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kidney injury induced by repeated 
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Objective: Limb ischemia–reperfusion injury caused by repeated tourniquet 
application usually leads to acute kidney injury, adversely affecting patient 
prognosis. This study aimed to investigate the renoprotective effect of remote 
ischemic preconditioning (RIPC) in patients undergoing extremity surgery with 
repeated tourniquet application.

Methods: 64 patients were enrolled and randomly divided into an RIPC group 
and a control group, with 32 patients in each. Pretreatment was administered 
before surgery, and baseline characteristics were collected. Perioperative 
surgical characteristics, renal biomarkers, oxidative stress markers, inflammatory 
factors, and postoperative conditions were recorded.

Results: 2 participant were excluded from each group, leaving 30 patients per 
group. There were no significant differences between the two groups regarding 
baseline characteristics and perioperative surgical characteristics (p > 0.05). 
Compared to the control group, the RIPC group showed a significant decrease 
in BUN and SCr at 48 h postoperatively (p < 0.05). Levels of Cys-C, [TIMP-
2] × [IGFBP-7], KIM-1, IL-18, and NGAL were significantly reduced at the first 
and second tourniquet releases and at 24 h postoperatively in the RIPC group 
(p < 0.05). From the first tourniquet release to 48 h postoperatively, MDA levels 
were significantly lower (p < 0.05) and SOD levels were significantly higher 
(p < 0.05) in the RIPC group compared to the control group. Postoperative 
conditions did not differ significantly between the groups.

Conclusion: RIPC effectively mitigated acute kidney injury caused by repeated 
tourniquet application, offering a robust method for perioperative renal 
protection in patients undergoing extremity surgery. Future studies should 
explore the underlying mechanisms and long-term clinical outcomes of RIPC in 
broader patient populations.

Clinical trial registration: https://www.chictr.org.cn/showproj.html?proj= 
231266.
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Introduction

Tourniquets are commonly used in orthopedic limb surgery to 
reduce intraoperative bleeding and improve surgical visibility, 
allowing for more precise procedures (1). However, tourniquets can 
also cause complications such as thromboembolism and ischemia–
reperfusion injury (IRI) in muscles (2). Ischemia–reperfusion of large 
muscle tissues can induce rhabdomyolysis by generating inflammatory 
cells (3). The systemic inflammatory response generated by this 
process increases vascular permeability, decreases intravascular 
volume, and activates the renin-angiotensin-aldosterone system. This 
leads to renal vasoconstriction, reduced renal blood flow and 
oxygenation, and the generation of free radicals, primarily reactive 
oxygen species (ROS), which in severe cases can result in acute kidney 
injury (AKI) (4). The incidence of tourniquet-related AKI ranges from 
0.8 to 17.2%, depending on whether patients have risk factors such as 
diabetes and hypertension (5). Currently, there are no specific 
measures to prevent or treat tourniquet-induced kidney or other 
organ damage (6).

Ischemic preconditioning (IPC) involves performing multiple 
transient cycles of ischemia and reperfusion to the target organ, which 
makes the organism resistant to further severe injury. This protective 
phenomenon was first identified in cardiac experiments by Murry et al. 
(7). A recent systematic review showed that IPC can be applied to the 
kidney, providing a protective effect (8). Remote ischemic 
preconditioning (RIPC) involves exposing tissues or organs distant 
from the target organ (usually upper or lower limbs) to brief cycles of 
ischemia and reperfusion to minimize subsequent damage to the target 
organ. Przyklenk et al. conducted the first study on RIPC in 1993 and 
concluded that RIPC could mitigate myocardial IRI (9). RIPC has the 
potential to protect a wide range of organs and tissues, including the 
heart, brain, kidneys, lungs, liver, and skin (10, 11). Multiple meta-
analyses have indicated that the incidence of AKI after cardiac surgery 
is much higher than after myocardial infarction. RIPC before the 
induction of general anesthesia reduces peak serum creatinine (SCr) 
and neutrophil gelatinase-associated lipocalin (NGAL) levels and 
decreases the incidence of AKI by approximately 15% in patients with 
high-risk factors (12, 13). Studies on the short-term and long-term 
outcomes of kidney transplantation revealed that preoperative RIPC not 
only reduced the incidence of acute rejection in recipients but also led 
to sustained improvements in glomerular filtration rate over a period of 
five years, prolonging the use of the transplanted kidney (14, 15).

