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Background: Radiotherapy resistance is an important reason for high mortality

in lung cancer patients, but the mechanism is still unclear. Dysregulation of cell

proliferation and death plays a crucial role in the onset and progression of lung

adenocarcinoma (LUAD). In recent times, a novel form of cellular demise called

disulfidptosis, has attracted increasing attention. However, it is unclear whether

the radiation-related disulfidptosis genes have prognostic role in LUAD.

Methods: A complete suite of bioinformatics tools was used to analyze the

expression and prognostic significance of radiation-related disulfidptosis genes.

Afterward, we investigated the predictive significance of the risk signature in

tumor microenvironments (TME), somatic mutations, and immunotherapies.

In addition, we conducted a series of experiments to verify the expression

of differentially expressed radiotherapy related disulfidptosis genes (DERRDGs)

in vitro.

Results: A total of 88 DERRDGs were found. We constructed and validated

a novel prognostic model based on PRELP, FGFBP1, CIITA and COL5A1.

The enrichment analysis showed the DERRDG affected tumor prognosis by

influencing tumor microenvironments (TME) and immunotherapy. And we

constructed nomogram to promote clinical application. In addition, q-PCR

confirmed the significant differences in the expression of prognostic genes

between A549 irradiation-resistance cell and A549. Finally, western-blot, IHC

staining, and small interference experiment suggested that PRELP may be a

potential biomarker for radiotherapy resistance, whose low expression was

associated with poor outcomes in LUAD patients.

Conclusion: This study reveals the signature and possible underlying

mechanisms of DERRDGs in LUAD and discovered the key gene PRELP,

which helps to identify new prognostic biomarkers and provides a basis for

future research.
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1 Introduction

According to the 2024 report from the World Health
Organization, lung cancer is the primary reason for the incidence
and mortality of cancer, making up 12.4% of global cancers
and 18.7% of cancer-related fatalities (1). Among them, lung
adenocarcinoma (LUAD) is the most common subtype of lung
cancer worldwide (2, 3). Radiotherapy is one of the most important
non-surgical treatments for LUAD, but the effectiveness varies.
Decreased sensitivity to radiotherapy is the main reason for
treatment failure in LUAD patients, leading to tumor recurrence
or distant metastasis in more than 40% of patients (4, 5).
Therefore, it is a crucial task to study the mechanism of decreased
radiosensitivity and find key target genes to improve radiotherapy
for LUAD patients.

Multiple forms of cell death were implicated in the modulation
of radiotherapy sensitivity, including apoptosis (6), ferroptosis
(7), autophagy (8), etc. Recently, a novel form of cell death-
disulfidptosis has been reported, which is not mitigated by
other cell death inhibitors, nor is it attributed to intracellular
ATP depletion, but is enhanced by thiol oxidants such as
dimethylamine. During glucose deprivation, cells with high
expression of cystine transporter solute carrier family member 11
(SLC7A11), reduced nicotinamide adenine dinucleotide phosphate
(NADPH), leading to an atypical buildup of cystine and other
disulphide linkages, thereby promoting aberrant disulfide bond
formation within the actin cytoskeleton. This eventually leaded to
actin network breakdown and disulfide bond toxicity, resulting in
disulfidptosis (9, 10). Furthermore, it has been demonstrated that
disulfide metabolism has the capacity to influence the immune
microenvironment (11). Multiple investigations have verified the
influence of disulfidptosis-related genes on the prognosis on
patients with LUAD (12–15), however, their role and underlying
mechanism in radiotherapy sensitivity is still unknown.

In this research, we identified four differentially expressed
radiotherapy related disulfidptosis genes (DERRDGs) in
LUAD. We constructed a prognostic prediction risk model
and simultaneously analyzed the causes of prognostic differences
by immunoinfiltration analysis and immunotherapy analysis. After
performing a sequence of studies and verifications, we assessed
the prediction efficacy of the model. Ultimately, we pinpointed
PRELP as a key gene that impacted the efficacy of radiotherapy in
LUAD. As a result, we believed that disulfidptosis patterns could
serve as a potential biological target for radiotherapy in LUAD,
and the results of our research are anticipated to provide valuable
diagnostic and treatment approaches for people with LUAD.

2 Methods and materials

2.1 Data collection and sample
processing

RNA sequencing, survival data, and clinical data were collected
from the Cancer Genome Atlas (TCGA) database hosted on
the Xena platform at the University of California Santa Cruz

(UCSC) (16).1 After data cleaning and standardization, a total of
500 tumor tissues and 59 para-carcinoma tissue were included.
19 complete response (CR) or partial response (PR) cases after
radiotherapy were defined as radiosensitivity (RS) patients and
31 stable disease (SD) or progressive disease (PD) cases after
radiotherapy were defined as radioresistance (RR) patients. The
radiotherapy dataset GSE162945 was downloaded from the GEO
database to exclude squamous cell carcinoma and incomplete
information. A total of 16 LUAD patients (8 RR and 8
RS) were identified. In addition, GSE50081 (127 patients with
LUAD) and GSE72094 (397 patients with LUAD) were used
as external validation data set (17).2 Liu’s study obtained 24
disulfidptosis-related genes (FLNA, FLNB, MYH9, TLN1, ACTB,
MYL6, MYH10, CAPZB, DSTN, IQGAP1, ACTN4, PDLIM1,
CD2AP, INF2, SLC7A11, SLC3A2, RPN1, NCKAP) (9). Our
study examined the association among 24 genes in TCGA-
LUAD.

2.2 Identification of DERRDGs involved in
LUAD

Based on the expression of disulfidptosis-related genes
in each sample, We employed the Consensus ClusterPlus
package of R software to categorize 500 LUAD samples into
discrete molecular clusters (18). The K-Means algorithm was
employed for 1,000 times of consistent clustering (Euclidean
distance), with a resampling rate of 80%. The optimal number
of clusters was determined using the experience accumulation
distribution function graph. Meanwhile, the ggplot2 package of
R software was used for principal component analysis (PCA)
(19). Radiation-related genes (DRGs) identify was performed
on the GSE162945 dataset using the R package “limma” to
analysis genes that were between RR and RS. Simultaneously, the
disulfidptosis-related differentially expressed genes (DEGs)
in TCGA-LUAD between two clusters of disulfidptosis
were identified. The criterion of differential expression was
established as | log2FC| > 1 and P < 0.05. The resulting gene
sets were compared to identify 88 differentially expressed
radiotherapy related disulfidptosis genes (DERRDGs) through
intersection analysis.

