiff had a 48% higher risk of all-cause mortality, while those with positive 
eGFRdiff had a 30% lower risk. No significant non-linear associations were 
found in these regression analyses.

Conclusion: Our study found that eGFRdiff is associated with CKM health and 
stratified mortality risk in CKM syndrome patients.
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1 Introduction

Cardiorenal syndrome refers to the two-way relationship between 
heart and kidney dysfunction (1). Cardiometabolic disease is 
characterized by an increased risk of cardiovascular disease (CVD) 
due to issues with adipose tissue and metabolism (2). Recently, there 
has been growing awareness of the interactions between metabolic 
abnormalities, CVD, and kidney disease, and how they contribute to 
their development and progression (3). Metabolic abnormalities play 
a crucial role in the interaction between cardiovascular and kidney 
diseases, with kidney dysfunction acting as a significant mediator (4, 
5). Poor cardiovascular–kidney–metabolic (CKM) health is linked to 
increased morbidity, multi-organ disease, and early death (4). To 
improve CKM health management, the American Heart Association 
(AHA) defined CKM stages in 2023 (4). Research based on this 
definition found that the prevalence of subclinical CKM syndrome 
was 80.94, 85.95, and 72.03% in the age groups 20–44 years, 
45–64 years, and 65 years and older, respectively (6). The widespread 
prevalence of poor CKM health has serious public health implications. 
However, many treatments can improve CKM health (4). Therefore, 
we need to enhance screening for CKM health risk factors to support 
better staging and enable risk stratification for patients with CKM 
syndrome, thereby strengthening targeted preventive measures.

Estimated glomerular filtration rate (eGFR) based on serum 
creatinine (eGFRcreatinine) and cystatin C (eGFRcystatin) is commonly 
used to assess kidney function. In the majority of cases, eGFRcreatinine 
and eGFRcystatin are similar; however, there are notable differences in 
certain populations. In 2015, Grubb et  al. (7) discovered that the 
eGFRcystatin/eGFRcreatinine ratio was significantly less than 1, with 
an elevated ratio of serum creatinine to cystatin C and other 11–29 kDa 
proteins. According to the pore model of glomerular filtration, this 
phenomenon is attributed to the fact that cystatin C (13,343 Da) and 
other 11–29 kDa proteins are considerably larger than creatinine 
(113 Da) (8). When renal filtration function declines, the filtration of 
larger molecules such as cystatin C and other proteins decreases before 
that of creatinine. Therefore, the difference between eGFRcystatin and 
eGFRcreatinine (eGFRcystatin—eGFRcreatinine, eGFRdiff) is 

considered an independent indicator of kidney function (9, 10). A study 
based on the Chronic Renal Insufficiency Cohort (CRIC) found that a 
reduction in eGFRdiff was associated with an increased risk of 
hospitalization for heart failure (HF) (11). Another study, using the 
eGFRcystatin/eGFRcreatinine ratio to measure the difference between 
eGFRcystatin and eGFRcreatinine, revealed that a reduced ratio was 
associated with a higher risk of 30-day re-hospitalization and mortality 
in heart failure (HF) patients, along with a decrease in their life quality 
(12). A recent study based on the UK Biobank found that a reduction 
in eGFRdiff was associated with an increased risk of atrial fibrillation 
(13). Furthermore, a decrease in the ratio of eGFRcystatin and 
eGFRcreatinine was not only related to an increase in atherosclerosis-
related protein levels but also associated with the occurrence of 
atherosclerotic cardiovascular events (14, 15).

The objectives of this study were to examine the association 
between eGFRdiff and AHA-defined CKM health and to investigate 
the relationship between eGFRdiff and mortality in patients with 
CKM syndrome.

2 Materials and methods

2.1 Population

As cystatin C was measured exclusively during the 1999–2004 waves 
of the National Health and Nutrition Examination Survey (NHANES), 
our study analyzed data from 31,126 participants within this period. 
Since the Predicting Risk of cardiovascular diseases EVENTs 
(PREVENT) base model, which is used to define CKM, is applicable to 
U.S. individuals aged 30–79 years (16), our study only included subjects 
in this age group and excluded those with a classification of “Other 
Race—Including Multi-Racial.” In addition, we excluded individuals 
with missing variables required to define CKM 
(Supplementary Tables S1, S2), those without serum cystatin C and 
serum creatinine data, and pregnant women. The specific inclusion and 
exclusion criteria are presented in Supplementary Figure S1. Finally, 
3,622 participants were included in our study. The NHANES program 
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was approved by the National Center for Health Statistics (NCHS) Ethics 
Review Board, and all participants provided written informed consent 
(17). Since NHANES data are de-identified and anonymized during 
analysis, secondary analyses did not require additional ethical approval 
or informed consent.

