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Introduction: Data-driven medicine is essential for enhancing the accessibility

and quality of the healthcare system. The availability of data plays a crucial role

in achieving this goal.

Methods: We propose implementing a robust data infrastructure of FAIRification

and data fusion for clinical, genomic, and imaging data. This will be embedded

within the framework of a distributed analytics platform for healthcare data

analysis, utilizing the Personal Health Train paradigm.

Results: This infrastructure will ensure the findability, accessibility,

interoperability, and reusability of data, metadata, and results among multiple

medical centers participating in the BETTER Horizon Europe project. The project

focuses on studying rare diseases, such as intellectual disability and inherited

retinal dystrophies.

Conclusion: The anticipated impacts will benefit a wide range of healthcare

practitioners and potentially influence health policymakers.
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1 Introduction

In recent years, data-driven medicine has gained increasing importance in terms of

diagnosis, treatment, and research due to the exponential growth of healthcare data (1).

The linkage of health data from various sources, including genomics, and analysis via

innovative approaches based on Artificial Intelligence (AI) advanced the understanding

of risk factors, causes, and development of optimal treatment in different disease areas;

furthermore, it contributed to the development of a high-quality accessible health care

system. However, medical study results often depend on the number of available patient

data, crucially when it comes to rare diseases this dependency is accentuated. Typically, the

more the data is available for the intended analysis or the scientific hypotheses, the more

accurate the results are (1). Nevertheless, the reuse of patient data for medical research

is often limited to data sets available at a single medical center. The most imminent

reasons why medical data is not heavily shared for research across institutional borders

rely on ethical, legal, and privacy aspects and rules. Correctly, data protection regulations

prohibit data centralization for analysis purposes because of privacy risks like the accidental

disclosure of personal data to third parties.

Therefore, in order to (i) enable health data sharing across national borders, (ii) fully

comply with present General Data Protection Regulation (GDPR) privacy guidelines, and

(iii) innovate by pushing research beyond the state of the art, this project proposes a robust

decentralized infrastructure that will empower researchers, innovators, and healthcare

professionals to exploit the full potential of larger sets of multi-source health data via
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FIGURE 1

Iceberg representation of needed tasks to achieve precision

medicine and innovation in real world scenarios, readapted

from Subbiah (2).

tailored AI tools useful to compare, integrate, and analyze in a

secure, cost-effective fashion; with the very final aim of supporting

improvement of citizen’s health outcomes.

In this paper, we present the Better rEal-world healTh-

daTa distributEd analytics Research platform (BETTER), a

Horizon Europe Research and Innovation Action that has been

conceptualized and designed as an interdisciplinary project

consisting of 3 use cases all of which involve 6 medical centers

located in the European Union and beyond, where sensitive patient

data, including genomics, are made available and analyzed in a

GDPR compliant mechanism via a Distributed Analytics (DA)

paradigm called the Personal Health Train (PHT) (3).

The main principle of the PHT is that the analytical task

is brought to the data provider (medical center) and the data

instances remain in their original location. While many classic

PHT approaches exist in the literature [see DataSHIELD (4) and

WebDISCO (5)], for this project, two mature implementations of

the PHT called PADME [Platform for Analytics and Distributed

Machine Learning for Enterprises (6)] and Vantage6 [priVAcy

preserviNg federaTed leArninG infrastructurE for Secure Insight

eXchange (7)] will be fused and adopted as building blocks for

the proposed BETTER platform. PADME has been developed

by the Klinikum Der Universitaet Zu Koeln (UKK) and has

already proven successful in several clinical use cases in Germany.

Similarly, Maastricht University (UM) implemented and publicly

released Vantage6 (8), a PHT paradigm successfully applied in

many real-world healthcare use cases. UM showcased how to

perform DA with horizontally (9) and vertically (10) partitioned

data in different disease areas, namely oncology (9, 11–15),

cardiovascular diseases (10, 16), diabetes type 2 (17), and

neurodegenerative diseases. This work shows that federated

learning in the healthcare domain is technically feasible, and shows

a historical track record and knowledge of applying federated

learning in the medical domain while knowing the challenges to

scale and adoption, which are addressed in this project.

The clinical use cases we consider focus on evidence-based

research on the following pathologies:

(1) Paediatric Intellectual Disability,

(2) Inherited Retinal Dystrophies, and

(3) Autism Spectrum Disorders.