Many studies on RIPC have focused on renal function after 
cardiac surgery, with few exploring the role of RIPC in renal injury 
caused by tourniquets, particularly with repeated use (16, 17). 
Therefore, this study aims to investigate the renoprotective effect of 
RIPC on repeated tourniquet application in extremity surgery by 
detecting renal injury biomarkers, oxidative stress markers, and 
inflammatory factors in the blood. These results may help identify a 
safe, convenient, and effective perioperative renoprotective measure.

Materials and methods

Study design and participants

This prospective, randomized controlled clinical trial investigated 
the renoprotective effect of RIPC on acute kidney injury caused by 

repeated tourniquet application in extremity surgery. The study was 
approved by the Ethics Committee of the 988th Hospital of Joint 
Logistic Support Force of Chinese People’s Liberation Army 
(988YY20230041LLSP) and was prospectively registered in the Chinese 
Clinical Trial Registry (ChiCTR2400088778). Written informed consent 
was obtained from all participants. Inclusion criteria for the study were 
patients aged 20–50 years who were scheduled for limb surgery under 
general anesthesia, with tourniquets applied twice during the operation, 
each application lasting more than 40 min. Eligible participants had a 
body mass index (BMI) between 20 and 30 kg/m2 and an American 
Society of Anesthesiologists (ASA) physical status of I-III. Exclusion 
criteria included individuals with hypertension, diabetes, or other 
significant comorbidities, those with vascular diseases of the upper 
extremity, and those with psychiatric disorders. Additionally, patients 
experiencing serious intraoperative complications such as cardiac arrest 
or anaphylactic shock, those with bleeding volumes exceeding 800 mL 
significantly affecting hemodynamic stability, and those who voluntarily 
withdrew from the study were excluded.

Randomization and blinding

As shown in Figure  1, 64 eligible patients were enrolled and 
randomly assigned to either the control group (n = 32) or the RIPC 
group (n = 32). One patient in the control group met the exclusion 
criteria, and another refused participation; two patients in the RIPC 
group met the exclusion criteria. Thus, 30 subjects remained in each 
group. Eligible patients were randomized in a 1:1 ratio one hour before 
anesthesia and numbered sequentially. A well-trained team member 
performed the preconditioning. The operators, subjects, anesthesiologists, 
surgeons, and data processors were all blinded to the group assignments.

Procedural protocol

Upon admission to the operating room, all eligible patients 
underwent artery puncture and cannulation under local anesthesia with 
lidocaine, followed by continuous vital signs monitoring. All patients 
received a standardized anesthesia induction regimen: penehyclidine 
hydrochloride 0.4 mg, flurbiprofen axetil 50 mg, etomidate 0.3 mg/kg, 
sufentanil citrate 0.4 μg/kg, and rocuronium bromide 0.5 mg/kg. After 
correct placement of the laryngeal mask, mechanical ventilation was 
initiated. Anesthesia was maintained with a continuous infusion of 
propofol (35–45 μg/kg/min) and remifentanil (0.35–0.45 μg/kg/min).

In the RIPC group, an inflatable pressure tourniquet was placed 
2.5 cm above the elbow of the patient’s healthy upper limb one hour 
before surgery. The tourniquet was inflated to 200 mmHg for three 
cycles of 5 min inflation and 5 min deflation. In the control group, a 
tourniquet was placed similarly but without preconditioning. Vital 
signs were monitored to ensure stability during the operation, and the 
laryngeal mask was removed after the patient fully recovered.

Outcome measures

Primary outcomes included renal tubular injury markers (tissue 
inhibitor of metalloproteinases-2 [TIMP-2], insulin-like growth 
factor-binding protein-7 [IGFBP-7], kidney injury molecule-1 
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[KIM-1]), glomerular filtration function (blood urea nitrogen [BUN], 
SCr, serum cystatin-C [Cys-C]), and markers of oxidative stress and 
inflammation (malondialdehyde [MDA], superoxide dismutase 
[SOD], interleukin-18 [IL-18], NGAL), and the calculation of 
[TIMP-2] × [IGFBP-7]. These indicators were all collected at five time 
points: before anesthesia induction (T0), at the first tourniquet release 
(T1), at the second tourniquet release (T2), 24 h postoperatively (T3), 
and 48 h postoperatively (T4).