2.2 Estimated glomerular filtration rate

Cystatin C levels were measured using a cystatin C immunoassay 
on an automated multi-channel analyzer (Siemens Dimension Vista 
1,500, Siemens Healthcare Diagnostics) (18). For creatinine levels, an 
improved version of the Jaffé reaction, modified by Popper et al. and 
Seeling and Wuest, was used. Values below 0.6 mg/dL were considered 
insignificant and treated as missing data (19). Notably, there were 
discrepancies between the creatinine levels measured during the 
NHANES 1999–2000 and the gold standard reference method (i.e., 
the Roche coupled enzymatic assay performed on a Roche P Module 
instrument). Therefore, following the NHANES recommendations, 
Deming regression was applied to adjust the creatinine results for the 
NHANES 1999–2000 study (19).

eGFRcystatin was calculated using the CKD-EPI cystatin C (2012) 
equation, while eGFRcreatinine was calculated using the CKD-EPI 
creatinine (2009) equation (20, 21). The best eGFR (eGFRbest) is the 
average of eGFRcreatinine and eGFRcystatin (22). eGFRdiff is the 
difference between eGFRcystatin and eGFRcreatinine. eGFRdiff was 
analyzed as a continuous variable (per 10 mL/min/1.73 m2). 
Furthermore, participants were categorized into three groups 
according to their eGFRdiff: negative (<−15 mL/min/1.73 m2), 
midrange (−15 to 15 mL/min/ 1.73 m2), and positive (≥15 mL/
min/1.73 m2) (13).

2.3 Cardiovascular–kidney–metabolic 
health

CKM Stage 0 comprised individuals who were not overweight 
(body mass index (BMI) <25 kg/m2) and had no metabolic risk 
factors (including hypertriglyceridemia [<135 mg/dL], 
hypertension, prediabetes, diabetes, and metabolic syndrome) or 
chronic kidney disease (CKD). CKM Stage 1 included individuals 
with a BMI ≥25 kg/m2, a waist circumference ≥ 88/102 cm in 
women/men, and/or prediabetes, without other metabolic risk 
factors or CKD. CKM Stage 2 included individuals with metabolic 
risk factors (including hypertriglyceridemia [≥135 mg/dL], 
hypertension, diabetes, and metabolic syndrome) or CKD. CKM 
Stage 3 included individuals with CKM and a 10-year cardiovascular 
disease (CVD) risk ≥20%, as predicted by the PREVENT base 
model (where the values for age and other risk factors outside the 
validated PREVENT ranges were imputed as the upper and lower 
limits of these ranges) (16). CKM Stage 4 included individuals with 
clinical CVD (coronary heart disease, congestive heart failure, and 
stroke) (4, 6). Hypertension was defined as a history of the disease 
or elevated blood pressure measurements. Diabetes and prediabetes 
were diagnosed based on disease history, measured blood glucose 
levels, and glycohemoglobin levels. Metabolic syndrome (MetS) 
was identified based on the harmonized criteria set by the 
International Diabetes Federation. CKD was defined using 

eGFRbest and disease history. A more detailed definition of the 
variables used to define the CKM stages is presented in 
Supplementary Tables S1, S2. We defined CKM syndrome as CKM 
stage ≥2.

2.4 Covariables

Data on age, gender, ethnicity, income level, and education level 
were collected using standardized demographic questionnaires (23). 
Data on smoking status were gathered through a smoking questionnaire, 
and physical activity was assessed through an activity questionnaire 
(23). The Healthy Eating Index (HEI) was calculated according to the 
HEI-2015 (24). The urine albumin-creatinine ratio (uACR, mg/g) is the 
ratio of urine albumin to creatinine. A more detailed definition of 
covariables is presented in Supplementary Table S3.

Data on all-cause and cardiovascular mortality status were 
obtained from the National Death Index (NDI). Cardiovascular 
mortality was defined using the International Classification of 
Diseases-10 (ICD-10) codes I00-I09, I11, I13, I20-I51, and I60-I69. 
Time was measured in months from the physical examination to 
either the date of death or the end of the follow-up period (31 
December 2019).

