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Exercise as a therapeutic 
approach to alleviate diabetic 
kidney disease: mechanisms, 
clinical evidence and potential 
exercise prescriptions
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Diabetic kidney disease (DKD) is a global and severe complication that imposes a 
significant burden on individual health, families, and society. Currently, the main 
treatment approaches for DKD include medication, blood glucose control, protein-
restricted diet, and blood pressure management, all of which have certain limitations. 
Exercise, as a non-pharmacological intervention, has attracted increasing attention. 
This review introduces the mechanisms and clinical evidence of exercise on DKD, 
and proposes potential exercise prescriptions. Exercise can improve blood glucose 
stability related to DKD and the renin-angiotensin-aldosterone system (RAAS), 
reduce renal oxidative stress and inflammation, enhance the crosstalk between 
muscle and kidneys, and improve endothelial cell function. These mechanisms 
contribute to the comprehensive improvement of DKD. Compared to traditional 
treatment methods, exercise has several advantages, including safety, effectiveness, 
and no significant side effects. It can be used as an adjunct therapy to medication, 
blood glucose control, protein-restricted diet, and blood pressure management. 
Despite the evident benefits of exercise in DKD management, there is still a lack 
of large-scale, long-term randomized controlled trials to provide more evidence 
and develop exercise guidelines for DKD. Healthcare professionals should actively 
encourage exercise in DKD patients and develop personalized exercise plans 
based on individual circumstances.
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1 Introduction

Diabetic kidney disease (DKD) is a severe complication on a global scale, posing a threat 
not only to individual health but also imposing a significant burden on families and societies 
(1, 2). Approximately 400 million people worldwide are estimated to have diabetes, and about 
one-third of diabetic patients eventually develop DKD, making it one of the leading causes of 
end-stage renal disease (ESRD) (1, 3). With the increasing number of diabetes patients, DKD 
has become one of the primary causes of chronic kidney disease globally.

Currently, the main treatment options for DKD include medication (4, 5), blood glucose 
control (4, 6), protein-restricted diet (4, 7), and blood pressure management (4, 8), lipid 
regulation, and antiplatelet therapy. In recent years, in addition to traditional approaches such 
as medication, blood glucose control, blood pressure management, and protein restriction, the 
roles of lipid regulation and antiplatelet therapy in the management of diabetic kidney disease 
(DKD) have also gained widespread recognition. Although these treatment methods have 
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shown some effects in controlling blood glucose and blood pressure, 
their limitations are evident. Certain medications may lead to adverse 
reactions, and these methods cannot fully reverse or prevent the 
progression of DKD (9). Therefore, finding more effective treatment 
methods is of significant importance for managing and 
improving DKD.

In recent years, exercise has garnered increasing attention as a 
non-pharmacological intervention. Exercise not only improves overall 
metabolic control, lowers blood glucose and lipid levels, but also 
enhances cardiovascular health and muscle function (10). Compared 
to traditional treatment methods, exercise has many advantages. It is 
a relatively safe treatment approach with almost no apparent side 
effects. Exercise can also improve cardiovascular function, regulate 
blood pressure and circulation, thereby helping to alleviate the burden 
on the kidneys. Furthermore, exercise can enhance the body’s redox 
status, suppress inflammatory responses, and mitigate cellular 
oxidative stress on the kidneys (11). These advantages make exercise 
a potential, feasible, and effective method for treating DKD.

This review aims to delve into the role of exercise in managing 
DKD and comprehensively analyze the advantages and limitations of 
exercise compared to traditional treatment methods. By synthesizing 
existing clinical and experimental research, we  will provide a 
comprehensive understanding of the mechanisms and effects of 
exercise in improving DKD. This will contribute to further clinical 
practice and guidance, providing more effective management 
strategies for DKD patients, improving their quality of life, and 
reducing the burden on families and societies.

2 Methods

2.1 Study design

This review employs a systematic literature review approach 
aimed at exploring the effects of exercise on diabetic kidney disease 
(DKD). We  prioritize high-quality study designs, including 
randomized controlled trials (RCTs) and prospective cohort studies, 
to enhance the credibility of the findings.

2.2 Literature selection

Data were systematically retrieved from electronic databases such 
as PubMed, Embase, and Cochrane Library using relevant keywords, 
including “diabetic kidney disease,” “exercise,” and “blood glucose 
stability.” The study selection and data extraction were conducted by 
two independent researchers to ensure the accuracy of the results.

