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Introduction: Sepsis, a life-threatening condition with a high mortality rate, 
requires intensive care unit (ICU) admission. The increasing hospitalization rate 
for patients with sepsis has escalated medical costs due to the strain on ICU 
resources. Efficient management of ICU resources is critical to addressing this 
challenge.

Methods: This study utilized the dataset collected from 521 patients with sepsis 
at Chungbuk National University Hospital between July 2020 and August 2023. A 
transformer-based deep learning model was developed to predict ICU length of 
stay (LOS). The model incorporated global and local input data analysis through 
classification and feature-wise tokens, based on sequential organ failure assessment 
(SOFA) criteria. Model performance was evaluated using four-fold cross-validation.

Results: The proposed model achieved a mean absolute error (MAE) of 2.05 
days for predicting ICU LOS. The result demonstrates the ability of the proposed 
model to provide accurate and reliable predictions.

Discussion: The proposed model offers valuable insights for healthcare resource 
management by optimizing ICU resource allocation and potentially reducing 
medical expenses. These findings highlight the applicability of the proposed 
model to efficient healthcare cost management.
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1 Introduction

Sepsis, a life-threatening condition, arises when the body’s response to infection induces 
widespread  inflammation (1). This inflammatory response can damage multiple organ 
systems, leading to severe multi-organ failure (2). The rapid progression of sepsis can result in 
death without timely and appropriate treatment (3). Global guidelines often recommend 
intensive care for patients with sepsis (2). Despite advancements in medical technology, 
including early diagnostic methods, rapid antibiotic administration (4), and advanced 
supportive care such as mechanical ventilation and extracorporeal membrane oxygenation (5), 
sepsis continues to pose a significant healthcare challenge worldwide due to increasing 
mortality and morbidity rates (6–11).
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Treating sepsis in the intensive care unit (ICU) incurs significantly 
higher costs than treating other diseases owing to the need for 
advanced life support measures, prolonged hospitalization, and the 
complexity of managing multi-organ failure (3, 12, 13). Recent 
statistics indicate that the annual cost of treating sepsis in the 
United  States exceeds $24 billion, making it the most expensive 
treatment option for hospitals (13). This high cost is primarily driven 
by the length of stay (LOS) in the ICU because patients with sepsis 
often require prolonged intensive care. Sepsis accounts for 4.7–42.2% 
of global ICU utilization because ICU admission is recommended as 
an aggressive treatment regimen (14). Additionally, sepsis readmission 
rates are alarmingly high, with approximately 19% of survivors 
readmitted within 30 days, further escalating healthcare expenditures 
(15). Accurate prediction of ICU LOS for sepsis patients is crucial, as 
it enables healthcare facilities to optimize resource allocation, such as 
bed utilization, staffing, and equipment availability. By improving care 
efficiency, hospitals can reduce operational costs, enhance patient 
turnover rates, and ultimately contribute to cost savings for both 
healthcare providers and the broader system (16, 17).

.Efforts to predict ICU LOS have significantly advanced in recent 
years. In 2022, Wu et al. (18) demonstrated the utility of machine learning 
techniques by predicting ICU LOS (area under the receiver operating 
characteristic curve (AUROC) = 0.742) using gradient boosting decision 
trees (GBDTs). In the same year, Deng et al. (19) improved accuracy 
(AUC = 0.765) by utilizing temporal data and focusing on the changes in 
progression according to treatment stages using gated recurrent units 
(GRU) and long short-term memory (LSTM) networks. In 2023, the 
emphasis shifted to simpler, clinically interpretable models, such as linear 
regression models utilizing the sequential organ failure assessment 
(SOFA) score. Zangmo and Khwannimit (20) developed a model to 
classify sepsis patients with ICU LOS exceeding 3 days (AUC = 0.530), 
while Farimani et al. (21) proposed a model to predict ICU LOS in cardiac 
surgery patients (root mean square error (RMSE) = 5.181). Despite the 
advances, existing models have struggled to effectively capture the 
complex feature interactions inherent in structured data. GBDT 
emphasizes individual feature importance through splits (22), making it 
less effective at explicitly modeling complex interactions or high-
dimensional relationships. On the other hand, GRU and LSTM models 
are optimized for processing sequential data, the models exhibit structural 
limitations in learning complex inter-variable relationships in structured 
datasets (19). Similarly, linear regression assumes linear relationships 
between variables and is, therefore, unable to capture nonlinear 
interactions (23). The limitations underscore the necessity for innovative 
methods capable of effectively learning complex and high-dimensional 
data structures. Hence, we  present a transformer-based solution to 
address the limitations of structured data analysis by simultaneously 
capturing nonlinear feature interactions and learning global relationships 
through attention mechanisms.

Transformers have shown promise in structured data analysis by 
incorporating innovative mechanisms such as the classification (CLS) 
token, a functionality originally introduced in the bidirectional 
encoder representations from transformers (BERT) (24) in 2018. The 
CLS token serves as a global representation of the input sequence, 
summarizing overall patterns in structured data through self-
attention, and allows Transformers to effectively capture global 
dependencies across features. In 2021, Models such as self-attention 
and intersample attention transformer (SAINT) (25) and feature 
tokenizer (FT)-Transformer (26) successfully leveraged CLS tokens, 
achieving performance improvements in tabular datasets. SAINT 

enables feature-to-feature and sample-to-sample interactions, while 
the FT-Transformer captures intricate inter-feature relationships and 
global patterns. However, while the CLS token excels at capturing 
global information, achieving a comprehensive analysis of attention 
mechanisms using CLS tokens can be  challenging, as attention 
mechanisms may ignore important local feature details, particularly 
in datasets with complex interdependencies (27–29). The limitation 
of the CLS token underscores a persistent challenge in Transformer-
based models when applied to highly intricate structured data.