2.5 Statistical analysis

Before analysis, we utilized the random forest imputation method 
to estimate the missing values, as the urine albumin-creatinine ratio 
had the highest proportion of missing values (13.94%, 
Supplementary Figure S2). According to the “highest proportion of 
missing values” principle, we  performed complex sample analysis 
using fasting sample weights (25). Continuous variables were 
presented as weighted means and standard deviations (SDs), while 
categorical variables were expressed as weighted frequencies and 
proportions. The baseline characteristics were compared using 
eGFRdiff. The weighted Wilcoxon rank-sum test and the chi-squared 
test with Rao–Scott second-order corrections were used to compare 
group differences for continuous and categorical variables, 
respectively.

We first estimated the age-adjusted prevalence of each CKM stage 
by standardizing to the 2000 U.S. population census, which includes 
three age groups (30–39, 40–59, and 60–79 years) (26, 27). Then, 
we used ordinal logistic regression to explore the relationship between 
eGFRdiff and CKM stages. Model 1 was unadjusted for covariables. 
Model 2 included adjustments for age, gender, ethnicity, income level, 
educational level, smoking status, average physical activity level, HEI, 
and uACR. Model 3 was further adjusted for eGFRbest. To explore 
potential non-linear associations, we used restricted cubic splines 
(RCSs) in Model 3. The reference value was set at 20 mL/min/1.73m2, 
with the 10th, 50th, and 90th percentiles of eGFRdiff serving as the 
three knots for the spline. Subgroup analyses were further performed 
based on age (cutoff value of 65 years), gender, ethnicity, uACR, 
smoking status, and physical activity.

We further used the Cox regression model to explore the 
association between eGFRdiff and both all-cause mortality and 
cardiovascular mortality in the participants with and without CKM 
syndrome. Model 1 was unadjusted for covariables. Model 2 included 
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adjustments for age, gender, ethnicity, income level, educational level, 
smoking status, average physical activity level, HEI, and uACR. Model 
3 was further adjusted for eGFRbest. To explore potential non-linear 
associations, we used RCSs in Model 3. The reference value was set at 
20 mL/min/1.73m2, with the 10th, 50th, and 90th percentiles of 
eGFRdiff serving as the three knots for the spline. Since the criteria for 
defining CKM stages include hypertension, blood glucose status, 
systolic blood pressure, triglycerides, and cholesterol, we excluded 
these variables from our models (28, 29).

Furthermore, we  employed complete case analysis to avoid 
imputation bias for the missing data (n = 778). A two-sided p-value of 
<0.05 was considered statistically significant. Data analyses were 
performed using R 4.3.2.

3 Results

3.1 Baseline characteristics

Table  1 presents the baseline characteristics of the 3,622 
participants in our study. The weighted mean age was 49.62 years (SD, 
12.92 years); 50.74% of the participants were women, and 78.75% were 
non-Hispanic white. The unweighted proportions of the participants 
in CKM Stages 0–4 were as follows: 13.20% for Stage 0, 16.46% for 
Stage 1, 52.62% for Stage 2, 7.62% for Stage 3, and 10.10% for Stage 3.

Compared to the participants with the midrange eGFRdiff, those 
with the negative eGFRdiff were more likely to be current smokers and 
had higher levels of body mass index (BMI), waist circumference, 
systolic blood pressure (SBP), and triglycerides, in addition to higher 
rates of hypertension, diabetes, cardiovascular disease (CVD) and 
chronic kidney disease (CKD) stage (all p < 0.001). Conversely, 
participants with positive eGFRdiff showed better health indicators, 
including BMI, waist circumference, SBP, triglycerides, high-density 
lipoprotein, hypertension, diabetes, CVD, and CKD stage (all p < 0.001).

3.2 Association between eGFRdiff and CKM 
stages

The prevalence of higher CKM stages was significantly higher in 
participants with negative eGFRdiff and lower in those with positive 
eGFRdiff (Supplementary Table S4). The age-adjusted prevalence rates 
for CKM Stage 3 were 10.06% [95% confidence interval (CI), 3.31 to 
16.81] in the negative eGFRdiff group and 3.23% [95% CI, 2.22 to 
4.24] in the positive eGFRdiff group. For CKM Stage 4, the rates were 
14.9% [95% CI, 6.35 to 23.44] in the negative eGFRdiff group and 
6.43% [95% CI, 5.08 to 7.78] in the positive eGFRdiff group.