Secondary outcomes included baseline characteristics (age, sex, 
BMI, ASA status, preoperative SCr), perioperative surgical 
characteristics (surgery duration, first and second tourniquet 
durations, infusion volume, urine volume, and bleeding volume), and 
postoperative outcomes (intensive care unit [ICU] occupancy, 
nephrology consultations, and length of hospital stay).

Statistical analysis

Based on pre-trial results, we  calculated that 50 patients were 
needed to achieve adequate power, with a 20% anticipated loss to 
follow-up, resulting in 64 patients recruited. Data were analyzed using 
GraphPad Prism 9.5. Normality was assessed using the Shapiro–Wilk 
test. Normally distributed data were expressed as mean ± standard 
deviation (x±s). For normally distributed data with equal variances, a 
t-test was used to compare between the two groups. For comparisons of 
measurements at different time points, repeated measures analysis of 
two-way ANOVA was employed. Categorical data were presented as 

percentages and compared using the chi-square (χ2) test. A significant 
level of α = 0.05 was used, with p < 0.05 considered statistically significant.

Results

Baseline characteristics

A total of 60 patients were included in this study, comprising 48 
males and 12 females. There were no statistically significant differences 
between the RIPC group and the control group in terms of gender, 
age, BMI, ASA classification, and preoperative SCr levels (all p > 0.05, 
Figure 2).

Perioperative surgical characteristics

As presented in Table  1, there were no significant differences 
between the RIPC group and the control group regarding surgery 
duration, the first tourniquet duration, the second tourniquet duration, 
infusion volume, urine volume, and bleeding volume (all p > 0.05).

Comparison of perioperative renal function

The renoprotective effect of RIPC was assessed by comparing 
glomerular and tubular function in patients undergoing extremity 

FIGURE 1

Flow diagram of grouping.
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surgery with repeated tourniquet application. As shown in Table 2, 
the RIPC group exhibited significantly lower BUN and SCr levels at 
T4 compared to the control group (p < 0.05). Additionally, the RIPC 
group had significantly lower Cys-C levels at T1, T2, and T3 
(p < 0.05), suggesting reduced glomerular damage. Furthermore, the 
levels of TIMP-2, IGFBP-7, [TIMP-2] × [IGFBP-7], and KIM-1 at 
T1, T2, and T3 were significantly lower in the RIPC group compared 
to the control group (all p < 0.05), indicating that RIPC attenuated 
tubular damage caused by repeated tourniquet application.

Changes in oxidative stress and 
inflammatory factors

We further investigated whether RIPC mitigated oxidative stress 
and inflammatory responses induced by repeated tourniquet 
application. As shown in Table 3, the RIPC group exhibited lower 
MDA levels and higher SOD levels at T1, T2, T3, and T4 compared to 
the control group (all p < 0.05). At T1 and T2, the SOD level decreased 
in both groups, but the reduction was less pronounced in the RIPC 

FIGURE 2

Baseline characteristics. (A) The mean age of control group was 46.07 ± 15.68, the mean age of RIPC group was 45.73 ± 12.98, there was no significant 
difference in age between two groups. (B) There were 25 male and 5 female in control group, 23 male and 7 female in RIPC group, no significant 
difference in gender between two groups. (C) The mean BMI of control group was 24.72 ± 2.66, the mean BMI of RIPC group was 23.45 ± 2.59, there 
was no significant difference in BMI between two groups. (D) There were 27 ASA II and 3 ASA III in control group, 29 ASA II and 1 ASA III in RIPC group, 
no significant difference in ASA classification between two groups. (E) The mean age of control group was 63.63 ± 13.59, the mean age of RIPC group 
was 58.43 ± 14.06, there was no significant difference in preoperative SCr levels between two groups.
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group (p < 0.05). At T3 and T4, the SOD level increased in both 
groups, with a greater elevation observed in the RIPC group (p < 0.05). 
Additionally, the RIPC group had significantly lower levels of IL-18 
and NGAL at T1, T2, and T3 (all p < 0.05). These findings indicated 
that RIPC effectively attenuates oxidative stress and inflammatory 
responses associated with repeated tourniquet application.

Postoperative outcomes

Finally, we compared the postoperative outcomes between the two 
groups. As shown in Table 4, there were no significant differences 
between the RIPC group and the control group in terms of ICU 
occupancy, nephrology consultations, and postoperative hospital stay 
(all p > 0.05).