This study focuses on predicting the ICU LOS for patients with 
sepsis using a transformer-based DL model applied to SOFA-based 
tabular data. The proposed model uses an attention mechanism and a 
skip-connected token process, integrating global information from a 
CLS token and local information from feature-wise tokens during the 
final classification. This approach adds to the growing body of work 
on applying DL techniques to tabular data in predicting ICU LOS for 
patients with sepsis.

2 Methods

2.1 Dataset information

2.1.1 Study population
To develop the DL model, we constructed a dataset from patients 

treated for sepsis at Chungbuk National University Hospital 
(Cheong-Ju, Korea) between July 3, 2020 and August 3, 2023. The 
study, conducted following the principles of the Declaration of 
Helsinki, received approval from the Institutional Review Board of 
Chungbuk National University Hospital (IRB no. CBNUH 2021-02-
034-001). Patient information was anonymized and de-identified 
prior to analysis.

As shown in Figure 1, we initially identified patients meeting the 
Sepsis-3 guidelines for suspicion or diagnosis of sepsis, defined as a 
quick SOFA (qSOFA) score of ≥ 2. We sequentially excluded patients 
who met the following criteria: ICU admission post-surgery, 
readmission due to sepsis during treatment, ICU stays of less than 
24 h, withdrawal of life-sustaining therapy, ICU discharge, admission 
with cardiogenic shock, hypovolemic shock, or acute stroke, 
procalcitonin level of ≤0.05, missing data, death, and ICU LOS 
outliers. This process resulted in a dataset comprising 521 patients.

We collected various clinical and SOFA-related features to 
construct a sepsis-specific ICU LOS prediction model. The features 
included: (1) Clinical features: age, sex, body mass index (BMI), 
lactate, atrial fibrillation (AF), systolic blood pressure(SBP), diastolic 
blood pressure (DBP), mean blood pressure (MBP), partial pressure 
of arterial oxygen and fraction of inspired oxygen ratio (PaO2/FiO2, 
P/F ratio), Glasgow Coma Scale (GCS)]. (2) SOFA-related features: 
vasopressor (VASO), mechanical ventilator (MV), 24-h urinary 
excretion (UR), platelets (Plt), serum total bilirubin (Bil), serum 
creatinine (Cr)]. (3) Target feature: ICU LOS.

Table 1 presents detailed statistical information on the features 
used in this study. Numerical features are described using means, 
standard deviations, and min-max ranges, while categorical features 
are reported as frequencies and percentages. The Pearson correlation 
coefficient for numerical features and point-biserial correlation for 
categorical features were calculated to determine their correlation with 
the target feature. p-values in Table 1 test the null hypothesis that the 
correlation coefficient is zero.
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FIGURE 1

Flow diagram of the study inclusion and exclusion.

TABLE 1 Statistical information of features in our dataset.

Characteristics Categories Dataset (n = 521) Correlation 
coefficient

p-value

Clinical features Age Years 69.19 ± 14.65 (19–95) −0.09 0.05

Sex Female 239 (45.87%) 0.01 0.90

Male 282 (54.13%)

BMI kg/cm2 22.41 ± 4.18 (11.55–43.94) −0.07 0.11

LACTATE mmol/L 2.58 ± 2.56 (0–29) 0.16 < 0.01

AF yes 86 (16.51%) 0.06 0.19

no 435 (83.49%)

SBP mmHg 89.67 ± 19.59 (33–176) −0.08 0.08

DBP mmHg 49.31 ± 11.46 (17–90) −0.09 0.04

MBP mmHg 60.28 ± 11.83 (24–104) −0.10 0.03

PF - 290.69 ± 152.05 (16–943) −0.31 < 0.01

GCS - 11.08 ± 3.55 (3–15) −0.42 < 0.01

SOFA-related features VASO Yes 298 (57.2%) 0.11 0.02

No 223 (42.8%)

MV Yes 171 (32.82%) 0.43 < 0.01

No 350 (67.18%)

UR cm3 1803.52 ± 1332.96 (0–1,250) −0.19 < 0.01

Plt ×103/μl 154.16 ± 96.02 (4–657) −0.06 0.19

Bil mg/dl 1.31 ± 2.09 (0.09–22.58) −0.02 0.72

Cr mg/dl 2.14 ± 2.20 (0.11–16.60) 0.07 0.13

Target feature ICU LOS days 5.24 ± 3.57 (1.01–16.47)

SOFA, sequential organ failure assessment; BMI, body mass index; AF, atrial fibrillation; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; P/F ratio, 
partial pressure of arterial oxygen and a fraction of inspired oxygen ratio (PaO2/FiO2); GCS, Glasgow Coma Scale; ICU LOS, length of stay in intensive care unit; VASO, vasopressor; MV, 
mechanical ventilator; UR, 24 h urinary excretion; Plt, platelets; Bil, serum total bilirubin; Cr, serum creatinine.

https://doi.org/10.3389/fmed.2024.1473533
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kim et al. 10.3389/fmed.2024.1473533

Frontiers in Medicine 04 frontiersin.org

2.1.2 Data preprocessing
As depicted in Figure 2A, the ICU LOS distribution in our dataset 

exhibited a pronounced positive skew, with a concentration of values 
at the lower end and a long tail extending towards higher values. This 
necessitated the removal of outliers prior to analysis. The interquartile 
range (IQR) method was employed to handle outliers in ICU LOS 
(30). The IQR method effectively retains most data points within a 
reasonable range, excluding outliers that could potentially distort the 
analysis (31). Specifically, the IQR is the range between the first 
quartile (Q1) and third quartile (Q3) of the data, with outliers defined 
as points below Q1–1.5IQR or above Q3 + 1.5IQR (32). Our study 
identified patients with an ICU LOS > 16.52 days as outliers, excluding 
48 patients as shown in Figure 2B. Furthermore, we standardized the 
dataset to ensure that all features contributed equally to the analysis 
and to prevent any single feature from disproportionately influencing 
the results due to scale differences. This procedure was applied 
exclusively to numerical features. The standardization formula is 
defined in Equation 1 as follows:

 
( )

,
X X

Z
s
−

=
 

(1)

where X  represents the mean and s denotes the standard 
deviation (33).