When eGFRdiff was treated as a continuous variable, the common 
odds ratio (cOR) per 10 mL/min/1.73m2 increase in eGFRdiff in the 
fully adjusted model was 0.86 [95% confidence interval (CI), 0.81 to 
0.91] (Table 2). Compared to the midrange eGFRdiff, the cOR values for 
the negative and positive eGFRdiff were 1.88 [95% CI, 1.23 to 2.88] and 
0.69 [95% CI, 0.58 to 0.83], respectively (Table 2). RCS analysis suggested 
no significant non-linear association between eGFRdiff and CKM stages 
(Figure 1).

The association between eGFRdiff and CKM stages can be found 
in the majority of the subgroups (Supplementary Figure S3). The cOR 
values for the participants aged <65 years, female participants, male 

participants, non-Hispanic white participants, and participants who 
had never smoked were 0.82 [95%CI, 0.75 to 0.89], 0.83[95%CI, 0.75 
to 0.92], 0.89[95%CI, 0.83 to 0.95], 0.86[95%CI, 0.8 to 0.92], and 
0.78[95%CI, 0.72 to 0.84], respectively. Although not statistically 
significant (p = 0.746), the cOR for the participants aged 65 years and 
older was 1.02 [95% CI, 0.92 to 1.12].

3.3 Association between eGFRdiff and both 
all-cause and cardiovascular mortality

During the median follow-up period of 201 months, 853 
participants (853/2548 participants with CKM syndrome, 33.48%) 
experienced all-cause mortality, and 265 participants (265/2548 
participants with CKM syndrome, 10.4%) experienced cardiovascular 
mortality. In the fully adjusted model, for participants with CKM 
syndrome, the hazard ratios (HRs) per 10 mL/min/1.73m2 increase in 
eGFRdiff were 0.88 [95% CI, 0.83 to 0.93] for all-cause mortality and 
0.90 [95%CI, 0.81 to 1.00] for cardiovascular mortality, with the latter 
being marginally significant (p = 0.052) (Table  3). Compared to 
participants with midrange eGFRdiff, those with negative eGFRdiff 
had a 48% increased risk of all-cause mortality, while those with 
positive eGFRdiff had a 30% reduced risk of all-cause mortality. There 
was no significant difference in cardiovascular mortality risk between 
participants with negative or positive eGFRdiff and those with 
midrange eGFRdiff (Table  3). The RCS analysis indicated no 
significant non-linear association between eGFRdiff and both 
all-cause mortality and cardiovascular mortality in participants with 
and without CKM syndrome (Figure 2).

3.4 Complete case analysis

After further excluding 778 participants with missing covariate 
data (Supplementary Figure S2), a total of 2,844 participants were 
included in the complete case analysis. The cOR per 10 mL/
min/1.73m2 increase in eGFRdiff in the fully adjusted model was 0.84 
[95% CI, 0.79 to 0.89] (Supplementary Table S5). Compared to 
participants with midrange eGFRdiff, those with negative eGFRdiff 
had a cOR of 1.97 [95% CI, 1.1 to 3.52] and those with positive 
eGFRdiff had a cOR of 0.66 [95% CI, 0.54 to 0.79] 
(Supplementary Table S5). No significant non-linear association was 
detected (Supplementary Figure S4).

During a median follow-up of 204 months, 538 participants 
included in the complete-case analysis experienced all-cause mortality 
and 159 participants experienced cardiovascular mortality. In the fully 
adjusted model, the hazard ratios (HRs) per 10 mL/min/1.73m2 
increase in eGFRdiff were 0.87 [95% CI, 0.82 to 0.93] and 0.97 [95% 
CI, 0.89 to 1.07] for all-cause mortality and cardiovascular mortality 
(Supplementary Table S6), respectively. No significant non-linear 
association was detected (Supplementary Figure S5).

4 Discussion

This study used a large prospective cohort from the NHANES to 
investigate the association between eGFRdiff and CKM health, along 
with the relationship between eGFRdiff and mortality in CKM 
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TABLE 1 Baseline characteristics.

Characteristic Sampled individual1 Population 
estimated2

Negative (<−15)2 Midrange (−15 to 15)2 Positive (≥15)2 P-value3

No. of participants 3,622 127,594,016 4,296,279 63,510,095 59,787,642

Age in years 53.00 (41,65) 49.62 (12.92) 52.33 (12.63) 50.98 (13.62) 47.98 (11.95) <0.001

Gender <0.001

  Women 1,775 (49.01%) 64,743,785 (50.74%) 2,254,559 (52.48%) 36,078,630 (56.81%) 26,410,597 (44.17%)

  Men 1,847 (50.99%) 62,850,231 (49.26%) 2,041,721 (47.52%) 27,431,465 (43.19%) 33,377,045 (55.83%)