2.3 Construction and verification of
RiskScore model

We built a risk model using 500 LUAD samples with
survival information from the TCGA-LUAD cohort. First,
through univariate Cox regression, we have pinpointed OS-
associated genes in the TCGA-LUAD cohort. Following
this, the least absolute shrinkage and selection Operator
(LASSO) algorithm was applied to OS related genes within
the TCGA-LUAD queue (20). Finally, the signature of
disulfidptosis was constructed by stepwise Cox regression

1 https://www.genome.ucsc.edu/

2 https://www.ncbi.nlm.nih.gov/geo/
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algorithm. The risk score was calculated based on the following
formula:

RiskScore :
n∑

i = 1

= Coef (gene) ∗ Expression

Patients exceeding the median risk score were designated
as high-risk subgroup, whereas others were categorized into
low-risk subgroup. Two external validation sets GSE50081 and
GSE72094 were applied to test and assess the prevalence of risk
characteristics. 1, 3, and 5 year receiver operating characteristic
(ROC) curves were plotted using R software’s Time ROC package,
and the corresponding area under the curve (AUC) over time was
computed as a measure of the predictive accuracy of the model.
In order to thoroughly evaluate the disparity in prognosis between
subgroups categorized as low and high-risk, we performed Kaplan–
Meier (KM) survival analyses using the R software survival kit
(P < 0.05).

2.4 GO, KEGG, GSEA and GSVA analysis

The aim is to delve into the potential mechanisms and pathways
between RS and RR, the R software packages “clusterProfiler,”
“enrichment plot,” “org.hss.egg.db,” “limma” and “ggplot2” were
used for Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), gene-set enrichment analysis (GSEA) and gene-
set variation analysis (GSVA) analysis.

2.5 Protein-protein interaction (PPI)
analysis

Utilizing the STRING database,3 we delved into potential
disulfidptosis-related genes interactions, employing a threshold of
a minimum interaction score of 0.15. Subsequently, PPI networks
were crafted and visualized via Cytoscape (version 3.9.1).

2.6 Analysis of immune and somatic
variation

The immune infiltration algorithm primarily utilized the
ssGSEA algorithm from the R-Package GSVA (21). It employed
markers from 24 immune cells, as supplied in the immunity
article (22), to compute the immunological infiltration. The TIDE
algorithm was employed to forecast potential immunotherapy
responses, offering insights into treatment efficacy. From TISDE
database,4 a dataset of 28 kinds of immune infiltrating cells and
their associated 782 genes was obtained, and the enrichment of 28
immune infiltrating cells in tumor samples was evaluated by single
sample gene set enrichment analysis (ssGSEA). The abundance
of six types of immune infiltrating cells (B cells, macrophages,
DC, neutrophils, CD4 T cells and CD8 T cells) was calculated
using TIMER immune infiltration analysis. In addition, esteemed

3 https://cn.string-db.org

4 http://cis.hku.hk/TISIDB/

algorithms like ESTIMATE, CIBERSORT, and MCPCounter were
employed to validate the practicality of ssGSEA and TIMER,
ensuring their reliability and efficacy. Finally, we also analyzed the
differential expression of 9 immune checkpoint related genes in the
high and low groups (23).

We utilized waterfall maps to precisely identify and compared
genes exhibiting a higher somatic mutation frequency in both high-
risk and low-risk groups.

2.7 Construction and evaluation of the
nomogram

To enhance the application of DERRDG to forecast the
prognosis of LUAD, we leveraged the “rms” R package to formulate
a nomogram model. The “rms” program was utilized to generate
calibration curves that demonstrate the concordance between
projected 1, 3, and 5 year end events and observed outcomes. Then,
we mapped out calibration curves, ROC curves, and decision curve
analysis (DCA) graphs to gain further insights. Moreover, we also
used RiskScore as a separate variable in order to do univariate and
multifactorial independent prognostic analyses, along with other
clinically significant prognostic aspects.

2.8 Comprehensive bioinformatics
analysis of key gene PRELP

Initially, we examined the correlation among the four
DERRDGs, then analyzed the similarity between them, and
elucidated the alterations in the expression of the remaining
three model genes as changes in PRELP expression. R software
established a binary Logistic model to analyze the relationship
between DERRDGs gene expression level and clinical features
between RS and RR patients in the TCGA-LUAD-radiotherapy
cohort, presented by grouping violin diagram. KM-plot platform5

analyzed prognosis significance.

2.9 Weighted correlation network
analysis (WGCNA) and single cell
sequencing analysis

WGCNA was performed according to PRELP gene expression
level. Then, we embarked on the determination of an optimal soft
threshold for the data to ensure that the gene interactions conform
to the scale-free distribution to the greatest extent possible. The
proximity and resemblance of genes were computed, and the
clustering tree was constructed. The dynamic tree cutting algorithm
is segmented the modules and combined the similar modules. We
assessed the Pearson correlation between each sample traits and
module, and picked the module genes with the highest absolute
value for further research.

5 https://kmplot.com/analysis/
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TABLE 1 The primer sequence of 4 genes.

Gene Primer Sequence (5′–3′)

PRELP Forward TTAACCTGGACAACAACCGAAT

Reverse CTGGTTCTTCTCCATGTAGAGG

FGFBP1 Forward CCAGGAAGGAGAAAACAGAGAT

Reverse TCTTCCTCTGGTTTGCCATATC

CIITA Forward TTGGGCAGAAAAGTCAGAAAAG

Reverse CTCAACGAGGAACTGGAGAAAG

COL5A1 Forward CGTATGATGACCTCACCTATGG

Reverse CGTAGTAGTTCTCGTCAAGGTT

We performed a rigorous screening process on single-cell RNA
sequencing data from GSE153935 dataset on the TISCH platform6

to identify and extract key information fragments.

2.10 Colony formation assay

A549 cells and A549 irradiation-resistance cell (A549IR) were
inoculated into a six-well plate at a density of 150, 400, 800, or
1,500 cells/Wells and exposed to 0, 2, 4, or 6 Gy, respectively.
After about 12–14 days, the cells were washed with PBS, fixed with
4% paraformaldehyde, and finally counted with crystal violet. The
survival curve is generated according to the linear quadratic model.

2.11 Quantitative polymerase chain
reaction (q-PCR)

A549IR, A549, H1299, H1975, PC9 cell cultures and 8 LUAD
cancer tissues were collected for qPCR detection were collected for
q-PCR. The extraction of total RNA was performed using TRIzol
reagent (Thermo Fisher SCIENTIFIC, USA). The EvoM-MLV
reverse transcription kit (Accurate Biology, China) was utilized for
the mRNA reverse transcription process (24). The primers used in
this study were purchased from Sangon Biotech, and the primers
sequence is shown in Table 1.