Discussion

Tourniquets are commonly used in extremity surgeries for 
orthopedic patients to assist surgeons in better completing the surgery. 
However, muscle IRI from prolonged tourniquet use can lead to tissue 
and organ damage and, in severe cases, multiple systemic organ 
failure (18). RIPC has emerged in recent years as a convenient, 
non-invasive, and inexpensive protective method applicable to a wide 
range of organs. Current studies have found that preoperative use of 
RIPC reduces the incidence of postoperative AKI without adverse 
events (19). Our study found that RIPC could attenuate AKI induced 
by repeated tourniquet application in extremities, which may through 
inhibiting ROS production, oxidative stress and inflammatory 
responses, and inducing transient cell cycle arrest. This might provide 
a new strategy for mitigating perioperative AKI in the clinic.

The exact mechanism by which repeated tourniquet application 
and limb IRI lead to AKI is not fully elucidated. Most studies suggest 
that this phenomenon may be caused by chronic hypoperfusion and 
hypoxia of the kidney, related to the production of ROS such as 
superoxide, hydrogen peroxide, and hydroxyl radicals, as well as the 
involvement of inflammatory cells (20). During the ischemic phase, 
decreased aerobic metabolism and increased anaerobic metabolism 
led to the depletion of adenosine triphosphate (ATP), disruption of 
intracellular redox homeostasis, accumulation of acidic metabolites, 
and the failure of ATP-dependent sodium-potassium pumps and 

sodium-calcium exchangers. These disruptions result in increased 
intracellular Na+ and Ca2+, ultimately causing apoptosis (21). 
Superoxide is a key mediator of cell necrosis and tissue injury during 
reperfusion (22). It is produced when xanthine is oxidized to uric 
acid. During ischemia, decreased ATP leads to increased 
hypoxanthine, which is then oxidized during reperfusion to produce 
large amounts of superoxide (23, 24). SOD is an antioxidant enzyme 
that converts superoxide into oxygen and hydrogen peroxide, 
reducing ROS levels and protecting organs from oxidative damage. It 
is one of the most crucial antioxidant enzymes in cells (25). 
Researches have shown that SOD can protect the kidneys from 
chronic ischemic injury and prevent renal insufficiency through its 
antioxidant, vasodilatory, and antihypertensive effects (26). 
ROS-induced cell damage initiates lipid peroxidation, with MDA 
being a harmful end product that can result in cell damage and 
apoptosis, often used to indicate ROS levels (27, 28). Large amounts 
of ROS released into the blood during reperfusion elicit an 
inflammatory response, with the activation of inflammatory pathways 
and recruitment of inflammatory cells being early responses to 
renal injury.

To date, no single definitive measure has been found to prevent 
or mitigate AKI. Therefore, it is significant to explore simple methods 
to attenuate AKI caused by repeated tourniquet application and limb 
IRI by suppressing ROS levels and inflammatory responses. RIPC 
involves exposing the body to brief cycles of ischemia and reperfusion 
by pretreating organs and tissues far from the target organ, which has 
been shown to attenuate tissue and organ damage (29). The exact 
mechanism by which RIPC protects the kidney is not fully 
understood. However, most studies suggest it may involve the 
production of nitric oxide or nitrite, the release of damage-associated 
molecular patterns, activation of transient cell cycle arrest in renal 
tubular epithelial cells, and the clearance of damaged mitochondria 
via mitochondrial autophagy (30). RIPC may protect the kidney by 
activating natural defenses that cause renal tubular epithelial cells to 
undergo transient cell cycle arrest, enabling them to withstand 
subsequent oxidative stress or IRI. Many studies have identified 
TIMP-2 and IGFBP-7 as markers of cell cycle arrest (31). Alexander 
et al. revealed that RIPC could reduce [TIMP-2] × [IGFBP-7] levels 
in patients at high risk for AKI during cardiac surgery, contributing 
to a significant reduction in the incidence of AKI (12). Our study also 
confirmed that [TIMP-2] × [IGFBP-7] and KIM-1 levels were 
significantly reduced at T1, T2, and T3 in the RIPC group, suggesting 
that RIPC may attenuate tubular injury caused by repeated tourniquet 
application by inducing transient tubular epithelial cell cycle arrest.