Within those use cases innovative digital tools, technologies,

and methods will be researched, developed, and validated in real-

world scenarios. In this paper, our focus is on the catalyst role that

distributed analytics can have in the field of e-health interventions,

contributing to the transformation of the field of health services at

an EU-wide level.

2 Building the research agenda

During the early design of our Research and Innovation

Action, we came up with the need to define specific objectives

and relate them to explicit measurable outcomes in order to help

the development of the agenda and the workplan of the action.

Below we present each of the three main BETTER research agenda

constituents.

2.1 Overcome cross-border barriers to
health data integration, access,
FAIRification, and preprocessing

We aim to guide medical centers in collecting patient data

following a common schema in order to promote interoperability

and re-use of datasets in scope. This includes legal, ethical, and

data protection authorizations, data documentation, cataloging,

and mapping to well-established and therefore widely understood

ontologies. Attention will be devoted to the FAIRification of

the datasets used in the project. This means that the FAIR

principles (18) (i.e., Findability, Accessibility, Interoperability, and

Reusability) will be guaranteed in the results of the project. We will

also focus on the integration of external sources such as, but not

limited to, public health registries, European Health Data Space

[EHDS, (19)], the 1+Million Genomes initiative [1+MG, (20)] and

the European Open Science Cloud [EOSC, (21)].

Legal and ethical implications shall need to be duly considered

and procedures for data access and re-use will be proposed.

As a default preprocessing step data pseudonymization will be

performed to mitigate the risk of personal data leak; this will be

followed by data quality and integrity assessment. Finally, this

objective enables the integration of a BETTER station at each

medical center premises, validating the accesses to the relevant local

datasets including genomics.

This first aim builds on the matured experience where cross-

border health data integration has been demonstrated on a small

scale. Novel concepts and approaches will be researched and

developed to address BETTER integration of multiple data sources,

interoperating with public health data repositories via BETTER,
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data quality, and integrity assessment algorithm in a distributed

fashion. A real-world large-scale data integration framework based

on well-established ontologies will be demonstrated accounting for

heterogeneous data sources including whole genome sequencing.

2.2 Deploy a distributed analytics
framework for cross-border data
processing and analysis

We plan to deploy, test, and utilize BETTER, a PHT-distributed

analytics platform composed of stations hosted at each medical

center’s premises. Furthermore, a central service will be hosted by

UKK in order to monitor and orchestrate activities. Importantly,

this framework will support the development of analytics and AI

tools via both Federated and Incremental Learning modalities; in

line with GDPR data will not leave a single medical center. This

framework will be exploited by researchers, data scientists, and

software developers to securely build applications for analyzing

multiple health datasets including genomics.

Access to cross-border healthcare data is indispensable

for innovation; however—currently—it is time-consuming and

difficult due to privacy and regulatory concerns (9). Furthermore,

to effectively exploit multiple datasets via AI, a common schema

and ontology should be applied. Here the ambition regards the

deployment of BETTER, a privacy-by-design infrastructure, to

all medical centers connecting FAIR data sources and allowing

federated data analysis and machine learning. Crucially, patient

data never leaves a medical center. To this end, the BETTER

platform complements the implementation of EHDS2 (22) as it

focuses on the integration of patient data including genomic and

other clinical research data thus offering a reference architecture

for future synergies between EHDS and 1+MG.

2.3 Development of distributed tools
leveraging artificial intelligence capabilities

Within each use case, tailored tools are developed in order

to properly answer clinical needs. Some of those will indeed

exploit DA and AI to push data analysis boundaries going beyond

the state of the art. Crucially, multiple data sources including

genomics will be fused together aiming to better understand

risk factors, causes, and development of the studied diseases.

The tools will be developed using a co-creation methodology

where medical end-users closely collaborate with researchers and

technology providers enabling the emerging new concepts. Finally,

trustworthy AI guidelines (23) will be followed throughout the

development lifecycle, and particular attention will be devoted to

the explainability of the developed tools.

Distributed algorithms iteratively analyze separate databases

in order to learn without patient data being centralized (24).