2.12 Western blot (WB)

The cells were washed twice with PBS and lysed with
phenylmethylsulfonyl fluoride (1:100, Beyotime, Shanghai, China)
combined with cell lysis buffer. The proteins were then isolated
by electrophoresis and transferred to a polyvinylidene fluoride
(PVDF) membrane (Invitrogen, USA). Following a 2-h blocking
step with 5% skim milk, incubation with PRELP antibody
(1:1,000, Proteintech, China) was conducted overnight at 4◦C.
The membrane was washed and incubated with the corresponding
secondary antibody (1:1,000, Proteintech, China). Finally, the
enhanced chemiluminescence method was used for visualization,
and the relative expression level of the protein was normalized with
GAPDH as the internal control.

6 http://tisch1.comp-genomics.org/

2.13 Immunohistochemistry (IHC)

Tumor tissues were obtained from the Hospital Affiliated
with Nantong University. Sections were heated at 95◦C in 0.01
M citric acid buffer (pH = 6.0). The tissue sections were
incubated with primary anti-PRELP antibody (dilution 1:100;
Cat No: 23783-1-AP, Proteintech, China), followed by treatment
with an appropriate detection system. High-resolution images of
stained sections are captured using a scanning microscope (Nikon,
Japan). The evaluation of PRELP staining was performed by two
independent pathologists who were not privy to the corresponding
clinical information.

2.14 Immunofluorescence assay

The cells were plated in polylysine coated glass, incubated for
24 h, and then exposed to a 2 GY X-ray line. After incubation for
6 h, the cells were stained with DNA damage detection kit (product
number: C2038S, Beyotime, Shanghai, China). Nikon microscopy
was used to detect and quantify the γ-H2AX signal to determine
whether DNA was damaged in the nucleus. At least 50 nuclei were
evaluated in each group.

2.15 Statistical analysis

Data processing, statistical analysis, and charting were
performed using the R4.1.0 program. When both groups exhibited
a normal distribution and had a defined mean square error,
the t-test was employed. When both groups were non-normal
distribution, Wilcoxon rank sum test was used. The Kaplan–Meier
method was employed for a thorough analysis of the prognosis
and the resulting survival curve. Differences between groups were
analyzed by logrank test or Cox regression analysis. The ROC curve
was employed as a metric to assess the efficacy of the model’s
predictive capabilities. P < 0.05 was statistically significant (ns:
P > 0.05, ∗P < 0.05, ∗∗P < 0.01, ∗P < 0.001, ∗P < 0.0001).

3 Results

3.1 Screening and functional enrichment
analysis of DRGs

The flowchart of the study was shown in Figure 1. In order
to identify the genes associated with RR, PCA demonstrated
that samples from the two groups (8 RR and 8 RS samples in
GSE169245) were significantly separated from each other and
clustered well (Figure 2A), limma analysis identified 1365 up-
regulated DRGs and 396 down-regulated DRGs, and the heat
map showed the TOP30 up-regulated DRGs and down-regulated
DRGs, respectively (Figures 2B, C). Next, GO analysis enriched
the leukocyte activation, actin cytoskeleton organization, DNA
replication, sulfur compound binding, mitotic cell cycle checkpoint
and oxidoreductase activity, acting on NADPH, oxygen as acceptor
(Figure 2D). KEGG was enriched into p53 signal pathway, B
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FIGURE 1

Flow chart of this research. (ns: P > 0.05, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001).

cell receptor signaling pathway, focal adhesion etc (Figure 2E).
These results hinted disulfidptosis may be the important biological
process in the radiotherapy sensitivity of patients with LUAD.

3.2 Consensus cluster analysis and
identification of DERRAGs

We successfully retrieved 24 disulfidptosis-related genes from
Liu’s study, which were depicted in the PPI network (Figure 3A).

Subsequently, we performed a correlation analysis based on the
expression levels of disulfidptosis-related genes, and the results
showed that the expression level of these genes in LUAD was
almost correlated negatively (Figure 3B). In addition, GO and
KEGG pathway enrichment analysis were employed for them. As
shown in Figure 3C, these genes were involved in regulation of
actin cytoskeleton organization, NADH dehydrogenase complex
assembly, iron-sulfur cluster binding, focal adhesion, chromatin
DNA binding and so on. This result reminded again the importance
of disulfidptosis in radiosensitivity.
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FIGURE 2

Screening and functional enrichment analysis of DRGs between RR and RS. (A) PCA analysis of GSE162945 database. (B,C) Volcano and heat maps
of differentially expressed genes between RR and RS in the GSE162945 database. (D,E) GO and KEGG enrichment analysis of differentially expressed
genes.

According to the expression patterns of 24 disulfidptosis-
related genes, the samples in the TCGA-LUAD dataset were
coherentially clustered to identify the sample groups with similar
expression patterns. When the number of clusters is K = 2, the
average consistency within the group was the highest. Thus, the
sample was segmented into two subtypes (Figures 3D–F). The
distribution pattern of PCA showed that the sample could be
completely distinguished into clusters 1 and 2 (Figure 3G). We
analyzed expression levels of disulfidptosis-related genes in the two
clusters, finding significant variations in 20 genes (Figure 3H). The
limma package successfully identified DEGs between the C1 and

C2 subtypes, comprising 453 up-regulated and 193 down-regulated
genes (Figures 3I, J).

3.3 Construction and validation of
DERRDGs risk model

To further explore the relationship between disulfidptosis
and radiotherapy response in LUAD patients, we crossed DRGs
and DEGs and identified 88 common DERRDGs (Figure 4A).
88 DERRDGs were analyzed by univariate cox method to
evaluate the prognostic significance and obtained 21 OS-related
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FIGURE 3

Consensus clustering analysis and identification of disulfidptosis-related genes in LUAD. (A) PPI interactive network of disulfidptosis-related genes
using string database. (B) Heat map showed related genes interactions in LUAD. (C) GO and KEGG enrichment analysis of related genes. (D–F) The
average consistency within the group was the highest to determine the optimal cluster number (K = 2) for classification. (G) PCA was performed on
500 LUAD patients, with each point representing a sample. (H) Differential expression analysis of disulfidptosis-related genes among different
subgroups in the TCGA-LUAD cohort. (I,J) Volcanic maps and heat maps showed limma analysis between different subtypes (ns: P > 0.05,
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

genes (Figure 4B). Then, the 21 genes were subjected to
lasso-cox regression analysis (Figures 4C, D), and followed by
multivariate cox regression analysis (Figure 4E). Under the optimal
regularization parameters, 4 genes (PRELP, FGFBP1, CIITA,
COL5A1) were finally screened. The prediction model is calculated
as follows:

RiskScore = − 0.213300882418068 ∗ PRELP + 0.09055911612

4251 ∗ FGFBP1 − 0.122074606361669 ∗ CIITA+

0.158512593395885 ∗ COL5A1

LUAD samples in the TCGA cohort was divided into high-
risk and low-risk subgroups according to the median to facilitate
the following study. Survival analysis showed that patients in low-
risk subgroup had a significantly better prognosis than those in
high-risk subgroup (Figures 4F, G). In addition, the results of the
risk curves and survival state graphs of two external validation
sets, GSE50081 and GSE72094, showed that the survival outcome
of the low-risk group was better than that of the high-risk group
(Figures 4I, J, L, M). The AUC values of 1, 3 and 5 year ROC
curves in LUAD were 0.68, 0.66 and 0.65, respectively (Figure 4H),
0.68, 0.70, and 0.75 in the GSE50081 validation set (Figure 4K),
and 0.65, 0.70, and 0.88 in the external validation set GSE72094
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FIGURE 4

Construction and verification of RiskScore model. (A) The Venn diagram showed the intersection genes of DRGs and DEGs. (B) Forest maps showed
the results of univariate Cox regression analysis. (C) Trajectories of variables for Lasso regression analysis. (D) Selection of variable coefficients for
Lasso regression analysis. (E) Multivariate cox regression analysis of forest maps. RiskScores, survival time, survival status, and gene expression of
TCGA-LUAD (F), external set GSE50081 (I), and external set GSE72094 (L). Kaplan–Meier analysis showed the prognostic significance of the risk
model in TCGA-LUAD (G), GSE50081 (J), and GSE72094 (M). ROC curves were used to assess the accuracy of the model in predicting prognosis in
TCGA-LUAD (H), GSE50081 (K), and GSE72094 (N).

(Figure 4N). These findings suggested that the prognostic model
of DERRDGs riskscore was highly accurate in predicting outcomes
in both groups of patients.

3.4 Potential mechanism of DERRDGs in
LUAD

To elucidate the pathways associated with these prognostic
signals in LUAD, GSEA, GO and KEGG pathways and GSVA

analyses were performed. GSEA analysis revealed that these genes
were abundant in biological processes related to cell proliferation,
including cell cycle and DNA replication, and were related to
T-cell receptor signaling pathways (Figure 5A). We screened
DERRDGs for GO (Figure 5B) and KEGG (Figure 5C) analysis
and found enrichment in various functions and pathways. GO
and KEGG were mainly involved immune system process, cell
proliferation correlation, programmed cell death, cell adhesion,
cytoskeleton organization, signaling pathway. Meanwhile, the
GSVA analysis was visualized through the utilization of heat
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maps (Figure 5D). This suggested our DERRDGs were strongly
associated with characteristics of disulfidptosis, primarily affecting
cell proliferation and immune regulation in LUAD patients.

3.5 Immune pattern and immunotherapy
sensitivity based on DERRDGs RiskScore

As GO, KEGG and GSEA results all showed that the
genes associated with our prognostic traits were involved in
immune infiltration, we persisted in delving into the varying
immune microenvironments associated with the DERRDGs
RiskScore. At the same time, the four model genes exhibited
a profound association with immune cell infiltration, indicating
their significant role in the process (Figure 6A). TIDE scores
indicated a higher probability of immune evasion in high-risk
groups, suggesting a lower probability of patients benefiting from
immunotherapy (Figure 6B). The enrichment of 28 immune
infiltrating cells in tumor samples was evaluated by ssGSEA. The
DERRDGs RiskScore was highly correlated with various CD4 T
cells, most CD8 T cell, most helper cells, most B cells, various
dendritic cells, natural killer cells, macrophages, eosinophils, mast
cells, and monocytes, as assessed for enrichment of 28 immune
infiltrating cells in tumor samples (Figure 6G). The TIMER
immunoinfiltration analysis revealed a substantial decrease in
B cells, macrophages, dendritic cells, neutrophils, CD4 T cells,
and CD8 T cells in the high-risk group compared to the low-
risk group (Figure 6C). To verify that the analytical algorithm
did not impact the function of the two subgroups, we also
used ESTIMATE (Figure 6D), MCP-Counter (Figure 6E), and
CIBERSOFT (Figure 6F) algorithms for verifying the stability and
robustness of the TIMER results. We also discovered notable
disparities in the common immune checkpoints between the two
subgroups, as depicted in Figure 6H. Taken together, LUAD high-
risk patients exhibited higher tumor purity, increased immune cell
infiltration, and poorer prognosis.

3.6 Somatic mutation

Extant research has unequivocally demonstrated a profound
correlation between the accrual of genetic mutations and the
progression of tumorous growths (25, 26). We conducted an
analysis of the somatic cell landscape in the TCGA-LUAD cohort,
and presented the top 20 genes with highest mutation frequency
in the tumor samples through the waterfall diagram. Among
individuals in the high-risk category (Figure 7A), the most
commonly mutated genes were TP53 (53%), TTN (55.8%), CSMD3
(48.3%), and RYR2 (45.5%). In the low-risk category (Figure 7B),
the most commonly mutated genes were TP53 (43.9%), TTN
(39.9%), MUC16 (38.6%), and CSMD3 (30.5%).

3.7 Clinical applications for nomogram

Utilizing the acquired clinical data files and risk profiles,
we constructed a nomogram to forecast the survival likelihood
of patients at the 1, 3 and 5 year marks (Figure 8A). The

results of the calibration curve and ROC curve analysis revealed
that the nomogram exhibited a reasonable level of precision in
predicting survival, further validating its effectiveness in this regard
(Figures 8B, C). The DCA decision curve analysis confirmed
that the nomogram had superior efficacy in forecasting the
likelihood of survival at the 1 year (Figures 8D–F). Later on,
we performed a univariate COX regression analysis, combining
RiskScore with clinical features, and the results showed that
T, N, M, pathological stage and RiskScore were independent
prognostic factors (Figure 8G). Subsequently, based on univariate
COX analysis, pathological stage and RiskScore were selected
for multivariate COX analysis, revealing them as significant
independent prognostic factors (Figure 8H). In summary, the
RiskScore was an independent and prognostic indicator.