2.2 Model architecture

We developed a transformer-based DL model using a CLS token 
to predict the ICU LOS. The architecture of the proposed model is 
depicted in Figure 3; it consists of three modules as shown in Figure 4.

2.2.1 Module of concatenating CLS tokens
The input data colx∈ , where col represents the number of input 

features, is batch normalized before entering the “fzCLSBlock.” As 
represented in Figure 4A, x  in the fzCLSBlock is concatenated with a 
trainable CLS token 0CLS  1∈ , which is zero-initialized to ensure 
stable training (24). The CLS token is the first special token of every 
sequence and is widely used as an aggregate sequence representation 
for classification tasks (26). The concatenated vectors are embedded 

through a dense layer to achieve a representative embedding of the 
input data and capture the complex relationships. This process is 
expressed in Equation 2 as follows:

 ( ) ( )1
0Dense CLS ,col dz x + ×= ∈   (2)

where d represents the embedding dimension and  denotes the 
concatenate function.

2.2.2 Module of multi-head self-attention
Inspired by networks in several studies using transformers (25, 34–

36), we  employed the self-attention mechanism of the transformer 
encoder. The self-attention mechanism calculates model weights to assess 
the relevance of each feature and captures interactions between features 
or instances. Recent research have demonstrated superior prediction 
accuracy by incorporating self-attention mechanisms in new networks 
such as TabNet (35) and FT-transformers (26). These findings suggest the 
efficacy of self-attention mechanisms for analyzing tabular datasets.

The projected vector ( )1col dz + ×∈  (as defined above) is analyzed 
in the “AttnEncoderBlock” illustrated in Figure 4B. The input vector 
z is linearly transformed into query (Q), key (K), and value (V) 
matrices within the single attention head of multihead self-attention 
(MSA) (37). The attention weight is calculated by taking the dot 
product of Q and K, normalizing it by the square root of the 
dimension of K, and applying a softmax function. After that, the 
attention head outputs the dot product of the attention score and V, 
which are computed in parallel five times. Besides the MSA, the 
AttnEncoderBlock includes a fully connected feedforward network 
(FFN) composed of two linear transformations with a rectified linear 
unit (ReLU) activation in between (38).

2.2.3 Module of analyzing global and local 
information

Previous research indicates that CLS tokens often fail to adequately 
capture the semantic content of the input because they focus more on 
global information than local and low-level features (39). We designed 
a skip-connected token process, which comprehensively analyzes 
global and local data information, to address this issue. A 

FIGURE 2

Distribution of ICU LOS in dataset. (A) The ICU LOS before data preprocessing and (B) the ICU LOS after handling outliers using the IQR method.
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skip-connected token process addes token values representing both 
global and local information.

As presented in Figure 4C, the output of the AttnEncoderBlock is 
batch normalized and divided into the 1CLS d×∈  token, summarizing 
all features, and the feature-wise token col df ×∈′  , maintaining the 
unique information of each feature. The f ′, containing local information, 
passes through a dense layer to convert the local information into more 
abstract and high-level features. This layer captures complex dependencies 
and correlations between local features by identifying the interactions 
between various feature dimensions and learning appropriate weights. 
Additionally, the CLS token, containing global information, is added to f
, enabling a comprehensive analysis of global and local information. These 
computations can be expressed in Equations 3 and 4 as follows:

 ( )( )Dense Flatten ,df f ′= ∈  (3)

 ( )Dense CLS .d
sct f= + ∈  (4)

The sct  token is used for the final prediction of the proposed 
model, predicting the ICU LOS via a dense layer with one unit.

2.3 Implementation details

The proposed model was implemented using Python 3.9 on a 
workstation with an 11th Gen Intel(R) Core(TM) i7-11700K processor 
at 3.60 GHz and 64 GB of RAM. We applied exponential decay to 
control the learning rate during training, gradually reducing it to 
ensure stable convergence. The proposed model was configured with 
a batch size of 32 and the Adam optimizer at a learning rate of 1e-3. 
Learning rate decay was applied every 10 steps at a rate of 0.96. 
Furthermore, we compared the prediction accuracy of the proposed 
model with that of conventional ML and DL models. Hyperparameters 
for random forest (RF) (40), extreme gradient boosting (XGBoost) 
(40), support vector regression (SVR) (41), multiple linear regression 
(MLR) (42), and TabNet (35) were set to their respective default values.

2.4 Model performance evaluation

We conducted a four-fold cross-validation to verify the reliability 
and consistency of the predictions of the proposed model. Twenty 

percent of the dataset was allocated for testing, while the remaining 
dataset was divided into four folds. Each iteration of the four-fold 
validation consisted of one fold used for validation and the remaining 
folds used for training. We adopted the following three key metrics to 
quantitatively evaluate the performance of the proposed model 
because it performed a regression task: coefficient of determination 
(R2), mean absolute error (MAE), and root mean square error 
(RMSE). Detailed descriptions of each metric are as follows:

The R2 value measures the proportion of variance in the dependent 
feature that can be predicted from the independent features. The R2 
value ranges from 0 to 1, where 0 indicates that the model does not 
explain the variability in the response data around its mean, and 1 
indicates that the model explains all the variability of the response data 
around its mean (43). R2 value for an ideal model is close to 1 and is 
computed using Equation 5 as follows:

 

( )
( )

2
2 1

2
1

R 1 ,
ˆn

i ii
n

ii

y y

y y
=

=

−
= −

−

∑
∑  

(5)

where n  denotes the number of patients, iy  corresponds to the 
observed value, ˆiy  represents the predicted value, and y  is the 
average ICU LOS. The R2 metric is crucial as it directly correlates 
with the proportion of the total variation in the target feature 
explained by the model. A high R2 indicates that the model captures 
a significant portion of the variance, vital for predictive 
accuracy (44).