Cys-C is a biomarker that is freely filtered through the glomeruli 
and completely absorbed by renal tubular epithelial cells, with 
minimal influence from external disturbances. Therefore, it has 
higher sensitivity and specificity in predicting AKI compared to SCr 
and BUN (32). Kasepalu et  al. demonstrated that SCr, urea, and 
Cys-C were significantly reduced in the RIPC group of patients 
undergoing lower extremity revascularization (33). Similarly, our 
study found that the RIPC group exhibited lower levels of SCr and 
BUN at T4, and decreased level of Cys-C at T1, T2, and T3, indicating 
that RIPC could mitigate the effects of limb IRI induced by repeated 
tourniquet application on postoperative glomerular filtration function.

Oxidative stress markers and inflammation levels were also 
examined in this study. NGAL, primarily secreted by immune cells 
such as neutrophils, macrophages, and dendritic cells, is produced 

TABLE 1 Perioperative surgical characteristics.

Characteristics Control 
group 

(n = 30)

RIPC 
group 

(n = 30)

t p 
value

Surgery duration 

(min)

226.17 ± 105.45 217.67 ± 114.43 0.30 0.77

First tourniquet 

duration (min)

65.87 ± 19.26 56.60 ± 17.90 1.93 0.06

Second tourniquet 

duration (min)

61.47 ± 18.22 62.93 ± 16.90 0.32 0.75

Infusion volume (mL) 1813.33 ± 621.72 1823.67 ± 914.19 0.05 0.96

Urine volume (mL) 573.33 ± 663.16 527.67 ± 664.00 0.27 0.79

Bleeding volume (mL) 147.97 ± 198.31 158.70 ± 191.18 0.02 0.83
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in response to inflammation and released after tubular injury during 
renal regeneration. It can be used as a predictor of renal function 
progression concerning renal failure (34). IL-18, an inflammatory 

factor released after acute ischemic injury, is considered an early 
diagnostic marker for AKI. Guo et  al. demonstrated that RIPC 
attenuated postoperative NGAL levels compared to the control 
group (35). Luan et  al. showed that IL-18 knockout ameliorated 
tubular injury and limited the progression of AKI to chronic kidney 
disease (36). Similarly, our study found that IL-18 and NGAL levels 
at T1, T2, and T3 were significantly lower in the RIPC group. 
Furthermore, RIPC also demonstrated the ability to mitigate 
oxidative stress in AKI induced by limb IRI by reducing MDA levels 
and increasing SOD levels in our study. These findings suggest that 
the protective effect of RIPC may be mediated through the inhibition 
of oxidative stress and inflammatory responses in AKI induced by 
limb IRI.

This study has several limitations. Firstly, it was conducted as a 
single-center study with a limited sample size, which may affect the 

TABLE 2 Comparison of perioperative renal function (x±s).

Groups Kidney function Time points

T0 T1 T2 T3 T4

Control group 

(n = 30)

BUN (mg/dL) 19.96 ± 4.54 28.24 ± 2.95 36.79 ± 5.33 31.19 ± 3.78 21.61 ± 4.05

SCr (μmol/L) 86.54 ± 11.63 104.87 ± 9.44 130.92 ± 10.40 136.83 ± 11.02 90.59 ± 10.74

Cys-C (mg/L) 0.63 ± 0.24 1.36 ± 0.25 2.00 ± 0.39 2.23 ± 0.52 1.15 ± 0.43

TIMP-2 (μg/L) 0.63 ± 0.12 1.16 ± 0.28 1.53 ± 0.28 1.64 ± 0.32 0.88 ± 0.22

IGFBP-7 (μg/L) 25.08 ± 7.60 53.02 ± 8.82 68.95 ± 8.11 64.88 ± 13.34 36.26 ± 7.10

[TIMP-2] × [IGFBP-7] (μg/L)2 15.65 ± 4.90 62.26 ± 20.43 106.07 ± 25.72 106.50 ± 29.57 32.27 ± 12.01

KIM-1 (ng/L) 11.58 ± 3.63 23.84 ± 6.25 32.99 ± 5.62 38.09 ± 6.44 17.67 ± 4.90

RIPC group 

(n = 30)