3.8 Identifyng the key DERRDGs gene
PRELP

The correlation heat map distinctly demonstrated a strong
correlation among four model genes: PRELP, FGFBP1, CIITA, and
COL5A1 (Figure 9A). Then, FRIEND analysis was performed, in
which COL5A1 had the highest similarity (0.52718), followed by
PRELP (0.46515) (Figure 9B). The greater the similarity a gene
exhibited, the stronger its correlation with other genes, thereby
increasing the probability to play a pivotal role. The investigation
of PRELP revealed that as the expression of PRELP escalated,
the expression of the other three genes similarly underwent
varied degrees of change (Figure 9C). Using the TCGA-LUAD-
radiotherapy cohort, we discovered that the expression of PRELP
and CIITA was significantly higher in RS than RR, while FGFBP1
showed the opposite tendence (Figure 9D). Survival analysis
showed radiotherapy patients in the high-expression of PRELP
group had a better prognosis, while those in the high-expression
group of CIITA had a worse prognosis (Figure 9E). As shown in
Figure 9F, this was statistically significant in the post-progression
survival (PPS) analysis. Moreover, the same was true of PRELP in
the TCGA-LUAD-radiotherapy queue (Figure 9G). These results
suggested that we could identify the key gene PRELP associated
with radiation-associated disulfidptosis and can speculate that
PRELP promotes radiosensitivity in LUAD.

3.9 WGCNA analysis and single cell
sequencing analysis

Setting β to 3 (R = 0.89) in WGCNA offered an appropriate
level of power for co-expression network (Figures 10A, B).
After identifying six distinct modules, we individually calculated
the connection between various color modules and clinical
characteristics (Figures 10C, D). Tan module and PRELP high-
low expression subgroup exhibited the strongest correlation in
terms of the module-trait relationship. The correlation coefficients
(R-values) for the tan module between Gene Significance (GS)
and module membership (MM) were both 0.74 (Figures 10E, F),
indicating that the module had a well-organized structure and was
significantly associated with prognosis. Hub genes were extracted
from tan module. There were 89 genes | MM| > 0.8 and |
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FIGURE 5

Potential mechanism of DERRDGs in LUAD. (A) GSEA enrichment analysis between high-risk subgroups and low-risk subgroups. GO (B) and KEGG
(C) analysis of the differentially expressed genes. (D) GSVA enrichment analysis.

GS| > 0.1, which were considered to be related to disulfidptosis
associated with radiotherapy. At the same time, these Hub genes
were analyzed with PRELP on the string platform, and 14 directly
related genes were found, as shown in Figure 10G. Moreover, GO
analysis for these 14 genes was mainly enriched in the synthesis
and decomposition process of sulfide, peptide crosslinking and cell
membrane system (Figure 10H).

Using data from the TISCH website, we conducted a thorough
analysis of the differential expression patterns of DERRDGs
within diverse immune cell subpopulations within the GSE153935
database. Among them, high expression of PRELP was observed
in alveolar, CD8 T, endothelial, epithelial, fibroblasts, mast and

myofibroblasts, indicating that high expression of PRELP may be
closely linked to the immune response in LUAD (Figure 10I). These
all suggested that PRELP was closely related to the characteristics
of disulfidptosis, primarily affecting immune regulation in LUAD
patients.

3.10 Validation the expression of
DERRDGs in radioresistant cell of LUAD

A549IR was constructed by interval irradiation of A549 parent
cells. In this study, we found that the radiation-resistant cell line
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FIGURE 6

Analysis of immune infiltration characteristics and TIDE score. (A) Correlation analysis of the expression levels of 4 DERRDGs in LUAD and the level
of immune infiltration. (B) Differences in TIDE scores of LUAD patients in different risk groups. TIMER (C), ESTIMATE (D), MCPCounter (E) and
CIBERSORT (F) algorithms between high and low risk subgroups. (G) The enrichment of 28 immunoinfiltrating cells in LUAD. (H) Comparison of
immune checkpoints between high-risk and low-risk subgroups (ns: P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

had a radiation-resistant ability in the clone formation experiment,
and the survival rate of its irradiated cells was significantly
higher than that of the primary cells (Figure 11A). To further
investigate the relationship between prognostic DERRDGs markers
and radiotherapy resistance in LUAD, we performed qPCR analysis
for A549 and A549IR. The results showed that the expression
of FGFBP1 was significantly increased in A549IR, while the
opposite trend was observed in PRELP and CIITA (Figure 11B).

Subsequently, we further examined PRELP at RNA and protein
levels in four different LUAD cell lines and radiotherapy resistant
cell line A549IR. Surprisingly, PRELP showed the lowest expression
in the resistant cell line at the RNA level (Figure 11C), consistent
with the results of our bioinformatic analysis. And WB result also
showed the low expression of PRELP in A549IR (Figures 11D, E). In
order to further understand the role of PRELP in the progression of
radiotherapy resistant in LUAD, we knocked down the expression
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FIGURE 7

Somatic mutation analysis. The waterfall map shows the genes with the most frequent somatic mutations in high-risk (A) and low-risk (B)
populations.

of PRELP by small interfering, and q-PCR detected that SiRNA3#
owed the best effect, which was chose for the following experiment
(Figure 11F). γ-H2AX staining experiments clearly showed that
down-regulation of PRELP significantly reduced DNA damage
after radiotherapy (Figures 11G, H).

We also validated PRELP expression in radiotherapy tumor
tissue. We collected pathological specimens of LUAD patients, who
were divided into remission and progression groups according to
their efficacy evaluation after radiotherapy. We first performed
IHC analysis, and the results showed that PRELP was abundant
significantly in the remission group compared with the progression
group (Figures 11I, J). And our WB analysis also supported above
results (Figure 11K). This clearly highlighted the role of PRELP
proteins in the progression of resistance to LUAD.

4 Discussion

Radiotherapy has been extensively employed in eradicating
cancer cells among patients diagnosed with localized LUAD.

However, most patients eventually progressed after radiotherapy.
Owing to congenital resistance or developed radiation resistance,
the invasive growth of tumors is expedited (27, 28). Radiotherapy
mainly causes DNA damage, activates cell cycle checkpoints, and
leads to cell cycle arrest, thus promoting damage repair (29, 30).
Furthermore, radiotherapy boasts the ability to not just diminish
tumor size, but also trigger anti-tumor immunity and modify the
TME (31, 32). Recently, Liu et al. first proposed a new form of cell
death of disulfide called disulfidptosis (9). At present, the specific
mechanism of disulfidptosis related genes in LUAD is still not clear,
especially in radiotherapy.