Within the healthcare sector, this subject is attracting a lot of

attention and enabling important advances (25); furthermore,

researchers are actively working on topics such as federated and

incremental learning modalities, data and model parallelism, and

ensembling techniques (26). This objective aims to research and

apply novel computer vision, machine-, deep-, and reinforcement-

learning techniques and apply them to health-related real-world

data available in the use cases under study.

Apart from the above, there are other important aims that

the project supports such as the ELSA (ethical, legal, and societal

aspects) awareness in the AI lifecycle and aspects related to

the planning, coordination, and implementation of the different

medical use cases, on which we do not elaborate as they are not

related to the core aspect of distributed analytics as a means to

change our approach on real-world data integration.

3 The technology constituents

The BETTER project builds on the experience gained by UKK

on PADME in deploying security-by-design PHT infrastructures

in several real-world scenarios enabling medical centers to share

and analyze multi-sources health data via a federated learning

paradigm in aGDPR compliantmechanism. The importance of this

result is also highlighted in a recently published Nature article (2)

about the next generation of evidence-based medicine, the authors

present an iceberg where evidence-based medicine represents only

the tip of the iceberg, while the vast amount of different and

heterogeneous data sources and processing tasks represent what lies

underneath the surface. The author argues that “a deep synthesis

and amalgamation of all available data is needed to achieve next-

generation, deep evidence-based medicine”. Figure 1 exploits the

iceberg analogy to summarize the BETTER contributions.

In line with the emerging concept of the European Health Data

Space, BETTER aspires to offer a lighthouse implementation of

healthcare distributed analytics via a multidisciplinary framework

based on PADME that supports better healthcare delivery, better

research, innovation, and policy-making and, indeed enables

medical centers to make full use of the potential offered by a safe

and secure exchange, use and reuse of health data. Furthermore,

three real-world use cases addressing different medical domains

will be demonstrated and specific tools based on the latest

technology and AI will be developed to address clinical needs in

an innovative way, aiming to achieve results that go beyond the

state of the art. BETTER will showcase a consistent, trustworthy

and efficient set-up for the use of health data, including genomics,

for clinical decision support.

The proposed platform will follow an inclusive, rich inter-

and trans-disciplinary methodology, not only across scientific

disciplines but also facilitating and promoting knowledge sharing

between universities, Small and Medium Enterprises, and

healthcare professionals. An Agile methodology will be adopted

and a shared ‘language’ will be built to effectively close gaps

between scientific knowledge, clinical needs, policy changes, and

technological issues in a broader sense. Contrary to a waterfall

model, ideas, prototypes, and discussions will constantly loop

through the project’s beneficiaries for early validation and fast

development. Vitally, brainstorming, collaborative design, and

scientific contamination will be promoted across use cases

by actively engaging (calls, meetings, workshops, events, etc.)

researchers, technology providers, healthcare professionals, and

relevant stakeholders.
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3.1 The overall BETTER platform

As per the PADME framework, BETTER relies on the concept

of "bring-computation-to-data" via incremental and federated

learning, which avoids unnecessary data moving across medical

centers while exploiting much of the information encoded in such

data (1). The intuition behind BETTER can be explained via a

railway system analogy which includes trains, stations, and train

depots. The train uses the network to visit different stations to

transport, for example, several goods. By adapting this concept to

BETTER, we can draw the following similarities:

• The Train encapsulates an analytical task, which is

represented by the good in the analogy.

• The data provider takes over the role of a reachable Station,

which can be accessed by the Train. Further, the Station

executes the task, which processes the available data.

• The Depot is represented by our central service including

procedures for Train orchestration, operational logic, business

logic, data management, and discovery.

Thus, from a top-level perspective, the main infrastructure

components are Trains, Stations, and Central Service; furthermore,

additional modules are available for privacy and security

enforcement. An overview of the whole BETTER platform

system can be observed in Figure 2; the main constituents are

detailed below.

3.1.1 Trains
A Train needs to encapsulate code to perform certain analytical

tasks, which are executed at distributed data nodes (the Stations).

As it performs its duty, a Train travels from one Station to another

and executes commands on-site, utilizing the data available in each

location. Thus, the result of the analysis is built incrementally

and can be anything, based on the Train code. To achieve this

result, the code of the train is encapsulated in an Open Container

Initiative-compliant [see The Linux Foundation (27)] image where

the code is encapsulated along with all the required dependencies,

thus eliminating the need for Train developers to handle the diverse

execution node environments. Moreover, in order to increase

transparency, a Train stores metadata information about the data

the code is accessing, the type and intent of the analysis and its

creator. In order to enhance security, a Train must be instantiated

exclusively from a Train Class that is stored within an App Store.