Inclusion Criteria: (i) Study Population: Participants must 
be diagnosed with diabetic kidney disease (DKD) according to the 
diagnostic criteria set by the International Diabetes Federation (IDF) 
or other authoritative guidelines. (ii) Study Design: We  included 
randomized controlled trials (RCTs), prospective cohort studies, 
systematic reviews, and meta-analyses to ensure a comprehensive and 
high-quality assessment. (iii) Intervention Content: Studies must 
include an exercise intervention with clearly described types of 
exercise (e.g., aerobic, resistance training), frequency, and duration. 
(iv) Related Disease Studies: Research that includes other chronic 
diseases related to DKD (e.g., diabetes with heart disease, 

hypertension) to provide broader context. (v) Outcome Assessment: 
Studies should report specific effects of exercise on DKD patients, 
including blood glucose stability, renal function indicators (such as 
creatinine and urine protein), and related pathological mechanisms.

Exclusion Criteria: (i) Comorbid Patients: Studies focusing on 
patients with severe unrelated diseases (e.g., end-stage renal disease, 
active cancer) will be excluded to reduce confounding factors. (ii) 
Healthy Individuals: Exclude studies that involve healthy individuals 
as participants without mentioning DKD patients. (iii) Insufficient 
Sample Size: Exclude studies with fewer than 100 participants to 
ensure the validity of statistical analyses. (iv) Lack of Long-term 
Follow-up: Exclude studies that do not provide at least 6 months of 
follow-up data to assess the long-term effects of exercise.

2.3 Sample size

We prefer studies with larger sample sizes to ensure statistical 
significance and representativeness. The selected literature included 
studies with sample sizes exceeding 100 participants, providing 
sufficient statistical support.

2.4 Data collection

Quantitative analyses were conducted on the results of the 
included studies, employing appropriate statistical methods to 
evaluate the impact of exercise on DKD patients and further explore 
the effects of different exercise interventions on the underlying 
pathological mechanisms.

3 Results

3.1 Pathogenesis of DKD

Diabetic kidney disease (DKD) is a chronic complication of 
diabetes and the leading cause of end-stage renal disease. Its 
pathogenesis is complex, involving various molecular and cellular 
pathways, with hyperglycemia and hemodynamic disturbances being 
the primary driving factors for its onset and progression (Figure 1).

In DKD, dysfunction of the afferent and efferent arterioles is a key 
factor leading to increased glomerular filtration rate (GFR). Under 
normal conditions, the afferent arteriole, located at the entrance of the 
glomerulus, delivers blood to the glomerulus. Its dilation increases 
blood flow and pressure within the glomerulus, thereby enhancing the 
filtration rate. The efferent arteriole, situated at the exit, carries filtered 
blood away from the glomerulus; its constriction further increases 
glomerular pressure, leading to a rise in GFR (12). Metabolic 
disturbances in DKD, along with oxidative stress, inhibit nitric oxide 
(NO) production, which typically reduces vasodilation. However, in 
a hyperglycemic environment, the activation of the local renin-
angiotensin system (RAS) elevates angiotensin II levels, causing 
efferent arteriole constriction. As a compensatory mechanism, afferent 
arteriole dilation occurs to maintain glomerular filtration. This 
combination of afferent dilation and efferent constriction significantly 
increases intraglomerular pressure, thereby raising GFR, exacerbating 
kidney damage, and leading to proteinuria (13–15).
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In the early stages of DKD, persistent hyperglycemia induces 
changes in vascular factors, such as NO and endothelin-1, leading to 
the aforementioned vascular dysfunction. As intraglomerular pressure 
continues to rise, hyperfiltration develops, laying the foundation for 
subsequent kidney damage. These hemodynamic changes also cause 
phenotypic alterations in endothelial cells, increasing the permeability 
of the glomerular basement membrane, eventually resulting in 
proteinuria (13). In addition to hemodynamic changes, hyperglycemia 
exacerbates oxidative stress through the activation of aldose reductase 
(AR) in the polyol pathway. This pathway converts excess glucose into 
sorbitol, which accumulates within cells, consuming NADPH and 
inhibiting glutathione (GSH) regeneration. Since NADPH is an 
essential cofactor for GSH reduction, its depletion weakens the cells 
ability to scavenge reactive oxygen species (ROS), thereby intensifying 
oxidative stress (16). Moreover, sorbitol and vitamin C share the same 
cellular transport channel, so elevated sorbitol levels can inhibit 
vitamin C uptake, impairing the cell’s antioxidant defense capacity 
(17). Studies have shown that increased AR activity is closely linked 
to enhanced ROS production and the progression of DKD (18). Thus, 
AR not only compromises antioxidant defenses by depleting NADPH 
but also directly increases ROS production through sorbitol 
metabolism (17, 19). Consequently, the use of aldose reductase 
inhibitors has been considered a potential therapeutic strategy for 