In this study, we first analyzed radiotherapy differential genes
through GO and KEGG enrichment, and found that radiotherapy
was involved in actin cytoskeleton organization, sulfur compound
binding and oxidoreductase activity, acting on NAD(P)H, oxygen
as acceptor. At the same time, we also performed GO and KEGG
enrichment analysis on 24 genes of disulfidptosis in LUAD, which
were abundant in regulation of actin cytoskeleton organization,
iron-sulfur cluster binding, and focal adhesion. Certainly, we
reasonably suspected that radiotherapy was closely associated
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FIGURE 8

Nomogram prediction model and independent prognosis analysis. (A) Construction of a nomogram. (B) Evaluation of the calibration curve on the
predicted value of the nomogram. (C) Evaluation of ROC curve on the predicted value of the nomogram. (D–F) Evaluation of the clinical utility value
of the DCA curve for the nomogram. (G,H) Forest maps showed the results of univariate and multivariate cox regression analysis.

with disulfidptosis. Next, taken the intersection of DRGs and
DEGs and we got 88 DERRDGs. To investigate the correlation
between the expression of DERRDGs and the prognosis of LUAD
patients, we developed a lasso regression model and single multi-
factor model based on the expression profile of DERRDGs in
TCGA, and finally obtained 4 DERRDGs, namely PRELP, FGFBP1,
CIITA, and COL5A1.

The RiskScore analysis categorized patients in the TCGA-
LUAD cohort into two distinct subgroups: a high-risk group
and a low-risk group. Kaplan–Meier curve revealed that the OS
in high-risk group was significantly lower compared to low-risk
group, indicating the effectiveness of this model in predicting
the prognosis of LUAD. When examining the time-dependent
ROC curve, the area beneath the curve revealed a significant
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FIGURE 9

Influence of key gene PRELP on radiotherapy efficacy in LUAD patients. (A) Mapping of correlations between PRELP and the other three genes.
(B) FRIEND analyzed the similarity of the four model genes. (C) Heat maps of model gene correlation with PRELP expression. (D) Expression of four
model genes in TCGA-LUADradiotherapy cohort. (E) Survival analysis curve of the relationship between the expression levels of PRELP, FGFBP1,
CIITA, COL5A1 and OS in radiotherapy patients reflecting LUAD. (F) The survival curve of the relationship between PRELP expression level and PPS
was analyzed. (G) KM map showed the relationship between OS and PRELP expression levels in TCGA-LUAD radiotherapy patients. (ns: P > 0.05,
*P < 0.05, **P < 0.01).

level of precision in the prognosis model’s ability to predict the
outcome of LUAD. Consistent results were also obtained in the
external GSE50081 and GSE72094 cohorts. To further enhance
clinical utilization, a nomogram was crafted and its precision
was subsequently validated through rigorous calibration. Then,
we assessed the prognostic impact of the model using diverse
methodologies, and the results showed that the model had a certain
predictive effect on the survival prognosis of LUAD patients in
1, 3, and 5 years.

Interestingly, during the model gene analysis, we found the
PRELP gene, which showed a correlation between low expression
and a negative prognosis in LUAD. PRELP, a proline/arginine-
rich end leucine-rich repeat protein, is a small leucine-rich
proteoglycan (SLRP) (33). As a tumor suppressor in solid tumors,

PRELP was associated with the occurrence and development
of various cancers (34–38). PRELP can inhibit TGF-β and
enhance cell-cell adhesion, thereby effectively hindering the
progression of cancer (34). TGF–β can affect radiation sensitivity
by affecting DNA damage and eliminating cell cycle arrest
(39). Our bioinformatics study revealed a decrease in PRELP
expression in patients with RR, promoting cell disulfidptosis,
and patients with lower PRELP expression had poorer prognosis.
Consistently, our real-world results from WB, PCR, and IHC
also confirmed that PRELP was down- expressed in resistant
cells or tissues. The results of our GSEA, GO, and KEGG
analyses were significantly correlated with the cell cycle. We can
boldly speculate that PRELP affected the treatment efficacy by
increasing the tolerance to radiotherapy through disulfidptosis
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FIGURE 10

WGCNA analysis and single cell sequencing of PRELP. (A) The correlation between the soft threshold and the scale-free topology model is fitted
with signed R2. (B) Correlation between soft thresholds and average connectivity. (C) clustering of module feature vectors. (D) The correlation
between modules and high or low PRELP expression was calculated. (E,F) High correlation between GS and MM in tan modules in high and low
expression subgroups. (G) PPI showed the correlation genes between tan module Hub gene and PRELP. (H) GO enrichment analysis of 14 genes in
PPI map. (I) In the GSE153935 dataset, the expression of PRELP was different in different cell populations.

and cell cycle. Nevertheless, the biological role of PRELP in
radiotherapy of LUAD has not been elucidated, and the precise
mechanism by which it triggers disulfidptosis requires additional
experimental investigation.

Radiotherapy can not only cause tumor damage, but also
change the proportion of immune cell infiltration by reshaping

the immune microenvironment of the tumor (40, 41). In our
study, the results of GSEA, GO and KEGG analysis exhibited
significantly correlated with immune response-related pathways,
mainly including immune system processes, T-cell receptor
signaling pathways and so on. Therefore, we speculated that
disulfidptosis activity could alter the microenvironment infiltration
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FIGURE 11

The role of PRELP in the radiotherapy of LUAD. (A) Colony formation compared the radiation resistance ability of A549IR with A549. (B,C) q-PCR
detected the expression of PRELP, FGFBP1, CIITA, COL5A1 in A549 and A549IR as well as in different LUAD cell lines. (D,E) WB tested the expression
of PRELP in LUAD cell lines. (F) Validation the knockdown efficiency of siRNA. Representative images (G) and quantitative results (H) of γ-H2AX
immunofluorescence staining. PRELP expression was obtained by radiosensitive and resistant patients, representative images (I) and quantification
(J) with IHC staining, and WB detection (K). (ns: P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

of immune cells by modulating various immune systems, which
could be used as a novel immunomodulatory strategy to improve
the efficacy of radiotherapy in LUAD patients. Our study analyzed
the infiltration of immunological microenvironments in various

risk groups and identified notable disparities in B cell, CD4 T cell,
CD8 T cell, neutrophil, macrophage and DC. It was postulated
that TIDE scores served as indicators of the likelihood of tumor
immune evasion, thereby implying that elevated TIDE scores
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in high-risk group could account for the unfavorable prognosis
observed within this demographic (42). Our study additionally
discovered that PRELP expression was positively correlated with
the number of CD8 T cells, which play an anti-tumorigenic
development and immune elimination role in LUAD. Recent
studies have found that PRELP could affect tumor immunogenicity
in melanoma by up-regulating MHC Class I surface expression,
thereby inhibiting tumor development and enhancing CD8 T cell
infiltration (34), which was consistent with our findings. Cytotoxic
T lymphocytes (CTL cells), often referred to as CD8+T cells, are
a key component of the adaptive immune system and play an
important role in the immune system’s defense against pathogens
such as viruses, bacteria, and tumors (43). There is increasing
evidence that radiation therapy can induce a tumor-specific CD8+T
cell response, which is essential for radiation-mediated tumor
regression (44, 45). So, we hypothesized that PRELP regulated
immune regulation of CD8+T cell infiltration after radiotherapy.
Although there is a limited amount of research on the correlation
between disulfidptosis and tumor immunity, further investigation
is required to understand its mechanism.