The App Store is a repository of Train Classes; ahead of being

published in the App Store each Train Class is examined by the

community and/or by automatic procedures to detect malicious

code in particular to prevent disclosure of Stations private data.

During their lifecycle, trains can be in several states. First, a Train

Class which passed security checks is created and stored in the

App Store. When a researcher or an innovator wants to conduct

a data study, they select a suitable train from the App Store, and

a new instance of the Train is created. Subsequently, the Train

moves to an idle state, waiting to be moved to a Station; after the

transmission, the Train remains in the idle state at the Station

and applies to achieve the permit to be executed. If the Station

Administration grants the permission the Train changes its state

to running. At this stage, two scenarios may happen:

(a) The Train execution is successful, and the Train is sent back to

the Central Service to be routed to the next Station;

(b) The Train execution fails: in this case, the Train is however sent

back to the Central Service for code analysis and debugging.

3.1.2 Stations
A Station is a node in the distributed architecture that holds

confidential data and executes the code of the trains. In the

most common scenario, a Station corresponds to an institution,

hospital, or department. Each Station acts as an independent

and autonomous unit. Each Station has two main components:

(a) the data and (b) the software (i.e., the container executor).

Stations receive trains to be executed; however the execution is

not automatic by default but rather the Station administration has

to grant permission and can reject the Train, for example, due

to doubts about the data usage or a lack of capacity. Anyhow,

Station administration can also configure that Trains with specific

characteristics are automatically executed. When the execution of a

Train terminates, the Station administrator checks the results of the

Train. The train can be rejected if the results contain confidential

data. In addition, every Station offers a visual interface that serves

as a control panel for the Station administration to coordinate the

Trains’ execution cycle. To summarize, each Station has to:

(a) Manage the permission applications for controlling access to the

confidential data stored within the institution;

(b) Execute the Trains producing the partial results in the context of

incremental use of the federated analytical framework.

3.2 The BETTER central service

The Central Service component provides three types of

services: (a) a metadata repository to allow data discovery; (b)

management tools for Train creation, secure transmission to

Stations, orchestration, monitoring, and debugging; and (c) a

repository of pre-trained trains that can be directly used by

healthcare professionals on their own data to get the results of

an AI-based method that has been iteratively trained on data

from various institutions. The metadata repository of the Central

Service, for each health record datum (e.g., radiology image, genetic

test) stores (a) information about its type, the format in which

the information is encoded, and the protocol and technologies

that have been used for its production; (b) anonymized patient-

related data (of particular relevance for patient stratification and

longitudinal studies); and (c) information on the location of the

datum (i.e., the custodian Station where the datum resides). Notice

that only metadata are reported, not the data itself, which is

only stored at the corresponding Station. The metadata repository

is constantly updated by means of federated queries to all the

Stations affiliated with the distributed architecture. The data in

the metadata repository are stored using terms from well-known

and standard pipelines, in order to maximize the interoperability

of data from different institutions. The Central Service also
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FIGURE 2

High-level representation of the BETTER platform where researchers, innovators, and healthcare professionals can run analysis and receive results

exploring cross-boarders health data.

provides all the management tools to allow the creation of a

Train by a scientist from a Train class in the App Store, the

secure transmission to and from Stations, and the notification to

the scientist.

Finally, Trains that have been executed on several Stations and

have been analyzed both by each of the Station Administrators

and by the involved partners to ensure that they do not disclose

protected data, can be stored in a repository of pre-trained Trains.

We envision such Trains to perform future complex AI-powered

operations (e.g., evaluate the condition of a patient from a medical

record); a healthcare professional can clone a pre-trained Train on

their local environment and execute it on their local data to get

predictions. In this way, both patients and healthcare professionals

can benefit from AI-based solutions, without the need to design the

analysis and train the model. Moreover, as the execution is local, no

private data is disclosed.