DKD intervention, as they effectively reduce ROS levels (19, 20). As 
DKD progresses, alterations in intracellular glucose metabolism lead 
to the formation of advanced glycation end products (AGEs), further 
driving DKD progression. In a hyperglycemic environment, 
non-enzymatic glycation produces AGEs that cross-link with collagen 
and elastin in the extracellular matrix, altering their molecular 
structure and elasticity, thereby increasing matrix stiffness (21). This 
stiffening is a major cause of glomerular basement membrane 
thickening and tubulointerstitial fibrosis, disrupting normal kidney 
architecture and contributing to chronic kidney disease (CKD) (22). 
These structural changes play a key role in the pathophysiology of 
diabetes-related complications. Matrix stiffening limits the normal 
expansion and contraction of renal tubules, leading to impaired 
filtration and reabsorption functions, thereby accelerating DKD 
progression (23, 24). Furthermore, the cross-linking of AGEs with 
collagen and elastin not only affects the mechanical properties of renal 
tubules but also activates fibrotic pathways in the kidneys through 
oxidative stress and inflammatory responses (25). This fibrosis is a key 
factor in the pathological progression of DKD, further impairing 
normal kidney structure and function (25, 26). Research indicates that 
transforming growth factor-β1 (TGF-β1) is a key mediator of renal 
fibrosis in DKD. TGF-β1 primarily activates the Smad signaling 
pathway, promoting the transdifferentiation of renal intrinsic cells, 

FIGURE 1

Pathogenesis of diabetic kidney disease (DKD). This figure illustrates the multiple pathogenic mechanisms of hyperglycemia in the development of 
diabetic kidney disease (DKD). Hyperglycemia, through insulin resistance, leads to reduced glucose uptake, activating various pathways, including the 
aldose reductase (AR) pathway, PI3K/AKT pathway, and mammalian target of rapamycin complex 1 (mTORC1) pathway. These pathways contribute to 
lipid metabolism disorders, mitochondrial dysfunction, and increased reactive oxygen species (ROS) production. These metabolic changes further 
result in diminished antioxidant defense capacity and enhanced extracellular matrix (ECM) synthesis, ultimately leading to glomerulosclerosis, renal 
fibrosis, and tubulointerstitial fibrosis. Activation of the renin-angiotensin-aldosterone system (RAAS) increases glomerular pressure and glomerular 
filtration rate (GFR), exacerbating kidney damage. Additionally, the accumulation of advanced glycation end products (AGEs) through crosslinking with 
collagen and elastin activates the nuclear factor-kappa B (NF-κB) and protein kinase C (PKC) pathways, driving inflammatory responses. These complex 
mechanisms collectively promote the onset and progression of diabetic kidney disease.
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including tubular epithelial cells, mesangial cells, and fibroblasts, into 
myofibroblasts. These myofibroblasts are the main source of excessive 
extracellular matrix (ECM) synthesis, producing and secreting ECM 
components like type I and IV collagen, fibronectin, and laminin (27, 
28). Additionally, TGF-β1 inhibits the activity of matrix 
metalloproteinases (MMPs), reducing ECM degradation and resulting 
in ECM accumulation in kidney tissue (29, 30). This excessive ECM 
deposition ultimately leads to structural disorganization of the kidney, 
forming scar tissue that restricts normal kidney function (28, 29). 
Therefore, TGF-β1 serves as a crucial driver of fibrosis in DKD. Aside 
from hyperglycemia-induced pathological changes, lipid metabolism 
disorders can further worsen the condition by promoting ROS 
production through increased lipid peroxidation products. This 
process leads to glomerulosclerosis and tubulointerstitial fibrosis, 
aggravating DKD severity (31, 32). Moreover, AGEs enhance the 
expression of various NF-κB-related pro-inflammatory mediators, 
activated by ROS produced in high-glucose environments. Podocyte 
exposure to AGEs results in the upregulation of pro-inflammatory 
cytokines, infiltration of inflammatory cells, and stimulation of 
adhesion molecules and profibrotic factors (33). With the 
accumulation of AGEs and persistent hyperglycemia, the renin-
angiotensin-aldosterone system (RAAS) is activated. RAAS activation 
results in the production of angiotensin II (Ang II), which primarily 
induces oxidative stress via NADPH oxidase and promotes 
inflammation and fibrosis through pro-inflammatory and profibrotic 
cytokines (34, 35). The pathogenesis of DKD is complex, involving 
interactions at multiple biological levels. At the molecular level, 
genetic and epigenetic regulation plays a significant role in DKD 
progression. Studies indicate that changes in gene expression and 
epigenetic modifications, such as DNA methylation, histone changes, 
and non-coding RNA activity, are closely associated with inflammation 
and fibrosis-related signaling pathways (36, 37). These mechanisms 
are influenced by hyperglycemia-induced oxidative stress and AGE 
formation, accelerating the pathological process of DKD. At the 
cellular level, mitochondrial dysfunction, along with disturbances in 
energy metabolism and excessive ROS production, are key 
contributors to DKD (36, 38). Furthermore, dysregulation of the 
autophagy process worsens cellular damage and compromises the 
integrity of the glomerular filtration barrier, leading to proteinuria (36, 
38). At the tissue level, renal fibrosis is a hallmark of advanced DKD, 
where ongoing inflammation and ECM accumulation lead to 
tubulointerstitial fibrosis, causing irreversible damage to kidney 
structure and function (36). These insights provide a more 
comprehensive understanding of the mechanisms underlying DKD.