This study should acknowledge a number of limitations. The
model mainly relied on TCGA databases and GEO databases, so
its generalization to other datasets may be limited. And more
experiments should be employed to elucidate the mechanism.

5 Conclusion

This study has found, for the first time, four genes related to
disulfidptosis that are associated with the radiation and prognosis
of LUAD, and explored their potential molecular mechanisms,
establishing an effective prediction model for LUAD prognosis.
Finally, we also identified the key gene PRELP, which has
potential significance for improving the efficacy and prognosis of
radiotherapy in LUAD patients. To summarize, our research results
may offer novel insights into the different subtypes of LUAD and
their relationship with radiation.
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16. Tomczak K, Czerwińska P, Wiznerowicz M. The cancer genome atlas (TCGA):
An immeasurable source of knowledge. Współczesna Onkol. (2015) 1A:68–77. doi:
10.5114/wo.2014.47136

17. Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol
(Clifton NJ). (2016) 1418:93–110. doi: 10.1007/978-1-4939-3578-9_5

18. Wilkerson M, Hayes D. ConsensusClusterPlus: A class discovery tool with
confidence assessments and item tracking. Bioinformatics. (2010) 26:1572–3. doi: 10.
1093/bioinformatics/btq170

19. Gustavsson E, Zhang D, Reynolds R, Garcia-Ruiz S, Ryten M. ggtranscript: An R
package for the visualization and interpretation of transcript isoforms using ggplot2.
Bioinformatics. (2022) 38:3844–6. doi: 10.1093/bioinformatics/btac409

20. Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin Epigenet. (2019)
11:123. doi: 10.1186/s13148-019-0730-1

21. Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for
microarray and RNA-seq data. BMC Bioinform. (2013) 14:7. doi: 10.1186/1471-
2105-14-7

22. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf A,
et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune
landscape in human cancer. Immunity. (2013) 39:782–95. doi: 10.1016/j.immuni.2013.
10.003

23. Wang X, Wu S, Liu F, Ke D, Wang X, Pan D, et al. An
immunogenic cell death-related classification predicts prognosis
and response to immunotherapy in head and neck squamous cell
carcinoma. Front Immunol. (2021) 12:781466. doi: 10.3389/fimmu.2021.78
1466

24. Liu Y, Chen Z, Lin W, Zhou Y, Liu Z, Zhao R, et al. Role of hippocampal
circKcnk9 in visceral hypersensitivity and anxiety comorbidity of irritable bowel

syndrome. Front Cell Neurosci. (2022) 16:1010107. doi: 10.3389/fncel.2022.101
0107

25. Yang M, Wang H, Davis T, Pflieger L, Thota R, Pledger W, et al. Abstract 5366:
Hotspot mutations of TP53 sensitize APC-mutated colorectal cancer cells to cetuximab
in vitro. Cancer Res. (2022) 82:5366–5366. doi: 10.1158/1538-7445.AM2022-5366

26. Sivakumar S, Jin D, Rathod R, Ross J, Cantley L, Scaltriti M, et al. Genetic
heterogeneity and tissue-specific patterns of tumors with multiple PIK3CA mutations.
Clin Cancer Res. (2023) 29:1125–36. doi: 10.1158/1078-0432.CCR-22-2270

27. Fan Y, Gao Z, Xu J, Wang H, Guo Q, Li B, et al. SPI1-mediated MIR222HG
transcription promotes proneural-to-mesenchymal transition of glioma stem cells and
immunosuppressive polarization of macrophages. Theranostics. (2023) 13:3310–29.
doi: 10.7150/thno.82590

28. Li J, Wang Y, Shen W, Zhang Z, Su Z, Guo X, et al. Mitochondria-modulating
liposomes reverse radio-resistance for colorectal cancer. Adv Sci. (2024) 11:2400845.
doi: 10.1002/advs.202400845

29. O’Connor M. Targeting the DNA damage response in cancer. Mol Cell. (2015)
60:547–60. doi: 10.1016/j.molcel.2015.10.040

30. Li Y, Yang C, Xie L, Shi F, Tang M, Luo X, et al. CYLD induces high oxidative
stress and DNA damage through class I HDACs to promote radiosensitivity in
nasopharyngeal carcinoma. Cell Death Dis. (2024) 15:95. doi: 10.1038/s41419-024-
06419-w

31. Barker H, Paget J, Khan A, Harrington K. The tumour microenvironment
after radiotherapy: Mechanisms of resistance and recurrence. Nat Rev Cancer. (2015)
15:409–25. doi: 10.1038/nrc3958

32. Meng J, Li Y, Wan C, Sun Y, Dai X, Huang J, et al. Targeting senescence-like
fibroblasts radiosensitizes non-small cell lung cancer and reduces radiation-induced
pulmonary fibrosis. JCI Insight. (2021) 6:e146334. doi: 10.1172/jci.insight.146334

33. Lewis M. PRELP, collagen, and a theory of Hutchinson–Gilford progeria. Ageing
Res Rev. (2003) 2:95–105. doi: 10.1016/S1568-1637(02)00044-2

34. Schäfer H, Subbarayan K, Massa C, Vaxevanis C, Mueller A, Seliger B.
Correlation of the tumor escape phenotype with loss of PRELP expression in
melanoma. J Transl Med. (2023) 21:643. doi: 10.1186/s12967-023-04476-x

35. Solis Hernandez M, Fernandez-Vega I, García-Suárez O, Perez Lopez N, Quirós
L, García B. Different small leucine-rich proteoglycans expression pattern by tumor
location in colorectal cancer. J Clin Oncol. (2017) 35:e15138. doi: 10.1200/JCO.2017.
35.15_suppl.e15138

36. Hopkins J, Asada K, Leung A, Papadaki V, Davaapil H, Morrison M, et al.
PRELP regulates cell–cell adhesion and EMT and inhibits retinoblastoma progression.
Cancers. (2022) 14:4926. doi: 10.3390/cancers14194926

37. Dozen A, Shozu K, Shinkai N, Ikawa N, Aoyama R, Machino H, et al. Tumor
suppressive role of the PRELP gene in ovarian clear cell carcinoma. J Pers Med. (2022)
12:1999. doi: 10.3390/jpm12121999