A web-based monitoring interface will ensure users with

different roles access with respect to different content and

functionalities within the BETTER platform. Researchers,

innovators, and healthcare professionals will be able to perform

analysis through the Central Service, as well as share results

with other researchers and professionals to enhance cross-border

collaboration in medical investigation. Moreover, policymaker user

access will be also available with a high-level reporting view to

easily see trends, and patterns and identify unexpected events. This

will enable policymakers to identify problems and take data-driven

corrective actions.

3.2.1 Monitoring component
The BETTER platform includes a Train metadata schema that

provides detailed information about each Train, allowing Train

requesters and Station administrators to access relevant data such

as Train location and status. Each Station is also equipped with a

metadata Processing Unit that collects and stores static metadata

about the Station and dynamic Train execution information such

as current state and processing unit usage. This dynamic data is

converted to conform with the schema standard and transmitted to

a global Train metadata repository located in the Central Service.

The Station administrators can also apply customizable filters to

the metadata stream, allowing them to maintain control over the

outgoing processes through a web-based monitoring interface. If

PADME is used, a reference to the available metadata schema is in

the documentation (28).

3.2.2 Playground component
The research and development of AI-driven analysis on

distributed health data today still represents a significant challenge

due to the complexity and limited literature available. Based on

experience, researchers and developers require time and practice

to familiarize themselves with the infrastructure and overcome the

initial complexity. To this end, BETTER provides a Playground

component that allows exploration, test, and validation of analysis

tasks. For instance, it allows for:

(1) Testing criteria including proper connection interface, matching

schema, error-free analysis execution, and correct result storage

structure.

(2) Validate connection interface: the DA algorithm must be

able to connect to the data source properly. This means the

configuration of the algorithm should match the data source’s

connection interface. All connection credentials (such as file

path, hostname, port, and type of database) should be correct.
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(3) Assess matching schema: the DA algorithm should be able

to send correct queries to the data store and receive the

corresponding results. Hence, the expected data schema of the

analysis task should match the actual schema of the data source.

(4) Error-free execution: if the connection interface and matching

schema are correct, the DA algorithm should execute without

any errors. This means the program should terminate with exit

code 0, indicating a successful program execution.

(5) Correct result storage: the analysis results should be stored in the

correct location and format. The code should emit the results

as a file or a processable bit string for transmission. An initial

implementation of this component is available and documented

on PADME [see Weber and Welten (29)].

3.2.3 Privacy and security enforcing components
The privacy and security components can be subdivided into

two aspects: (1) components for user authentication and (2)

permission management and components for secure transmission

and lifecycle handling of Trains.

Regarding the first aspect, the access to the Central Service (that

allows to request a train and to query the metadata repository)

is controlled by an Identity and Access Management (IAM)

component which manages user accounts and access authorization.

Regarding the second aspect, Trains’ life cycle handling, as

per PADME the architecture follows several design principles to

protect sensitive data. One assumption is that the station admin,

who is interacting with the Station software, is authorized to inspect

and release potentially sensitive data, which has been generated in

the context of the Train execution (e.g., a query result or model

parameters). However, the admin’s authority is limited and is only

valid within the institutional borders. Therefore, the admin must

not see the results of the preceding stations. The admin further

should also be sensitized to the intrinsic activities of the executed

Train and the files inside the Train, which will be released after

the Train has left the institution. To meet these requirements, the

Station software incorporates a mechanism to inspect the Train

contents and visualize added, changed, or deleted files. In addition,

in case the Train produces query results, the admin is able to audit

the file contents themselves. The software detects the changes and

only visualizes data, which is relevant to the current station by

simultaneously hiding information from other stations.

For transmission, BETTER adopts a private-public key

encryption policy; the assumption here is that the Central Service is

considered trusted. The accomplishment of a secure transmission

is made possible through the implementation of an encryption

process that ensures no Train is stored in an unencrypted form

and only the intended recipient has the ability to decrypt it. This

strategy specifically employs the utilization of private and public

keys for each involved entity, including the Train requester, Central

Service, and Stations. First, the train requester instantiates a Train

instance, which is encrypted by a symmetric key. This symmetric

key is generated for each Train request ad hoc. In the second

step, the symmetric key is encrypted by the public key of the first

station. After the Train transmission, the Station reversely decrypts

the Train, executes it, and re-encrypts it with the public key of

the Central Service. This procedure is repeated for each Station

in the route. At the end, the final Train including the encrypted

aggregated results is stored in the Central Service encrypted such

that only the requester is able to inspect the results.