Ethnicity 0.034

  Other Hispanic 153 (4.22%) 6,381,450 (5.00%) 170,796 (3.98%) 3,445,727 (5.43%) 2,764,926 (4.62%)

  Non-Hispanic white 1,947 (53.75%) 100,480,640 (78.75%) 3,153,835 (73.41%) 48,638,085 (76.58%) 48,688,720 (81.44%)

  Non-Hispanic Black 640 (17.67%) 12,694,862 (9.95%) 803,405 (18.70%) 6,819,122 (10.74%) 5,072,334 (8.48%)

  Mexican American 882 (24.35%) 8,037,064 (6.30%) 168,242 (3.92%) 4,607,160 (7.25%) 3,261,662 (5.46%)

Income level <0.001

  Low 1,354 (37.38%) 61,653,605 (48.32%) 1,355,299 (31.55%) 25,708,816 (40.48%) 34,589,489 (57.85%)

  Median 1,383 (38.18%) 44,906,766 (35.20%) 1,649,976 (38.40%) 24,548,239 (38.65%) 18,708,552 (31.29%)

  High 885 (24.43%) 21,033,645 (16.48%) 1,291,004 (30.05%) 13,253,040 (20.87%) 6,489,601 (10.85%)

Educational level <0.001

  Below high school 1,169 (32.27%) 24,616,150 (19.29%) 1,136,833 (26.46%) 15,392,665 (24.24%) 8,086,652 (13.53%)

  High school or higher 2,453 (67.73%) 102,977,866 (80.71%) 3,159,447 (73.54%) 48,117,430 (75.76%) 51,700,990 (86.47%)

Smoking status <0.001

  Never 1,702 (46.99%) 59,048,209 (46.28%) 1,380,890 (32.14%) 25,580,040 (40.28%) 32,087,278 (53.67%)

  Former 1,098 (30.31%) 37,864,415 (29.68%) 1,120,630 (26.08%) 17,912,725 (28.20%) 18,831,060 (31.50%)

  Current 822 (22.69%) 30,681,393 (24.05%) 1,794,759 (41.77%) 20,017,330 (31.52%) 8,869,304 (14.83%)

Healthy eating index 50.68 (12.82) 50.16 (12.83) 48.25 (11.24) 49.54 (12.89) 50.97 (12.83) <0.001

Average level of physical 

activity

0.060

  Mainly sitting 851 (23.50%) 31,599,427 (24.77%) 1,630,622 (37.95%) 15,556,303 (24.49%) 14,412,502 (24.11%)

  Walking a lot 2,009 (55.47%) 66,765,431 (52.33%) 2,100,908 (48.90%) 33,919,770 (53.41%) 30,744,752 (51.42%)

  Carrying light loads 529 (14.61%) 20,445,567 (16.02%) 398,314 (9.27%) 9,569,697 (15.07%) 10,477,555 (17.52%)

  Carrying heavy loads 233 (6.43%) 8,783,592 (6.88%) 166,435 (3.87%) 4,464,324 (7.03%) 4,152,833 (6.95%)

Body mass index, kg.m2 28.80 (6.00) 28.50 (6.12) 31.28 (8.23) 29.04 (6.73) 27.73 (5.06) <0.001

Waist circumference, cm 98.80 (14.61) 97.98 (15.28) 105.50 (19.22) 99.17 (16.09) 96.18 (13.73) <0.001

(Continued)
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TABLE 1 (Continued)

Characteristic Sampled individual1 Population 
estimated2

Negative (<−15)2 Midrange (−15 to 15)2 Positive (≥15)2 P-value3

Systolic blood pressure 127.32 (20.21) 123.65 (18.20) 130.01 (19.15) 125.04 (18.98) 121.71 (17.00) <0.001

Diastolic blood pressure 72.82 (12.88) 73.05 (12.07) 73.33 (14.96) 72.41 (12.76) 73.72 (11.02) 0.12

Hypertension <0.001

  No 1,973 (54.47%) 77,397,206 (60.66%) 2,178,268 (50.70%) 36,260,339 (57.09%) 38,958,598 (65.16%)

  Yes 1,649 (45.53%) 50,196,810 (39.34%) 2,118,011 (49.30%) 27,249,756 (42.91%) 20,829,044 (34.84%)

Blood glucose status <0.001

  Diabetes 489 (13.50%) 13,718,955 (10.75%) 1,309,216 (30.48%) 7,418,968 (11.68%) 4,990,772 (8.34%)

  Prediabetes 325 (8.97%) 9,188,042 (7.20%) 312,105 (7.26%) 5,315,238 (8.37%) 3,560,699 (5.96%)