38. Papadaki V, Asada K, Watson J, Tamura T, Leung A, Hopkins J, et al. Two
secreted proteoglycans, activators of urothelial cell–cell adhesion, negatively contribute
to bladder cancer initiation and progression. Cancers. (2020) 12:3362. doi: 10.3390/
cancers12113362

39. Kirshner J, Jobling M, Pajares M, Ravani S, Glick A, Lavin M, et al. Inhibition
of transforming growth factor-beta1 signaling attenuates ataxia telangiectasia mutated
activity in response to genotoxic stress. Cancer Res. (2006) 66:10861–9. doi: 10.1158/
0008-5472.CAN-06-2565

40. Rodriguez-Ruiz M, Vitale I, Harrington K, Melero I, Galluzzi L. Immunological
impact of cell death signaling driven by radiation on the tumor microenvironment. Nat
Immunol. (2020) 21:120–34. doi: 10.1038/s41590-019-0561-4

41. Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda
F. Radiation effects on antitumor immune responses: Current perspectives and
challenges. Ther Adv Med Oncol. (2018) 10:175883401774257. doi: 10.1177/
1758834017742575

42. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response. Nat Med. (2018) 24:1550–8.
doi: 10.1038/s41591-018-0136-1

43. Reina-Campos M, Scharping N, Goldrath A. CD8+ T cell metabolism in
infection and cancer. Nat Rev Immunol. (2021) 21:718–38. doi: 10.1038/s41577-021-
00537-8

44. Cheng C, Ho A, Peng C, Chang J, Sie Z, Wang C, et al. Sorafenib suppresses
radioresistance and synergizes radiotherapy-mediated CD8+ T cell activation to
eradicate hepatocellular carcinoma. Int Immunopharmacol. (2022) 112:109110. doi:
10.1016/j.intimp.2022.109110

45. Yang J, Xing X, Luo L, Zhou X, Feng J, Huang K, et al. Mitochondria-ER contact
mediated by MFN2-SERCA2 interaction supports CD8+ T cell metabolic fitness
and function in tumors. Sci Immunol. (2023) 8:eabq2424. doi: 10.1126/sciimmunol.
abq2424

Frontiers in Medicine 18 frontiersin.org

https://doi.org/10.3389/fmed.2024.1473080
https://doi.org/10.1097/JTO.0000000000000630
https://doi.org/10.1186/s12929-020-00676-5
https://doi.org/10.1016/j.annonc.2021.08.2014
https://doi.org/10.1002/path.5274
https://doi.org/10.1021/acsnano.3c00048
https://doi.org/10.1016/j.canlet.2021.03.028
https://doi.org/10.1016/j.canlet.2021.03.028
https://doi.org/10.1038/s41556-023-01091-2
https://doi.org/10.1016/j.tcb.2023.07.009
https://doi.org/10.3389/fendo.2023.1180404
https://doi.org/10.1016/j.compbiomed.2023.107402
https://doi.org/10.1016/j.compbiomed.2023.107402
https://doi.org/10.3389/fimmu.2023.1233260
https://doi.org/10.3389/fimmu.2023.1233260
https://doi.org/10.3389/fimmu.2024.1371831
https://doi.org/10.1186/s12935-023-03125-z
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1007/978-1-4939-3578-9_5
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1093/bioinformatics/btac409
https://doi.org/10.1186/s13148-019-0730-1
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.3389/fimmu.2021.781466
https://doi.org/10.3389/fimmu.2021.781466
https://doi.org/10.3389/fncel.2022.1010107
https://doi.org/10.3389/fncel.2022.1010107
https://doi.org/10.1158/1538-7445.AM2022-5366
https://doi.org/10.1158/1078-0432.CCR-22-2270
https://doi.org/10.7150/thno.82590
https://doi.org/10.1002/advs.202400845
https://doi.org/10.1016/j.molcel.2015.10.040
https://doi.org/10.1038/s41419-024-06419-w
https://doi.org/10.1038/s41419-024-06419-w
https://doi.org/10.1038/nrc3958
https://doi.org/10.1172/jci.insight.146334
https://doi.org/10.1016/S1568-1637(02)00044-2
https://doi.org/10.1186/s12967-023-04476-x
https://doi.org/10.1200/JCO.2017.35.15_suppl.e15138
https://doi.org/10.1200/JCO.2017.35.15_suppl.e15138
https://doi.org/10.3390/cancers14194926
https://doi.org/10.3390/jpm12121999
https://doi.org/10.3390/cancers12113362
https://doi.org/10.3390/cancers12113362
https://doi.org/10.1158/0008-5472.CAN-06-2565
https://doi.org/10.1158/0008-5472.CAN-06-2565
https://doi.org/10.1038/s41590-019-0561-4
https://doi.org/10.1177/1758834017742575
https://doi.org/10.1177/1758834017742575
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/s41577-021-00537-8
https://doi.org/10.1038/s41577-021-00537-8
https://doi.org/10.1016/j.intimp.2022.109110
https://doi.org/10.1016/j.intimp.2022.109110
https://doi.org/10.1126/sciimmunol.abq2424
https://doi.org/10.1126/sciimmunol.abq2424
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

	Investigating the role of disulfidptosis related genes in radiotherapy resistance of lung adenocarcinoma
	1 Introduction
	2 Methods and materials
	2.1 Data collection and sample processing
	2.2 Identification of DERRDGs involved in LUAD
	2.3 Construction and verification of RiskScore model
	2.4 GO, KEGG, GSEA and GSVA analysis
	2.5 Protein-protein interaction (PPI) analysis
	2.6 Analysis of immune and somatic variation
	2.7 Construction and evaluation of the nomogram
	2.8 Comprehensive bioinformatics analysis of key gene PRELP
	2.9 Weighted correlation network analysis (WGCNA) and single cell sequencing analysis
	2.10 Colony formation assay
	2.11 Quantitative polymerase chain reaction (q-PCR)
	2.12 Western blot (WB)
	2.13 Immunohistochemistry (IHC)
	2.14 Immunofluorescence assay
	2.15 Statistical analysis

	3 Results
	3.1 Screening and functional enrichment analysis of DRGs
	3.2 Consensus cluster analysis and identification of DERRAGs
	3.3 Construction and validation of DERRDGs risk model
	3.4 Potential mechanism of DERRDGs in LUAD
	3.5 Immune pattern and immunotherapy sensitivity based on DERRDGs RiskScore
	3.6 Somatic mutation
	3.7 Clinical applications for nomogram
	3.8 Identifyng the key DERRDGs gene PRELP
	3.9 WGCNA analysis and single cell sequencing analysis
	3.10 Validation the expression of DERRDGs in radioresistant cell of LUAD

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