3.3 Deployment at each medical center

The proposed platform requires that a dedicated hardware

(server) is deployed within each medical center premises; this

server actually implements the Station and ensures the availability

of computational power. As per PADME, the integration of a new

Station (medical center) in the BETTER ecosystem is done through

an "Onboarding Service." The service includes registration to the

BETTER Station Registry and setting up the Station Software. The

Station Registry is a central service that allows users to onboard,

register, and manage station information. It provides an overview

of stations. A new station is registered by filling in the station

data. The Station Registry also generates public/private keys and

the .env file for each onboarded station. The Station Software

can be configured by following the provided web browser-based

wizard steps. Station Software is a local software component that

is installed on the medical center site. Station software provides a

graphical user interface as a management console to coordinate the

Train execution cycle. The connection from Station Software to the

medical data source that is kept in the medical center server should

be configured by the Medical center IT department. As a reference,

well-documented deployment instructions are available on PADME

documentation (30).

4 Data aspects

Better integration and use of health-related real-world and

research data, including genomics, for improved clinical outcomes,

is gaining more importance in the last years. The context to

this relates to the fact that researchers, healthcare professionals

but also science entrepreneurs shall benefit from better linkage

of health data from various sources, including genomics, based

on harmonized approaches related to data structure, format, and

quality. This shall be further useful as they will have access

to advanced digital tools for the integration, management, and

analysis of various health data re-used in a secure, cost-effective,

and clinically meaningful way enabling the improvement of

health outcomes. Below we present our approach toward data

FAIRification and data fusion in the BETTER project.

4.1 Data FAIRification

4.1.1 Rationale
A solid infrastructure that is able to organize and share the

needed information at the central level (thus enabling also pair-wise

interchanges between the data providers’ stations) is needed. As a

fundamental approach for designing the metadata, the BETTER

project will follow the DAMS proposal (1), which has introduced

a foundational metadata schema to allow DA infrastructures to

comply with FAIR principles (18). The DAMS schema comprises

two categories of metadata: those related to Trains and those related
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to Stations. Trains must be described by (1) Business information

(e.g., the author of the Train algorithm); (2) Technical information

(e.g., the data type the algorithm is processing); and (3) Dynamic

execution information (e.g., the log output the Train is producing).

In parallel, Stations must contain (1) Business information (e.g.,

the location of the data provider); (2) Runtime environment

information (e.g., capabilities in terms of computational power); (3)

Data information (e.g., size of a dataset or the data type provided by

the station).

The choice of which attributes including within each entity

dimension of the repository will be crucial for fulfilling the FAIR

data principles requirements. In line with the DAMS approach, we

plan on aligning our business information to theDataCiteMetadata

Schema (31), which assigns digital object identifiers to both

trains and station assets and ensures that sufficient information

is available for each of their components. The Friend of a Friend

ontology (32) can be employed to express business information

about social entities (such as the owners of trains and stations).

The technical information of the train and the data information of

the data provider will be aligned with the Software Ontology (33).

The Data Catalog Vocabulary may be used to provide predefined

attributes describing the semantics of data sets (34).

Differently, clinical data types and related metadata are

typically specific to the context of use, leveraging the characteristics

of the disease, of patients, and relevant parameters for the problem

at hand. BETTER is prepared to address the data management

problem with a general approach. As these data types are not

covered in DAMS, their management will be inspired by extensive

previous work in the field [conducted within the "Data-driven

Genomic Computing" ERC AdG n. 693174 (35)]. More specifically,

four directions in the agenda of BETTER will be followed to

guarantee the scalability of semantic/syntactic standards of clinical

data types:

1. We will ensure interoperability at the level of the same pathology

by having the partners generate datasets that agree upon the

same standards.

2. We will employ a data schema that captures the main properties

of a generic clinical context, keeping a high abstraction level

to encourage maximum interoperability [examples are the

Genomic Conceptual Model (36) and the COVID-19 Host

Genetics Initiative Data Dictionary (37)]. Typically, clinical data

involve demographic (or static) information on the patient

and longitudinal measurements related to medical encounters,

treatment, or laboratory measurements.

3. We will use a key-value paradigm for information that is not

shared among different pathologies and that is specific to a

given use case, thus creating a very flexible and expressive

data model that allows storing all relevant information without

dealing with integration and interoperability at the storage level

[see Masseroli et al. (38)].