The MAE represents the average absolute difference between the 
predicted and observed values of the model (45). It provides a 
straightforward and interpretable measure of the average prediction 
error (46). Ideally, the MAE value approaches zero and is computed 
using Equation 6 as follows:

 1

1AE ,ˆM
n

i i
i

y y
n =

= −∑
 

(6)

where n represents the number of data points used for model 
testing, ˆiy  corresponds to the value predicted by the model for the 
i-th sample, and iy  denotes the corresponding observed value 
(47). The MAE is advantageous due to its reduced sensitivity to 
outliers compared to metrics such as RMSE, making it a more 
reliable indicator of the average performance of a model, 
particularly when handling datasets with noisy or extreme 
values (48).

The RMSE is the square root of the average squared difference 
between the predicted and actual observations. It is widely used due 
to its ability to penalize larger errors more heavily than MAE, 
highlighting significant deviations (48). The formula for RMSE is 
calculated using Equation 7:

 
( )2

1

1MSE .ˆ
n

i i
i

y y
n =

 = − 
 

∑
 

(7)

This metric provides an aggregate measure of model accuracy, 
encompassing both bias and variance components of error. RMSE is 

FIGURE 3

Architecture of the proposed model for predicting ICU LOS in 
patients with sepsis.
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valuable in applications where larger errors are more significant and 
must be minimized. Its sensitivity to large errors makes it essential for 
ensuring robustness and precision (49).

3 Results

3.1 Model performance comparison

We conducted a performance comparison of the proposed model 
using a four-fold cross-validation of the datasets. In Table  2, the 
proposed model demonstrated promising predictive performance, 
achieving an average R2, MAE, and RMSE of 0.29 ± 0.01, 2.05 ± 0.03, 
and 2.72 ± 0.02, respectively. The average R2 indicates the proposed 
model could explain approximately 29% of the variability in ICU 
LOS. Notably, the R2, MAE and RMSE values showed minimal 
variation across folds, demonstrating the stability.

Figure 5 presents the calibration plot for each model, illustrating 
the agreement between predicted and observed ICU LOS. Darker 
points in these plots represent a better fit with actual values. The plots 
indicate that while the proposed model accurately predicts shorter 
ICU stays, it exhibits noticeable deviations for longer stays. This 

finding suggests that the proposed model demonstrated strong 
performance for shorter ICU stays; however, it may require further 
refinement to improve accuracy for longer stays, which are often 
associated with more complex and variable patient conditions.

Additionally, we  compared the performance of the proposed 
model with conventional ML and DL models, as shown in Table 3. The 
proposed model leveraged the skip-connected token process to 
enhance its predictive power by capturing interactions within tabular 
data. Comparisons were made with other DL models using MSA, such 
as TabNet and FT-Transformer, as well as traditional models known 
for their strong performance on tabular data, including RF, XGBoost, 
and MLR. The proposed model demonstrated superior performance 
compared to the other models, indicating that it provides more 
accurate predictions.

3.2 Ablation study

We conducted an ablation study to evaluate the effectiveness of 
the proposed skip-connected token process. This study compared the 
information delivered to the ICU LOS output layer by altering specific 
components. The performance of models was compared across three 

FIGURE 4

Three modules of the proposed model. (A) The illustration of the process concatenating CLS token in FzCLSBlock, (B) schematic diagram of the 
module of multi-head self-attention, (C) process of global and local information analysis.
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categories: models that used only local information analysis, only 
global information analysis, or a combination of both. Detailed 
configurations and corresponding performance indicators are 
provided in Table 4.

The first model, which utilized only global information analysis, 
demonstrated poor performance. In contrast, the second model, 
relying solely on local information analysis, exhibited improved 
results. Notably, the proposed model, integrating global and local 
information analysis, achieved an R2, MAE, and RMSE of 0.29 ± 0.01, 
2.05 ± 0.03, and 2.72 ± 0.02, respectively, outperforming the other 
two models.

These results indicate that the proposed model, which uses skip-
connected token process, has the highest explanatory power and 
lowest prediction error, demonstrating a significant enhancement in 
overall model performance. This underscores the necessity of skip-
connected token process in integrating local and global information 
for improved predictions.

3.3 Model interpretation

We employed Shapley additive descriptions (SHAP) to assess the 
impact of each feature on the model predictions. Figure 6A displays 
the mean absolute SHAP values for each feature, highlighting their 
importance in the model predictions. The top three most influential 
features were GCS, MV and PF. This ranking elucidates the primary 
factors that drive the predictions of the proposed model, offering 
valuable insights into which features most significantly affect ICU 
length of stay predictions.

Figure 6B presents the SHAP summary plots for four different 
percentiles (20th, 40th, 60th, and 80th) of ICU LOS. These plots 
visualize the SHAP values for individual predictions, indicating how 
each feature affects the predicted ICU LOS. The color scale shows the 
direction of the impact, with red and blue indicating an increase and 
decrease in the predicted LOS, respectively.