3.2 Mechanistic role of exercise in 
improving DKD

Exercise serves as a crucial intervention in the management of 
diabetic kidney disease (DKD), particularly in stabilizing blood 
glucose levels, a key factor in the progression of DKD in patients with 
Type 2 diabetes mellitus (T2DM). The mechanistic role of exercise in 
improving DKD, as illustrated in Figure 2, is multifaceted, involving 
various pathways that collectively contribute to better blood glucose 
stability. These pathways include the CaMKII, AMPK, mTOR, and 
IRS1/PI3-K/AKT/GLUT4 pathways, each playing a unique role in 
glucose metabolism and insulin sensitivity.

By engaging in regular physical activity, patients with DKD 
can activate these pathways, leading to improved insulin 
sensitivity, enhanced glucose uptake by skeletal muscles, and 
reduced blood glucose levels. For instance, the AMPK pathway, a 
well-known energy sensor, is particularly responsive to exercise. 
Activation of this pathway through physical activity improves 
insulin sensitivity and glucose uptake, crucial for maintaining 
stable blood glucose levels. Similarly, exercise-induced activation 
of the IRS1/PI3-K/AKT/GLUT4 pathway enhances the efficiency 
of glucose transport into cells, further contributing to blood 
glucose stability.

Moreover, exercise influences the regulation of blood glucose 
homeostasis by affecting muscle contraction and energy utilization. 
For example, muscle contractions during exercise stimulate the 
translocation of glucose transporters to the cell membrane, facilitating 
glucose entry into cells. This process is crucial for maintaining blood 
glucose levels within a normal range, especially in individuals with 
T2DM, who are at a higher risk of developing DKD.

In summary, the role of exercise in improving DKD extends 
beyond physical fitness. It involves a complex interplay of metabolic 
pathways that work together to stabilize blood glucose levels. This 
stabilization is key in managing DKD, as it directly impacts the 
progression of kidney disease in patients with T2DM. The beneficial 
effects of exercise on these pathways underscore its importance as a 
therapeutic strategy in the treatment and management of DKD. This 
section provides a comprehensive review of the mechanistic role of 
exercise in improving DKD.

3.2.1 Exercise improves blood glucose stability 
associated with DKD

3.2.1.1 Occurrence of DKD in patients with T2DM is 
associated with blood glucose homeostasis

Type 2 diabetes mellitus (T2DM) is a progressive disease 
characterized by reduced insulin secretion, increased insulin 
resistance, and disorders of glucagon metabolism. The persistent high-
glucose environment in the body can lead to diabetic kidney disease 
(DKD) (39). Therefore, T2DM serves as a precursor to the occurrence 
of DKD. Early research that insulin receptor substrate (IRS), as a key 
mediator of insulin signaling transduction, can promote glucose 
uptake by skeletal muscle (40). When IRS1 is knocked out, mice 
exhibit peripheral insulin resistance and growth retardation. When 
IRS2 is knocked out, metabolic defects occur in the liver, skeletal 
muscle, and fat, accompanied by apoptosis of islet β-cells (41). 
Moreover, activated AMP-activated protein kinase (AMPK) in skeletal 
muscle promotes the transfer glucose transporter 4 (GLUT4) from the 
intracellular pool to the cell membrane, thereby facilitating glucose 
entry into cells (42). However, Jiang et al. pointed out that under high-
glucose conditions, AMPK and liver kinase B1 (LKB1) undergo 
dissociation (43). Furthermore, studies have also found that in the 
skeletal muscle of obese mice fed a high-fat diet, activated mammalian 
target of rapamycin (mTOR) inhibits downstream insulin signaling 
mediated by S6K1, leading to degradation of IRS1 and IRS2, reduced 
glucose uptake in skeletal muscle, and glycogen accumulation (44). 
Additionally, Williamson et al. reported that the phosphorylation level 
of S6K1 in skeletal muscle of T2DM patients is higher (45).

In conclusion, IRS1 and IRS2 are crucial for maintaining blood 
glucose homeostasis. However, under high-glucose conditions, AMPK 
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levels decrease and its signaling pathway is inhibited, while mTOR 
levels increase and its signaling pathway is activated.