BUN (mg/dL) 20.11 ± 3.41 26.55 ± 4.05 36.79 ± 8.01 29.95 ± 3.71 16.92 ± 3.57c

SCr (μmol/L) 82.71 ± 15.12 103.61 ± 12.92 125.26 ± 12.31 133.16 ± 12.09 73.65 ± 15.62c

Cys-C (mg/L) 0.64 ± 0.25 1.11 ± 0.32b 1.66 ± 0.43a 1.86 ± 0.47a 1.01 ± 0.25

TIMP-2 (μg/L) 0.64 ± 0.16 0.97 ± 0.22a 1.25 ± 0.24c 1.31 ± 0.30c 0.77 ± 0.24

IGFBP-7 (μg/L) 24.07 ± 8.50 43.28 ± 12.12b 58.56 ± 7.38c 56.32 ± 11.35a 33.19 ± 7.15

[TIMP-2] × [IGFBP-7] (μg/L)2 15.25 ± 5.94 41.55 ± 13.56c 73.94 ± 19.32c 75.66 ± 27.55c 25.54 ± 9.12

KIM-1 (ng/L) 11.53 ± 3.38 20.05 ± 4.41a 29.19 ± 3.17a 32.11 ± 6.40b 15.21 ± 4.06

aP < 0.05 compared to the control group.
bP < 0.01 compared to the control group.
cP < 0.001 compared to the control group.

TABLE 3 Changes in oxidative stress and inflammatory factors (x±s).

Groups Characteristics Time points

T0 T1 T2 T3 T4

Control group 

(n = 30)

MDA (nmol/mL) 14.62 ± 7.79 48.78 ± 12.66 73.29 ± 20.98 82.39 ± 22.71 38.62 ± 13.89

SOD (U/mL) 241.68 ± 51.12 140.00 ± 33.67 113.67 ± 25.86 139.55 ± 27.45 172.77 ± 36.71

IL-18 (ng/L) 132.45 ± 30.80 302.04 ± 46.86 393.48 ± 46.69 430.37 ± 49.93 228.97 ± 39.90

NGAL (μg/L) 24.15 ± 5.38 34.92 ± 5.13 45.00 ± 5.83 48.45 ± 5.43 32.75 ± 10.57

RIPC group 

(n = 30)

MDA (nmol/mL) 13.89 ± 6.22 38.40 ± 12.45a 56.48 ± 16.69b 65.16 ± 18.15b 28.62 ± 13.16a

SOD (U/mL) 245.87 ± 58.71 171.74 ± 42.58a 134.58 ± 31.73a 161.64 ± 32.89a 201.30 ± 40.11a

IL-18 (ng/L) 130.78 ± 27.30 237.74 ± 57.68c 313.46 ± 59.22c 351.65 ± 49.34c 205.21 ± 36.10

NGAL (μg/L) 22.12 ± 6.18 30.98 ± 5.80a 37.22 ± 5.27c 40.41 ± 5.47c 29.04 ± 6.73

aP < 0.05 compared to the control group.
bP < 0.01 compared to the control group.
cP < 0.001 compared to the control group.

TABLE 4 Postoperative situation.

Characteristics Control 
group 

(n = 30)

RIPC 
group 

(n = 30)

t/z P 
value

ICU occupancy (%) 4 (13.33) 1 (3.33) 1.96 0.16

Nephrology 

consultation (%)

1 (3.33) 0 (0.00) 1.02 0.31

Postoperative hospital 

stay (days)

20.43 ± 22.09 12.07 ± 8.81 1.93 0.06
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generalizability of the results. Future studies with larger, multicenter 
cohorts are necessary to validate these findings. Secondly, the 
antioxidant and renoprotective properties of anesthetic drugs were 
not considered in this study. Although we designed the study to 
minimize the potential impact of anesthetics on the outcomes, 
future research should explore the synergistic effects of anesthetic 
agents and RIPC on renal protection. Despite these limitations, our 
study demonstrates that RIPC is a promising and non-invasive 
method to attenuate AKI induced by repeated tourniquet use in 
extremity surgeries. The findings suggest potential clinical 
applications for improving perioperative renal outcomes, 
highlighting the need for further investigation into RIPC’s protective 
mechanisms and broader applicability. Future research should focus 
on elucidating the precise mechanisms underlying RIPC’s 
renoprotective effects and evaluating its long-term clinical benefits 
across diverse surgical populations.
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