Sequentially across percentiles, the high GCS score and application 
of MV reduced predicted LOS, primarily at the 20th and 40th percentiles 
of ICU LOS (see blue section). Conversely, the low PF ratio increased 
LOS. The GCS represents a level of consciousness rating of 3–15 that 
assesses neurological status, with a lower score indicating worse status 
(50). The MV and PF are important indicators of respiratory function, 
reflecting the need for mechanical ventilation and the oxygen exchange 
capacity of the lungs, respectively (49). The impact of MV application 
and low PF was also evident at the 60th percentile, significantly 
increasing ICU LOS. On the other hand, an average level of Plt indicates 
a properly functioning coagulation system and reduces ICU LOS. The 
low GCS score, high Bil level, and MV application played a significant 
role in 80th percentile ICU LOS, with severe GCS score significantly 
increasing expected ICU LOS. Bil is another important predictor of ICU 

TABLE 2 Performance of the proposed model evaluated using four-fold 
cross-validation.

Four-fold
cross-
validation

CBNUH (521 patients)

R2 MAE RMSE

Fold1 0.30 2.03 2.69

Fold2 0.28 2.06 2.73

Fold3 0.29 2.01 2.71

Fold4 0.27 2.08 2.74

Average 0.29 ± 0.01 2.05 ± 0.03 2.72 ± 0.02

FIGURE 5

Calibration plot of each fold model. ICU, Intensive care unit; LOS, length of stay.
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LOS, with elevated levels indicating liver dysfunction or hemolysis. 
However, contrarily in our study, elevated Bil was shown to reduce 
ICU LOS.

4 Discussion

This study demonstrated that the transformer-based DL model 
outperformed traditional ML and DL models in predicting ICU LOS 

for patients with sepsis using SOFA-based tabular data. The proposed 
model, leveraging a skip-connected token process to integrate global 
and local information, achieved an average R2, MAE, and RMSE of 
0.29, 2.05 days, and 2.72 days, respectively. Reliable predictions of ICU 
LOS are clinically and operationally impactful, as they enable better 
resource allocation and improve patient outcomes, particularly for 
critical conditions like sepsis (51, 52). The proposed model builds on 
these insights by providing an efficient tool that uses limited SOFA-
based data to achieve practical predictions.

The strengths of the proposed model are manifold: First, the input 
features are based on the SOFA criteria, widely used in ICUs to assess 
organ dysfunction severity in critically ill patients. The model requires 
only 16 SOFA-related clinical features collected within 24 h of ICU 
admission, making it a convenient tool for predicting ICU LOS in 
patients with sepsis due to the accessibility of SOFA criteria data. 
Second, the proposed model was designed to work with tabular data, 
the most common structured data format, which requires less 
computational power than other data types and does not necessitate 
high-end hardware. Third, the model effectively captures 
comprehensive information from the features utilizing CLS and 
feature-wise tokens, analyzing global and local information. The 
proposed model employs MSA to capture global interactions between 
features, further analyze local information through dense layers and 
then integrates both in the final prediction to enhance performance.

Furthermore, the proposed model was interpreted using SHAP, 
providing valuable insights into the relative importance of various 
features in predicting ICU LOS. The top three influential features in 
this study were GCS, MV, and PF. The GCS score, underscored for its 
critical role in assessing neurological status, showed a positive 
correlation with ICU LOS. This finding is consistent with a previous 

FIGURE 6

SHAP importance of features for predicting ICU LOS. (A) Summary plot of SHAP feature importance, represented by the mean absolute Shapley values. 
The plot illustrates the significance of each covariate in the final predictive model. (B) SHAP force plots for data instances with predicted ICU LOS at the 
80th, 60th, 40th, and 20th percentiles (bottom). These plots provide an explanation for individual predictions made by the model. Note: the base value of 
4.77 days is consistent across all plots. P/F, partial pressure of arterial oxygen and fraction of inspired oxygen ratio (PaO2/FiO2); GCS, Glasgow Coma 
Scale; AF, atrial fibrillation; Cr, serum creatinine; VASO, vasopressor; Plt, platelets; MV, mechanical ventilator; UR, 24 h urinary excretion; Bil, serum total 
bilirubin; DBP, diastolic blood pressure; BMI, body mass index; SBP, systolic blood pressure; MBP, mean blood pressure; ICU LOS, length of stay in 
intensive care unit.

TABLE 3 Comparison of conventional model performance.

Model CBNUH

R2 MAE RMSE

RF 0.09 ± 0.01 2.25 ± 0.01 3.07 ± 0.01

XGBoost 0.10 ± 0.02 2.23 ± 0.02 3.05 ± 0.04

MLR 0.22 ± 0.00 2.13 ± 0.01 2.84 ± 0.01

TabNet −0.39 ± 0.21 2.77 ± 0.17 3.79 ± 0.29

FT-Transformer 0.26 ± 0.03 2.12 ± 0.02 2.76 ± 0.05

Proposed model 0.29 ± 0.01 2.05 ± 0.03 2.72 ± 0.02

TABLE 4 Ablation study on the proposed model.

Method R2 MAE RMSE

Local information analysis 0.22 ± 0.02 2.11 ± 0.06 2.84 ± 0.04

Global information analysis 0.15 ± 0.02 2.27 ± 0.04 2.97 ± 0.03

Local and Global information 

analysis
0.29 ± 0.01 2.05 ± 0.03 2.72 ± 0.02
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study (53), and highlights the importance of GCS as the most 
significant predictor. Similarly, MV and PF are respiratory indices 
associated with ICU LOS prediction in this study. The results in our 
study are consistent with previous studies showing that MV use and 
lower PF increased ICU LOS (53, 54). Conversely, this study found 
that elevated bilirubin levels were associated with a shorter ICU LOS, 
which contrasts with a previous study where higher bilirubin levels 
prolonged the length of hospital stay (55). The correlation of these 
factors indicates that these may assist in determining ICU LOS.