3.2.1.2 Pathways involved in the regulation of blood sugar 
homeostasis by exercise

3.2.1.2.1 CaMKII pathway
Muscle contraction can increase intracellular Ca2+ concentration 

and the amount of calcium regulatory protein complexes in the body. 
In the Ca2+-related calcium regulatory protein signaling pathway, 
calcium/calmodulin-dependent protein kinase II (CaMKII) is also an 
important molecule for skeletal muscle glucose uptake (46). When 
inhibiting CaMKII gene expression, although the activity of CaMK 
decreased by 35% and glucose uptake decreased by 30%, the level of 
GLUT4 protein did not change, while AMPK phosphorylation 
significantly increased, which is derived from the study of Witczak 
et al. (47). In addition, Smith et al. (48) demonstrated that aerobic 
exercise can increase the phosphorylation of CaMKII around rat 
skeletal muscle fibers and increase GLUT4 mRNA levels by 2.2-fold 
and protein levels by 1.8-fold. More encouragingly, Combes et al. (49) 

confirmed that compared to resting levels, healthy subjects undergoing 
high-intensity interval training (HIIT) had increased phosphorylation 
levels of AMPK and CaMKII in calf muscle by 2.9-fold and 2.7-fold, 
respectively. However, after 3 h of retesting, there was no further 
increase in the phosphorylation levels of AMPK and 
CaMKII. Therefore, it can be concluded that a certain intensity of 
exercise is required to better activate CaMKII, and there may be some 
overlap between CaMKII and AMPK in regulating glucose 
metabolism in the body.

3.2.1.2.2 AMPK pathway
Studies have demonstrated that exercise can enhance glucose 

homeostasis in patients with diabetic kidney disease (DKD) by 
activating the AMP-activated protein kinase (AMPK) pathway. AMPK 
serves as a critical energy-sensing enzyme that regulates cellular 
energy balance and metabolism (50). The AMPK pathway plays a key 
role in managing both diabetes and kidney diseases. In the context of 
DKD, AMPK activation can improve insulin sensitivity and promote 
glucose uptake and utilization, contributing to more stable blood 
glucose levels (51). For instance, regular aerobic exercise significantly 

FIGURE 2

Mechanisms of the benefits of exercise on DKD. Figure 1 illustrates how exercise affects various pathways and axes related to diabetic kidney disease 
(DKD). Key pathways and molecules involved include the AMP-activated protein kinase (AMPK) pathway, mammalian target of rapamycin (mTOR) 
pathway, calcium/calmodulin-dependent protein kinase II (CaMKII) pathway, and the insulin receptor substrate 1/phosphoinositide 3-kinase/protein 
kinase B/glucose transporter type 4 (IRS1/PI3-K/AKT/GLUT4) pathway. It also highlights the role of sirtuin 1 (SIRT1), nuclear factor erythroid 2-related 
factor 2 (Nrf2), glutathione peroxidase (GSH-Px), interleukins IL-6 and IL-10, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase 
(eNOS), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and transforming growth factor beta (TGF-β). The renin-angiotensin-
aldosterone system (RAAS) is also depicted, with specific focus on the angiotensin-converting enzyme 2/angiotensin II/angiotensin II receptor type 1 
(ACE/Ang II/AT1R) axis and the angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor (ACE2/Ang-(1-7)/Mas) axis. Additionally, the nitric 
oxide synthase (NOS) and AMP-activated protein kinase/microRNA-181b (AMPK/miR-181b) axis are mentioned. The image further addresses the roles 
of transforming growth factor beta 1 (TGF-β1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and diabetic kidney 
disease (DKD).
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activates the AMPK pathway, leading to improved blood glucose 
control and enhanced renal function in patients with type 2 diabetes 
(52). Exercise-induced activation of AMPK reduces inflammation and 
oxidative stress through multiple mechanisms. First, AMPK inhibits 
the activation of nuclear factor-κB (NF-κB) by suppressing IκB kinase 
(IKK), which decreases the production of pro-inflammatory 
cytokines, such as TNF-α, IL-6, and IL-1β. This process effectively 
reduces systemic inflammatory responses (53, 54). Second, AMPK 
activation upregulates nuclear factor erythroid 2–related factor 2 
(Nrf2), a key antioxidant transcription factor. Nrf2 enhances the 
expression of antioxidant enzymes like superoxide dismutase (SOD) 
and catalase (CAT), thereby boosting the cell’s capacity to neutralize 
reactive oxygen species (ROS) and mitigating oxidative stress-induced 
damage (55, 56). Additionally, AMPK upregulates peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), 
which promotes mitochondrial biogenesis and improves 
mitochondrial function and efficiency. This action further reduces 
ROS production, thereby not only decreasing oxidative stress-related 
damage to organs such as the kidneys but also improving cellular 
metabolic homeostasis, offering protective effects against oxidative 
injury (53, 57). Moreover, the reduction of inflammation and oxidative 
stress through AMPK pathway activation is vital for slowing DKD 
progression. Aerobic exercise has been shown to enhance AMPK 
activity, thereby reducing inflammation and fibrosis in diabetic mouse 
models (58). Thus, exercise, through AMPK pathway activation, 
presents significant potential in improving glucose homeostasis and 
renal health in patients with DKD.