  Normal 2,808 (77.53%) 104,687,019 (82.05%) 2,674,958 (62.26%) 50,775,889 (79.95%) 51,236,171 (85.70%)

Cardiovascular disease <0.001

  No 3,256 (89.90%) 117,361,581 (91.98%) 3,624,243 (84.36%) 57,136,056 (89.96%) 56,601,282 (94.67%)

  Yes 366 (10.10%) 10,232,435 (8.02%) 672,036 (15.64%) 6,374,039 (10.04%) 3,186,360 (5.33%)

Chronic kidney disease <0.001

  No 3,405 (94.01%) 121,627,069 (95.32%) 3,964,746 (92.28%) 58,947,947 (92.82%) 58,714,376 (98.20%)

  Yes 217 (5.99%) 5,966,947 (4.68%) 331,533 (7.72%) 4,562,148 (7.18%) 1,073,266 (1.80%)

Cholesterol, mg/dl 201 (178,227) 204.15 (40.43) 199.79 (42.15) 204.76 (40.32) 203.82 (40.42) 0.6

High-density lipoprotein, mg/dl 51.77 (15.55) 52.04 (15.59) 47.83 (17.35) 50.99 (15.44) 53.45 (15.48) <0.001

Triglyceride, mg/dl 115 (79,170) 141.40 (141.05) 157.67 (119.65) 154.38 (171.42) 126.44 (99.05) <0.001

uACR, mg/g 5.67 (3.93,9.17) 6.80 (4.60) 7.74 (5.11) 7.45 (4.86) 6.06 (4.14) <0.001

1Unweighted mean (SD) or unweighted median (IQR); unweighted n(%).
2Weighted mean (SD); weighted n (%).
3Wilcoxon rank-sum test for the complex survey samples; the chi-squared test with Rao–Scott second-order corrections.
eGFR diff, the difference between cystatin C–based estimated glomerular filtration rate and creatinine-based estimated glomerular filtration rate; uACR, urine albumin-creatinine ratio; CKM, cardiovascular–kidney–metabolic syndrome.
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syndrome patients. An increase in eGFRdiff was associated with an 
improvement in CKM health. The participants with negative eGFRdiff 
tended to have poorer CKM health, whereas those with positive 
eGFRdiff tended to have better CKM health. In addition, an increase 
in eGFRdiff was related to a lower risk of all-cause mortality in CKM 
syndrome patients, while the risk of cardiovascular mortality in these 
patients was marginally significant. These associations were 
independent of the uACR and eGFRbest-assessed kidney function.

According to the KDIGO guidelines, the primary criteria for 
diagnosing CKD include a measured or estimated decline in the GFR 
and/or significant proteinuria (30). However, multiple studies have 
shown that in patients without kidney disease according to the 
KDIGO standards, a significant discrepancy between eGFRcystatin 
and eGFRcreatinine is associated with a substantial increase in the 
risk of comorbidities and mortality (12, 14, 31–37). This suggests that 
the discrepancy between eGFRcystatin and eGFRcreatinine, 
independent of eGFRcreatinine, eGFRcystatin, and uACR, is a risk 

factor for kidney function impairment. Numerous studies have 
investigated the relationship between eGFRdiff and CKM health-
related factors and adverse cardiovascular events. A multicenter 
prospective cohort study explored the association between eGFRdiff 
and end-stage kidney disease (ESKD) and mortality in patients with 
mild-to-moderate CKD. It was found that patients with negative 
eGFRdiff had an 86% increased risk of mortality compared to those 
with midrange eGFRdiff, while those with positive eGFRdiff had a 
27% lower risk of ESKD and a 32% lower risk of mortality (38). A 
Korean study examined the correlation between eGFRdiff and major 
adverse cardiovascular events (MACE) and coronary artery 
calcification (CAC) in CKD patients. It was found that patients in the 
highest tertile of baseline eGFRdiff had a 2.12 times higher risk of 
MACE compared to those in the lowest tertile, and they also had 
higher baseline CAC and more significant CAC progression (15). 
Based on the CRIC study, Chen et al. used Fine–Gray proportional 
sub-distribution hazards regression to investigate the association 

TABLE 2 Common odd ratios (cORs) for the association between eGFR difference and cardiovascular–kidney–metabolic syndrome.

eGFRdiff Model 1 P-Value Model 2 P-Value Model 3 P-Value

Continuous value

  Per 10 mL/min/1.73m2 0.81 [0.76,0.86] <0.001 0.85 [0.82,0.89] <0.001 0.86 [0.81,0.91] <0.001