However, this study has several limitations. The dataset was derived 
from a single institution, potentially limiting the generalizability of the 
findings. Future research should aim to validate the proposed model 
across diverse healthcare settings and larger multicenter datasets. 
Additionally, while the transformer-based model outperformed others 
in predicting ICU LOS, it showed an opportunity for improvement, 
particularly in predicting stays longer than 8 days. This result suggests 
the need for additional data on longer durations to improve the 
prediction of extended ICU LOS in real medical scenarios.

5 Conclusion

We developed a transformer-based DL model to predict ICU LOS 
in patients with sepsis using data collected within the first 24 h of ICU 
admission. The proposed model achieved an MAE of 2.05 days. The 
proposed model effectively captures complex feature interactions by 
integrating global and local information through a novel skip-connected 
token process. Additionally, the proposed model utilizes a set of SOFA-
related features that are widely used to assess the severity of organ 
dysfunction in clinical practice. Such an approach ensures simplicity of 
data collection and wide applicability, making the proposed model 
practical for use in a variety of healthcare settings.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

Written informed consent was not obtained from the individual(s) 
for the publication of any potentially identifiable images or data 
included in this article because the review board waived the 

requirement for informed consent, owing to the retrospective design 
of this study.

Author contributions

JK: Methodology, Software, Validation, Visualization, Writing – 
original draft. G-HK: Formal analysis, Methodology, Software, 
Writing – review & editing. J-WK: Data curation, Formal analysis, 
Methodology, Software, Writing  – review & editing. KK: Data 
curation, Formal analysis, Validation, Writing – original draft. J-YM: 
Conceptualization, Data curation, Formal analysis, Writing – original 
draft. Y-GS: Methodology, Project administration, Supervision, 
Validation, Writing  – review & editing. SP: Conceptualization, 
Funding acquisition, Investigation, Project administration, 
Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for 
the research, authorship, and/or publication of this article. This 
research was supported by a research grant from Chungbuk 
National University in 2024, and by a grant from the Korea 
Health Technology R&D Project through the Korea Health 
Industry Development Institute (KHIDI), funded by the Ministry 
of Health and Welfare, Republic of Korea (Grant Number: 
RS-2023-00267328).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
 1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, 

et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). 
JAMA. (2016) 315:801–10. doi: 10.1001/jama.2016.0287

 2. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. 
Surviving sepsis campaign: international guidelines for management of sepsis and septic 
shock 2021. Crit Care Med. (2021) 49:e1063–143. doi: 10.1097/CCM.0000000000005337

 3. Khwannimit B, Bhurayanontachai R. The direct costs of intensive care management 
and risk factors for financial burden of patients with severe sepsis and septic shock. J 
Crit Care. (2015) 30:929–34. doi: 10.1016/j.jcrc.2015.05.011

 4. Kim HI, Park S. Sepsis: early recognition and optimized treatment. Tuberc Respir 
Dis. (2019) 82:6–14. doi: 10.4046/trd.2018.0041

 5. Fortenberry JD, Paden ML. Extracorporeal therapies in the treatment of sepsis: 
experience and promise. Seminars in pediatric infectious diseases. Amsterdam: 
Elsevier (2006).

 6. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Facing the challenge: 
decreasing case fatality rates in severe sepsis despite increasing hospitalizations. Crit 
Care Med. (2005) 33:2555–62. doi: 10.1097/01.CCM.0000186748.64438.7B

 7. van Gestel A, Bakker J, Veraart CP, van Hout BA. Prevalence and incidence of 
severe sepsis in Dutch intensive care units. Crit Care. (2004) 8:1–10. doi: 10.1186/cc2858

 8. Stoller J, Halpin L, Weis M, Aplin B, Qu W, Georgescu C, et al. Epidemiology 
of severe sepsis: 2008-2012. J Crit Care. (2016) 31:58–62. doi: 10.1016/j.
jcrc.2015.09.034

https://doi.org/10.3389/fmed.2024.1473533
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1097/CCM.0000000000005337
https://doi.org/10.1016/j.jcrc.2015.05.011
https://doi.org/10.4046/trd.2018.0041
https://doi.org/10.1097/01.CCM.0000186748.64438.7B
https://doi.org/10.1186/cc2858
https://doi.org/10.1016/j.jcrc.2015.09.034
https://doi.org/10.1016/j.jcrc.2015.09.034


Kim et al. 10.3389/fmed.2024.1473533

Frontiers in Medicine 10 frontiersin.org

 9. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the 
United States from 1979 through 2000. N Engl J Med. (2003) 348:1546–54. doi: 10.1056/
NEJMoa022139

 10. Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens 
and outcomes. Expert Rev Anti-Infect Ther. (2012) 10:701–6. doi: 10.1586/eri.12.50

 11. Patel JJ, Taneja A, Niccum D, Kumar G, Jacobs E, Nanchal R. The association of 
serum bilirubin levels on the outcomes of severe sepsis. J Intensive Care Med. (2015) 
30:23–9. doi: 10.1177/0885066613488739

 12. Paoli CJ, Reynolds MA, Sinha M, Gitlin M, Crouser E. Epidemiology and costs of 
sepsis in the United States—an analysis based on timing of diagnosis and severity level. 
Crit Care Med. (2018) 46:1889–97. doi: 10.1097/CCM.0000000000003342

 13. Torio CM, Moore BJ. (2016). National inpatient hospital costs: The most expensive 
conditions by payer, 2013.

 14. Raman V, Laupland KB. Challenges to reporting the global trends in the 
epidemiology of ICU-treated sepsis and septic shock. Curr Infect Dis Rep. (2021) 23:1–8. 
doi: 10.1007/s11908-021-00749-y

 15. Fingar K, Washington R. (2016). Trends in hospital readmissions for four high-
volume conditions, 2009–2013.

 16. Yinusa A, Faezipour M. Optimizing healthcare delivery: a model for staffing, 
patient assignment, and resource allocation. Appl Syst Innov. (2023) 6:78. doi: 10.3390/
asi6050078