3.2.1.2.3 mTOR pathway
The mTOR pathway plays a crucial role in regulating cell growth 

and metabolism by integrating nutritional signals, energy status, and 
growth factor signals to modulate protein synthesis and cellular 
growth. In diabetic kidney disease (DKD), excessive activation of 
mTORC1 is closely related to the occurrence of glomerulosclerosis 
and fibrosis, which further leads to renal dysfunction, including 
damage to podocytes and proximal tubular cells (59, 60). Recent 
studies have shown that mTOR inhibitors can block the mTOR 
pathway while simultaneously triggering anti-inflammatory, anti-
proliferative, and autophagy-inducing responses in the body. 
Generally, mTOR is activated in various disease states (61). Research 
evidence also indicates that exercise training can reduce insulin 
resistance in the myocardium of diet-induced obese rats and 
upregulate the mTOR/p70S6k pathway (62). It is noteworthy that 
different types of exercise exert distinct effects on the mTOR 
pathway. In normal rats, both aerobic and resistance exercises can 
increase mTOR phosphorylation levels; however, resistance exercise 
has been shown to induce a greater degree of phosphorylation 
compared to aerobic exercise (63). An earlier study observed that, 
after exercise, the phosphorylation levels of mTOR in both the 
exercised and non-exercised legs of healthy participants increased 
by 45–65%, alongside a 40% increase in AMPK phosphorylation 
levels (64). In disease states, the mTOR pathway is typically 
abnormally activated, contributing to inflammation and metabolic 
dysfunction. However, during exercise, mTOR activation plays a 
critical role in normal cellular repair and protein synthesis, 
facilitating muscle and tissue recovery and regeneration (65, 66). The 
tissue-specific effects of exercise are particularly significant in DKD 
patients. Exercise activates the AMPK pathway, which subsequently 

inhibits excessive mTORC1 activity, thereby reducing oxidative 
stress and fibrosis in the kidneys and improving renal function (60, 
67). In contrast, in skeletal muscle, exercise has a different impact. 
Resistance training and high-intensity interval training (HIIT) can 
activate mTOR, promoting protein synthesis and supporting muscle 
growth and repair (68). This activation is driven by mechanical 
tension and growth factor stimulation, leading to muscle fiber 
hypertrophy and increased strength. Post-exercise, the enhanced 
mTOR activity also facilitates the absorption and utilization of 
nutrients by muscle cells, strengthening muscle metabolism (68, 69). 
Therefore, in healthy individuals, the increased phosphorylation of 
mTOR induced by exercise may be necessary for certain metabolic 
processes. Although our understanding of the regulatory relationship 
between exercise and the mTOR pathway has advanced, direct 
evidence on how the mTOR pathway is regulated in DKD patients 
or animal models remains limited, warranting further investigation 
to elucidate the underlying mechanisms.

3.2.1.2.4 IRS1/PI3-K/AKT/GLUT4 pathway
According to research by Kirwan et al. (70), 10 weeks of aerobic 

exercise can increase the expression of IRS1 protein in insulin-
resistant rats. Additionally, it has been suggested that regular aerobic 
exercise can increase the activity level of PI3K, which is related to 
IRS1, in human skeletal muscle, and promote the uptake of glucose by 
GLUT4 in skeletal muscle (71). Furthermore, evidence has shown that 
moderate aerobic exercise not only increases the content and 
phosphorylation level of IRS2, but also promotes the sustained growth 
effect of GLUT4 protein content and IRS2 phosphorylation (72). 
Additionally, studies have found that aerobic exercise can promote the 
expression of IRS1, PI3K, AKT, GLUT4, etc. (73). These proteins form 
the IRS1/PI3K/AKT/GLUT4 pathway, thereby enhancing insulin 
sensitivity (74, 75). Therefore, exercise can improve peripheral insulin 
resistance through the IRS1/PI3K/AKT/GLUT4 pathway, which may 
be effective in ameliorating the progression of DKD.