Categorical value

  Negative (≤ − 15 mL/min/1.73 m2) 2.42 [1.62,3.6] <0.001 2.23 [1.47,3.39] <0.001 1.88 [1.23,2.88] 0.004

  Midrange (−15 to 15 mL/min/1.73 m2) Ref - Ref - Ref -

  Positive (>15 mL/min/1.73 m2) 0.59 [0.49,0.71] <0.001 0.72 [0.6,0.86] <0.001 0.69 [0.58,0.83] <0.001

eGFR diff, the difference between cystatin C–based estimated glomerular filtration rate and creatinine-based estimated glomerular filtration rate. Model 1 was unadjusted; Model 2 was 
adjusted for age, gender, ethnicity, income level, educational level, smoking status, average level of physical activity, Healthy Eating Index, and urine albumin-creatinine ratio; and Model 3 was 
adjusted for Model 2 + the estimated glomerular filtration rate.

FIGURE 1

Restricted cubic spline plot for the association between eGFRdiff and cardiovascular–kidney–metabolic syndrome. The restricted cubic spline model 
was adjusted for age, gender, ethnicity, income level, educational level, smoking status, average level of physical activity, Healthy Eating Index, urine 
albumin-creatinine ratio, and estimated glomerular filtration rate. eGFR diff, the difference between cystatin C–based estimated glomerular filtration 
rate and creatinine-based estimated glomerular filtration rate.
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between eGFRdiff and HF hospitalization. They found that for every 
15 mL/min/1.73m2 decrease in eGFRdiff, the risk of HF 
hospitalization increased by 20%, independent of eGFRcystatin and 
eGFRcreatinine (11). In addition, a study based on a Swedish HF 
inpatient population found that shrunken pore syndrome 
(eGFRcystatin/eGFRcreatinine <0.6) was associated with decreased 
quality of life, increased risk of all-cause mortality, and higher risk of 
30-day rehospitalization (12). Furthermore, a study of diabetic 
patients found that each SD decrease in eGFRdiff was associated with 
a 28% increased risk of overall diabetic microvascular complications, 
a 14% higher risk of diabetic retinopathy, and a 29% higher risk of 
diabetic kidney disease (39). One possible mechanism is that a 
significant increase in eGFRdiff indicates reduced kidney clearance of 
medium molecular weight substances, leading to the accumulation of 

atherosclerotic proteins and other inflammatory factors (7, 14, 32). In 
addition, eGFRcystatin and eGFRcreatinine are influenced by 
different non-renal factors. Age, decreased physical activity, and 
reduced muscle mass may lead to an overestimation of 
eGFRcreatinine, while eGFRcystatin is affected by thyroid function, 
inflammation levels, and obesity (40).

Our study offers two major clinical implications. First, 
eGFRdiff is significantly associated with CKM health and correlates 
with mortality risk in CKM syndrome patients. Therefore, assessing 
CKM health using only eGFRcystatin or eGFRcreatinine and 
proteinuria levels is insufficient. Second, eGFRcreatinine and 
eGFRcystatin should be reported separately. Both our study and 
previous research indicate that eGFRdiff provides important 
prognostic information. In addition, studies have suggested that 

TABLE 3 Impact of eGFRdiff on both all-cause and cardiovascular mortality in participants with cardiovascular–kidney–metabolic syndrome.

All-cause mortality Cardiovascular-cause mortality

eGFRdiff Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Continuous value

Per 10 mL/min/1.73m2 0.80 [0.75,0.85] 0.86 [0.81,0.90] 0.88 [0.83,0.93] 0.80 [0.73, 0.89] 0.86 [0.77,0.96] 0.90 [0.81,1.00]

P-Value <0.001 <0.001 <0.001 <0.001 0.006 0.052

Categorical value

  Negative 

(≤ − 15 mL/

min/1.73 m2)

1.56 [1.02,2.38] 1.57 [1.08,2.27] 1.48 [1.03,2.14] 1.51 [0.70, 3.25] 1.61 [0.79,3.28] 1.50 [0.74,3.01]

  P-Value 0.042 0.017 0.033 0.295 0.189 0.259

  Midrange (−15 to 

15 mL/min/1.73 m2)
Ref Ref Ref Ref Ref Ref

  P-Value - - - - - -

  Positive (>15 mL/

min/1.73 m2)
0.52 [0.44,0.61] 0.66 [0.55,0.80] 0.70 [0.58,0.85] 0.54 [0.38, 0.75] 0.71 [0.50,1.01] 0.78 [0.55,1.10]

  P-Value <0.001 <0.001 <0.001 <0.001 0.054 0.155

eGFR diff, the difference between cystatin C–based estimated glomerular filtration rate and creatinine-based estimated glomerular filtration rate. Model 1 was unadjusted; Model 2 was 
adjusted for age, gender, ethnicity, income level, educational level, smoking status, average level of physical activity, Healthy Eating Index, and urine albumin-creatinine ratio; and Model 3 was 
adjusted for Model 2 + the estimated glomerular filtration rate.