 17. Cosgrove SE. The relationship between antimicrobial resistance and patient 
outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis. (2006) 
42:S82–9. doi: 10.1086/499406

 18. Wu J, Lin Y, Li P, Hu Y, Zhang L, Kong G. Predicting prolonged length of ICU stay 
through machine learning. Diagnostics. (2021) 11:2242. doi: 10.3390/
diagnostics11122242

 19. Deng Y, Liu S, Wang Z, Wang Y, Jiang Y, Liu B. Explainable time-series deep 
learning models for the prediction of mortality, prolonged length of stay and 30-day 
readmission in intensive care patients. Front Med. (2022) 9:933037. doi: 10.3389/
fmed.2022.933037

 20. Zangmo K, Khwannimit B. Validating the APACHE IV score in predicting length 
of stay in the intensive care unit among patients with sepsis. Sci Rep. (2023) 13:5899. doi: 
10.1038/s41598-023-33173-4

 21. Farimani RM, Amini S, Bahaadini K, Eslami S. (2024). Predicting length of stay in 
intensive care units for cardiovascular surgery patients using APACHE II, APACHE IV, 
SAPS II and SOFA Scores.

 22. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. Lightgbm: a highly efficient 
gradient boosting decision tree. In: Guyon I, Von Luxburg U, Bengio S, Wallach H, Fergus R, 
Vishwanathan S, et al., editors. Advances in Neural Information Processing Systems. Vol. 30. 
Long Beach, CA, USA: Curran Associates Inc. (2017). p. 3146–3154. Available at: https://
proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

 23. Hope TM. Linear regression. Machine learning. Amsterdam: Elsevier; (2020). 
p. 67–81.

 24. Devlin J, Chang M-W, Lee K, Toutanova K. Bert: pre-training of deep bidirectional 
transformers for language understanding. arXiv preprint arXiv:181004805. (2018)

 25. Somepalli G, Goldblum M, Schwarzschild A, Bruss CB, Goldstein T. Saint: 
improved neural networks for tabular data via row attention and contrastive pre-
training. arXiv preprint arXiv:210601342. (2021)

 26. Gorishniy Y, Rubachev I, Khrulkov V, Babenko A. Revisiting deep learning models 
for tabular data. In: Advances in Neural Information Processing Systems. Vol. 34. Curran 
Associates Inc. (2021). p. 18932–43. Available at: https://proceedings.neurips.cc/
paper/2021/file/01a1a84df7a0baaa88a1a9fa7848d42c-Paper.pdf

 27. Chen C-FR, Fan Q, Panda R, editors. (2021). “Crossvit: cross-attention multi-scale 
vision transformer for image classification.” in Proceedings of the IEEE/CVF international 
conference on computer vision.

 28. Yuan L, Chen Y, Wang T, Yu W, Shi Y, Jiang Z-H, et al., editors. (2021). “Tokens-
to-token vit: training vision transformers from scratch on imagenet.” in Proceedings of 
the IEEE/CVF international conference on computer vision.

 29. Wang J, Yu X, Gao Y. Feature fusion vision transformer for fine-grained visual 
categorization. arXiv preprint arXiv:210702341. (2021)

 30. Mansoori A, Zeinalnezhad M, Nazarimanesh L. Optimization of tree-based 
machine learning models to predict the length of hospital stay using genetic algorithm. 
J Healthc Eng. (2023) 2023:3395. doi: 10.1155/2023/9673395

 31. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard 
deviation from the sample size, median, range and/or interquartile range. BMC Med Res 
Methodol. (2014) 14:1–13. doi: 10.1186/1471-2288-14-135

 32. Walfish S. A review of statistical outlier methods. Pharm Technol. (2006) 30:82.

 33. Raju VG, Lakshmi KP, Jain VM, Kalidindi A, Padma V, editors. (2020). “Study the 
influence of normalization/transformation process on the accuracy of supervised 
classification.” in 2020 Third International Conference on Smart Systems and Inventive 
Technology (ICSSIT): IEEE.

 34. Hwang Y, Song J. Recent deep learning methods for tabular data. Commun Stat 
Appl Methods. (2023) 30:215–26. doi: 10.29220/CSAM.2023.30.2.215

 35. Arik SÖ, Pfister T. Tabnet: attentive interpretable tabular learning. Proc AAAI Conf 
Artif Intel. (2021) 35:6679–87. doi: 10.1609/aaai.v35i8.16826

 36. Song W, Shi C, Xiao Z, Duan Z, Xu Y, Zhang M, et al., editors. (2019). “Autoint: 
automatic feature interaction learning via self-attentive neural networks.” in Proceedings 
of the 28th ACM international conference on information and knowledge management.

 37. Choi Y, Lee Y, Cho J, Baek J, Kim B, Cha Y, et al., editors. (2020). “Towards an 
appropriate query, key, and value computation for knowledge tracing.” in Proceedings of 
the seventh ACM conference on learning@ scale.

 38. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention 
is all you need. In: Proceedings of the 31st International Conference on Neural Information 
Processing Systems. Long Beach, CA, USA: Curran Associates Inc. (2017). p. 6000–6010. 
Available at: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c
1c4a845aa-Paper.pdf

 39. Choi J-W, Yang M, Kim J-W, Shin YM, Shin Y-G, Park S. Prognostic prediction of 
sepsis patient using transformer with skip connected token for tabular data. Artif Intell 
Med. (2024) 149:102804. doi: 10.1016/j.artmed.2024.102804

 40. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. (2006) 
63:3–42. doi: 10.1007/s10994-006-6226-1

 41. Dou B, Zhu Z, Merkurjev E, Ke L, Chen L, Jiang J, et al. Machine learning methods 
for small data challenges in molecular science. Chem Rev. (2023) 123:8736–80. doi: 
10.1021/acs.chemrev.3c00189

 42. Tranmer M, Elliot M. Multiple linear regression. Cathie Marsh Centre Census Surv 
Res. (2008) 5:1–5.

 43. Nagelkerke NJ. A note on a general definition of the coefficient of determination. 
Biometrika. (1991) 78:691–2. doi: 10.1093/biomet/78.3.691

 44. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. 
Heidelberg: Springer (2013).