4. We will perform semantic annotation by using, predominantly

well-adopted terminologies such as NCIT (39), the International

Statistical Classification of Diseases and Related Health

Problems (ICD) at its most updated version [11th revision, (40)],

and Logical Observation Identifiers Names and Codes

[LOINC, (41)]. For other information, we will employ dedicated

biomedical ontologies as we described in Bernasconi et al.

(42), sourcing them from BioPortal (43) and Ontology Lookup

Service (44). In this way, we will pursue complete semantic

interoperability between the metadata associated with known

ontology.

For genomic data, the BETTER project will initially acquire

DNA and RNA sequencing data in both FASTQ and BAM formats.

All submitted sequence data will be aligned using the latest human

reference genome; variant and mutation calls will output VCF and

MAF formats, whereas gene and miRNA expression quantification

data will be kept in TSV format. Other genomic signals for tertiary

data analysis will be homogenized according to guidelines of the

Global Alliance for Genomics and Health (45).

4.1.2 Approach
As a first step, BETTER deals with datasets discovery at each

medical center. Multiple focus groups will be organized with both

technical and clinical stakeholders to understand in depth the

available datasets, more specifically: (1) dataset characteristics and

size (to support findability); (2) data types with their attributes

and value ranges (useful to interoperability and reusability); (3)

pathology-related interpretation (to assess interoperability aspects);

(4) examples of data usage in real-world scenarios (to foster

reusability). Dataset profiling activities will be conducted manually

and with available tools (46). They will allow to measure the overall

value of the data at hand, assessing typical data quality metrics

such as coherence, completeness, as well as the heterogeneity of

the attributes, which are possible feature candidates. For what

regards genomic data, we will evaluate the possibility of re-running

bioinformatic pipelines to homogenize the collected data among

different centers.

Secondly, the project tackles datasets’ pseudonymization.

By default, data will be pseudonymized before joining the

BETTER platform, which requires the implementation of modules

for: (1) identifying personal data from images and text; (2)

pseudonymization of reference ID to preserve leakage between

same patient samples; (3) where applicable, defacing of face images.

Thirdly, we will develop a unified schema repository for

medical centers’ data and metadata integration. A unifying global

model will be designed to accommodate all the data formats and

their describing metadata, and serve as a reference for the next

analysis steps.

Finally, we will deal with FAIRification of medical centers’

datasets. We will research and develop dedicated preprocessing

and ETL (Extract, Transform, and Load) processes to onboard

health datasets from each medical center to BETTER (allowing the

accessibility principle within the PHT framework); this task will

achieve data FAIRification by scheduling transformation functions

to adjust the initial content into appropriate destination formats

(making it findable through appropriate metadata). Medical-

center-specific data formats, protocols, and characteristics will

be mapped to a standard schema, enabling interoperability and,

eventually, distributed analytics–available for future reuse in other

European-level infrastructures. Building on previous research of

the projects’ participants, user-friendly FAIRification instruments

will be preferred, and re-using and enhancing existing open-source

packages, such as University M (47), will be encouraged.
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To achieve a completely interoperable format of the metadata

repositories, we will provide their content in standardized formats

such as Resource Description Format (RDF) or JavaScript Object

Notation (JSON). These standardsmake it unnecessary to know the

internal structural organization of a specific data provider in order

to successfully execute a Station data retrieval query. Moreover,

RDF/JSONdata store approaches are sufficiently flexible to describe

arbitrarily complex concepts without the need to redesign the

providers’ databases. Eventually, we will allow the metadata

information to be queried through APIs internal to the project

participants. Genomic, image, and clinical data, instead, as they will

not be shared, will have to comply with specific data formats that

will be indicated in the metadata schema. The proposed ecosystem

will be designed so that it complies with any main data storage

technology and, therefore, also with emerging standards like the

Fast Healthcare Interoperability Resources (FHIR) (48).

4.1.3 State of the art
Implementing FAIR principles in the context of a big

distributed platform is an effort that concerns multiple aspects.

While the literature offers many contributions in the areas of

FAIR principles interpretation (49, 50) FAIRness assessment (51–

53), FAIR tooling (54), and FAIR service support (55, 56), here

we restrict to reporting the few successful experiences that have

build FAIR-compliant infrastructures in very specific and practical

scenarios.