FIGURE 2

Restricted cubic spline plot for the association between eGFRdiff and both all-cause and cardiovascular mortality in participants with cardiovascular–
kidney–metabolic (CKM) syndrome. (A), all-cause mortality; (B), cardiovascular mortality.
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calculating eGFRcreatinine and eGFRcystatin separately and then 
averaging them to obtain the final eGFR is the best method for 
estimating kidney function (22).

Furthermore, there is currently no clear definition of which 
CKM stage should be used as a threshold to classify patients as 
having or not having CKM syndrome. Unlike our study, which 
used CKM Stage 2 as the threshold, previous studies used CKM 
Stage 3 (41). Their research explored the relationship between 
CKM syndrome and adverse events following major non-cardiac 
surgery. This classification was made for clinical reasons, as Stage 
3 is the first stage to include both subclinical cardiovascular 
disease and CKD, making it a potentially critical point for 
adjusting perioperative management. However, our study 
population consisted of community residents, mainly focusing on 
primary and secondary prevention, making Stage 3 too stringent 
a threshold. Metabolic abnormalities in Stage 1 include being 
overweight (BMI ≥25 kg/m2), having an increased waist 
circumference (≥88/102 cm in women/men), or having 
prediabetes but no other metabolic risk factors or CKD. Individuals 
in Stage 1 are at some risk but do not yet exhibit multiple 
metabolic disorders or organ damage, which is insufficient to 
define the condition as a syndrome. Individuals in Stage 2 have 
significant metabolic risk factors or CKD that substantially 
increase the risk of cardiovascular and other diseases. Active 
intervention at this stage can effectively prevent disease 
progression and offers a high clinical intervention value. 
Therefore, for community residents focused on primary and 
secondary prevention, using Stage 2 as a threshold is more 
appropriate. In addition, the AHA’s Presidential Advisory defines 
Stage 3 of the CKM syndrome as “subclinical CVD among 
individuals with excess/dysfunctional adiposity, metabolic risk 
factors, or CKD,” further validating our use of Stage 2 as the 
threshold for the presence of the CKM syndrome (4).

This study has several strengths, such as a long follow-up 
period (median of 205 months), which allowed for the assessment 
of mortality over a significant period of time. To the best of our 
knowledge, this is the first study to examine the association 
between eGFRdiff and CKM health and mortality risk in CKM 
syndrome patients. However, our study also has several 
limitations. First, due to its retrospective nature, there were 
potential confounding factors. For instance, although some 
studies have suggested that using the average of eGFRcreatinine 
and eGFRcystatin provides a more accurate final eGFR (22), 
we cannot completely rule out the bias between eGFRbest and the 
measured values. Second, creatinine and cystatin C were only 
measured at baseline, limiting our ability to assess changes in 
eGFRdiff and their impact on CKM health and mortality in CKM 
syndrome patients. Third, we  only examined the absolute 
difference between eGFRcystatin and eGFRcreatinine, rather than 
the relative difference, because, in our experience, clinicians are 
more accustomed to using the absolute difference. Fourth, due to 
the lack of data on subclinical atherosclerotic cardiovascular 
disease, subclinical heart failure, peripheral arterial disease, and 
atrial fibrillation, we relied on the PREVENT base model from 
previous literature (6), which may have led to an underestimation 
of Stage 3. Fifth, although eGFRdiff provides a more 
comprehensive assessment of CKD health and prognosis, cost 

constraints mean that eGFRcreatinine and proteinuria levels 
remain essential and practical indicators in solutions where 
measuring cystatin C is not feasible.

5 Conclusion

Our study found that eGFRdiff is associated with CKM health and 
serves as a risk stratification factor for long-term all-cause mortality 
in patients with CKM syndrome, independent of eGFR and 
uACR. These findings suggest that eGFRdiff should be considered 
when assessing CKM health, rather than relying solely on proteinuria, 
eGFRcystatin, and eGFRcreatinine.
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