3.2.2 Exercise improves RAAS associated with 
DKD

3.2.2.1 Role of RAAS activation and aldosterone in 
diabetic kidney disease

The renin-angiotensin-aldosterone system (RAAS) is widely 
distributed throughout the body and plays a critical role in 
maintaining blood flow stability by regulating water, electrolyte 
balance, and blood pressure. RAAS consists of two axes: the pressor 
axis and the depressor axis. In the pressor axis, renin converts 
angiotensinogen into angiotensin I (Ang I), which is then transformed 
into angiotensin II (Ang II) by angiotensin-converting enzyme (ACE). 
Ang II, the primary effector of the pressor axis, binds to Ang II type 1 
receptor (AT1R), leading to vasoconstriction, promotion of renal 
water and sodium reabsorption, and aldosterone release (76, 77). In 
diabetic kidney disease (DKD), the RAAS-mediated activation of the 
pressor axis becomes sustained and excessive, resulting in increased 
intraglomerular pressure and glomerular hypertension. This enhanced 
activity of Ang II also leads to an increase in reactive oxygen species 
(ROS) production and extracellular matrix (ECM) accumulation, 
further stimulating mesangial cells to synthesize more transforming 
growth factor-β1 (TGF-β1). These changes ultimately contribute to 
glomerulosclerosis and fibrosis (78).
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Studies in diabetic rats have shown that transfection with the 
ACE2 gene can lower blood pressure, urinary protein excretion, and 
kidney stiffness. This was accompanied by decreased expression of 
TGF-β1 and vascular endothelial growth factor (VEGF) mRNA, as 
well as increased superoxide dismutase (SOD) activity, Ang-(1–7) 
concentration, and nephrin content in the kidneys (79). Therefore, in 
the context of DKD, the RAAS pressor axis is excessively activated and 
the levels of AngII and its downstream components in the kidney are 
elevated, while the depressor axis and ACE2  in the kidney are 
inhibited. Therefore, in the context of DKD, the pressor axis of RAAS 
is excessively activated, elevating Ang II levels and its downstream 
effects in the kidney, while the depressor axis, particularly ACE2, 
is inhibited.

In hyperglycemic conditions, the balance between the RAAS 
pressor axis (ACE/Ang II/AT1R axis) and the depressor axis (ACE2/
Ang-(1–7)/Mas receptor axis) is disrupted, resulting in overactivation 
of the pressor axis and suppression of the depressor axis (80). 
Hyperglycemia-induced glomerular hypertension directly stimulates 
the pressor axis, leading to increased Ang II levels (81). Simultaneously, 
oxidative stress and inflammation triggered by hyperglycemia 
suppress ACE2 expression, hindering the conversion of Ang II to 
Ang-(1–7) and further exacerbating RAAS imbalance (82, 83).

Apart from its direct effects on smooth muscle contraction to 
increase blood pressure, RAAS can indirectly elevate blood pressure 
by stimulating aldosterone production. Ang II acts on the adrenal 
glands to promote aldosterone synthesis (84). In diabetic rats, the 
mRNA expression of aldosterone synthase is reported to be 12 times 
higher than in control rats. However, using an AT1R antagonist 
significantly reduces its expression in the kidney (85). Additionally, 
diabetic rats that underwent bilateral adrenalectomy showed elevated 
glucose levels and kidney aldosterone content but had lower plasma 
aldosterone levels. When treated with an aldosterone synthase 
inhibitor, these diabetic rats exhibited reduced kidney aldosterone 
content, along with decreased levels of nuclear factor-κB (NF-κB) and 
TGF-β1 proteins, although there was no change in blood glucose 
levels. This indicates that the systemic aldosterone system can 
influence the regulation of the local renal aldosterone system (86).

Overall, in DKD, the systemic aldosterone system contributes to 
the regulation of the local aldosterone system in the kidneys. Increased 
local aldosterone exacerbates renal inflammation, further promoting 
the progression of DKD. However, in diabetic rats with ACE2 gene 
transfection, these negative effects were mitigated. Further research is 
needed to explore the clinical implications of modulating 
RAAS in DKD.

3.2.2.2 Modulation of the RAAS by exercise
The influence of exercise on the RAAS has attracted widespread 

attention in the field of DKD. Research has shown that exercise can 
activate the ACE2/Ang-(1–7)/Mas axis and inhibit the activity of the 
ACE/AngII/AT1R axis (87). Furthermore, studies have revealed that 
post-exercise, the urine concentrations of AngII decrease in healthy 
individuals, while those of Ang-(1–7) increase (88). In studies 
investigating the effects of aerobic exercise and aerobic exercise 
combined with metformin treatment in diabetic mice, it was found 
that the expression level of ACE2 in the urine of the mice decreased 
during the second week and continued to decrease throughout the 
tenth week. Compared to the control group, exercise increased the 
expression level of ACE2 in the glomeruli of diabetic mice (89).