 45. Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error 
(MAE)?–arguments against avoiding RMSE in the literature. Geosci Model Dev. (2014) 
7:1247–50. doi: 10.5194/gmd-7-1247-2014

 46. Willmott CJ, Matsuura K. Advantages of the mean absolute error (MAE) over the 
root mean square error (RMSE) in assessing average model performance. Clim Res. 
(2005) 30:79–82. doi: 10.3354/cr030079

 47. Li C, Chen L, Feng J, Wu D, Wang Z, Liu J, et al. Prediction of length of stay on the 
intensive care unit based on least absolute shrinkage and selection operator. IEEE Access. 
(2019) 7:110710–21. doi: 10.1109/ACCESS.2019.2934166

 48. Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error 
(MAE). Geosci Model Dev Discuss. (2014) 7:1525–34. doi: 10.5194/gmd-7-1525-2014

 49. Hyndman RJ, Koehler AB. Another look at measures of forecast accuracy. Int J 
Forecast. (2006) 22:679–88. doi: 10.1016/j.ijforecast.2006.03.001

 50. Bastos PG, Sun X, Wagner DP, Wu AW, Knaus WA. Glasgow coma scale score in 
the evaluation of outcome in the intensive care unit: findings from the acute physiology 
and chronic health evaluation III study. Crit Care Med. (1993) 21:1459–65. doi: 
10.1097/00003246-199310000-00012

 51. Stone K, Zwiggelaar R, Jones P, Mac PN. A systematic review of the prediction of 
hospital length of stay: towards a unified framework. PLoS Dig Health. (2022) 
1:e0000017. doi: 10.1371/journal.pdig.0000017

 52. Yu Z, Ashrafi N, Li H, Alaei K, Pishgar M. Prediction of 30-day mortality for ICU 
patients with Sepsis-3. BMC Med Inform Decis Mak. (2024) 24:223. doi: 10.1186/
s12911-024-02629-6

 53. Peres IT, Hamacher S, Oliveira FLC, Thomé AMT, Bozza FA. What factors predict 
length of stay in the intensive care unit? Systematic review and meta-analysis. J Crit Care. 
(2020) 60:183–94. doi: 10.1016/j.jcrc.2020.08.003

 54. Tobi K, Ekwere I, Ochukpe C. Mechanical ventilation in the intensive care unit: a 
prospective study of indications and factors that affect outcome in a tertiary hospital in 
Nigeria. J Anesth Clin Res. (2017) 8:2. doi: 10.4172/2155-6148.1000718

 55. Yang Z-X, Lv X-L, Yan J. Serum total bilirubin level is associated with hospital 
mortality rate in adult critically ill patients: a retrospective study. Front Med. (2021) 
8:697027. doi: 10.3389/fmed.2021.697027

https://doi.org/10.3389/fmed.2024.1473533
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1056/NEJMoa022139
https://doi.org/10.1056/NEJMoa022139
https://doi.org/10.1586/eri.12.50
https://doi.org/10.1177/0885066613488739
https://doi.org/10.1097/CCM.0000000000003342
https://doi.org/10.1007/s11908-021-00749-y
https://doi.org/10.3390/asi6050078
https://doi.org/10.3390/asi6050078
https://doi.org/10.1086/499406
https://doi.org/10.3390/diagnostics11122242
https://doi.org/10.3390/diagnostics11122242
https://doi.org/10.3389/fmed.2022.933037
https://doi.org/10.3389/fmed.2022.933037
https://doi.org/10.1038/s41598-023-33173-4
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/01a1a84df7a0baaa88a1a9fa7848d42c-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/01a1a84df7a0baaa88a1a9fa7848d42c-Paper.pdf
https://doi.org/10.1155/2023/9673395
https://doi.org/10.1186/1471-2288-14-135
https://doi.org/10.29220/CSAM.2023.30.2.215
https://doi.org/10.1609/aaai.v35i8.16826
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1016/j.artmed.2024.102804
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1021/acs.chemrev.3c00189
https://doi.org/10.1093/biomet/78.3.691
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.3354/cr030079
https://doi.org/10.1109/ACCESS.2019.2934166
https://doi.org/10.5194/gmd-7-1525-2014
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1097/00003246-199310000-00012
https://doi.org/10.1371/journal.pdig.0000017
https://doi.org/10.1186/s12911-024-02629-6
https://doi.org/10.1186/s12911-024-02629-6
https://doi.org/10.1016/j.jcrc.2020.08.003
https://doi.org/10.4172/2155-6148.1000718
https://doi.org/10.3389/fmed.2021.697027

	Transformer-based model for predicting length of stay in intensive care unit in sepsis patients
	1 Introduction
	2 Methods
	2.1 Dataset information
	2.1.1 Study population
	2.1.2 Data preprocessing
	2.2 Model architecture
	2.2.1 Module of concatenating CLS tokens
	2.2.2 Module of multi-head self-attention
	2.2.3 Module of analyzing global and local information
	2.3 Implementation details
	2.4 Model performance evaluation

	3 Results
	3.1 Model performance comparison
	3.2 Ablation study
	3.3 Model interpretation

	4 Discussion
	5 Conclusion

	References