A preliminary effort of nine Dutch labs aimed to publicly share

variant classifications (even if at the time the "FAIR" concept had

not been developed yet) (57); the work was expanded 2 years later

in the context of the "Rational Pharmacotherapy Program" (The

Netherlands Organization for Health Research and Development),

developing an instructionmanual for FAIR genomic data in clinical

care and research—this was based on an inventory of commonly

used workflows and standards in the broader genome analysis (58).

The same authors finally proposed a FAIR Genomes metadata

schema, specifically focusing on promoting genomic data reuse

in the Dutch healthcare ecosystem (59). Parallel efforts were

devoted to analysis in distributed platforms for radiomics (60) and

leukodystrophy (61). ETL processes that are compliant with FHIR

were proposed in Peng et al. (62) and Van Damme et al. (63).

To the best of our knowledge, a large, coordinated European-

level effort of FAIRification, such as the one proposed in BETTER –

with the goal of enabling better distributed analytics—has not been

achieved yet in a documented way. BETTER aims to describe all

data in a standardized comprehensive manner, so as to process the

data in the trains with the most current machine learning available

models. Integral analyzes performed on secure systems will provide

insight into disease for large cohorts of patients, with significant

impact.

4.2 Data fusion

To gain the maximum from data, an important step is

data fusion. Data fusion is the process of integrating multiple

data sources to produce more consistent, accurate, and useful

information than that provided by any single data source. Local

data fusion consists of integrating data from multiple sources

within a single institution (or Station). This type of data fusion is

useful when the data sources are heterogeneous, such as genomic,

clinical, and phenotypic data of the same patient. Using AI-based

solutions to integrate data heterogeneous data enables the creation

of complementary, cohesive, and more complete information,

which leads to more accurate insights (64). Moreover, we plan

to develop frameworks and methods to also allow us to integrate

patients’ data from wearable devices and smartphones. Distributed

data fusion is the task of integrating data frommultiple institutions

(Stations). While local data fusion is well-established, distributed

fusion is a fairly novel discipline and contains large potentials (65,

66). We envision two main applications for distributed data

fusion: integration of homogeneous or heterogeneous data sources.

The first aims at creating larger cohorts by combining data

provided by independent institutions and removing potential

biases due to different collection protocols or techniques. Examples

are batch removal algorithms for genomic data (12) or image

registration (67). Several methods based on AI exist to perform

such tasks and are commonly used by the research community; the

challenges for the BETTER architecture consist in designing and

developing approaches to achieve the same results in a distributed

context, where no data sharing is allowed. The second application

can be used to combine several data modalities, each providing

different viewpoints on a common phenomenon to solve inference

and knowledge discovery tasks. The ambition is to fuse several

dimensions including laboratory analysis, medical reports, drug

therapy, imaging, genomics, socio-demographic, geographical, and

medical questionnaires. To this aim, we also plan to investigate

the availability and fuse publicly accessible data sources. In the

context of the project, we will develop and implement AI-based

solutions tailored to the clinical use cases, e.g., intended to perform

analyzes on clusters of interest or compare different therapeutic

regimens. Finally, we plan to adopt AI to generate several synthetic

datasets, using generative AI and data augmentation approaches

to be released to the community for developing medical AI-

based solutions.

5 Conclusion

The BETTER project relies on the concept of "bringing

computation to data" through incremental and federated learning.

This approach avoids unnecessary data transfers between medical

centers while effectively utilizing the encoded information within.

The project builds upon the experience gained from previous

initiatives like the PADME and Vantage6 projects, as well as from

the health/genomic data integration expertise of the Data-driven

Genomic Computing project.

Aligned with the European Health Data Space (EHDS),

BETTER aims to empower EU medical centers and beyond

to fully exploit the potential of securely exchanging,

utilizing, and reusing health data, facilitated by robust

data FAIRification.

Starting from the domains of intellectual disability, inherited

retinal dystrophies, and autism spectrum disorders—with

potential expansion to other diseases —the analytical tools
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developed will enhance healthcare professionals’ proficiency

in cutting-edge digital technologies, data-driven decision

support, health risk surveillance, and healthcare quality

monitoring and management. These advancements are

expected to positively impact health policymakers and

innovators alike.
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