Another four-year follow-up survey showed that patients with 
diabetes who had reduced daily activity had increased glomerular 
filtration rate, blood creatinine levels, and glycated hemoglobin levels. 
However, patients with diabetes who engaged in moderate daily 
activities had reduced metabolic levels, thereby mitigating the adverse 
effects on the kidneys (90). Animal research data indicate that physical 
exercise can down-regulate the classic ACE/Ang II/AT1R axis and 
up-regulate the ACE 2/Ang1-7/Mas axis (91). Additionally, resistance 
training shifted the balance of the RAAS in diabetic rat kidneys 
toward the ACE2/Ang 1–7 axis and reduced inflammation (92). 
However, these findings require further validation in clinical practice.

It is noteworthy that studies on renal failure animal models have 
revealed that regular exercise can reduce the accumulation of AngII 
in the heart, alleviate left ventricular remodeling, and decrease the 
degree of myocardial fibrosis. This may provide assistance in 
improving left ventricular hypertrophy issues in patients with DKD 
renal failure (93).

In conclusion, exercise plays a positive role in regulating the 
RAAS, providing new insights into the treatment of DKD. However, 
further research is needed on the specific application of exercise in 
clinical practice.

3.2.3 Exercise improves renal oxidative stress and 
inflammation associated with DKD

3.2.3.1 DKD and renal oxidative stress and inflammation
It is interesting that mitochondria play key roles in both energy 

production and the generation of reactive oxygen species (ROS), as 
well as processes such as mitochondrial self-replication and 
mitochondrial differentiation. In other cells, mitochondria also 
regulate cell proliferation, differentiation, and inflammation (94). 
Research has found that respiratory reserve capacity is significantly 
reduced in mouse glomerular endothelial cells treated with high 
glucose. Diabetic mice show increased mitochondrial ROS and 
damaged podocyte mitosis compared to normal mice (95). 
Additionally, in podocytes treated with high glucose, the mRNA levels 
of silent information regulator 1 (Sirt1), which is associated with silent 
information regulator 2 (Sir2), are decreased (96). Moreover, in 
diabetic mice with knockdown of progranulin (PGRN) gene, the 
expression levels of Sirt1 and acetylation levels of PGC-1α are 
significantly increased.

In addition, in the case of diabetic kidney disease (DKD), protein 
misfolding in the endoplasmic reticulum (ER) can affect protein 
expression and glycosylation processes, leading to increased 
proteinuria and renal inflammation. Furthermore, the ER can generate 
a certain amount of ROS through the uncoupling reaction of nitric 
oxide synthase (NOS) (97). In DKD, dysfunction of glomerular 
endothelial cells (GECs) is an early manifestation. This is followed by 
sustained hyperglycemia and increased ROS in the kidney, which can 
inhibit NOS gene expression and reduce nitric oxide (NO) levels (98). 
At the same time, advanced glycation end products (AGEs) continue 
to accumulate in the kidneys and bind with collagen, leading to 
thickening of the glomerular basement membrane and induction of 
mesangial cell synthesis of more extracellular matrix (ECM). This can 
also activate nuclear factor κ-B (NF-κB), the PI3K/AKT/mTOR 
pathway, as well as decrease the levels of antioxidant enzymes, 
glutathione, and NOS (99). Moreover, some glucose can generate 
more fructose and reduced coenzyme I (NADH) through the polyol 
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pathway. The increased NADH can generate more ROS through the 
mitochondrial electron respiratory chain, as well as generate more 
glycerides through glycolysis and the tricarboxylic acid cycle (100).

Sustained hyperglycemia and glycerides can activate the protein 
kinase C (PKC) pathway. The activated PKC pathway not only inhibits 
NOS gene expression but also activates the NF-κB pathway (101). 
Meanwhile, studies have observed increased mRNA levels of PKC, 
transforming growth factor-β1 (TGF-β1), and collagen proteins such 
as fibronectin I, fibronectin III, and collagen type IV in the renal 
tubulointerstitium of diabetic mice (102).

In conclusion, oxidative stress and inflammation in DKD are the 
results of multiple factors. Mitochondrial dysfunction, endothelial cell 
dysfunction, AGEs accumulation, activation of the polyol pathway, 
and activation of the PKC pathway are major causes of renal oxidative 
stress and inflammation. Under the interaction and influence of these 
factors, loss of renal structure and function, as well as apoptosis of 
related cells, can occur. Based on this, DKD can progress toward a 
worse outcome.

3.2.3.2 Exercise reduces renal oxidative stress and 
inflammation

Current evidence from both direct and indirect animal studies 
indicates that exercise can mitigate renal oxidative stress and 
inflammation. For example, in an 8-week aerobic exercise program, 
not only was lipid peroxidation in the renal cortex of obese rats with 
diabetes mellitus (DM) reduced, but levels of nitric oxide (NO) and 
inducible nitric oxide synthase (iNOS) increased, while endothelial 
nitric oxide synthase (eNOS) levels decreased (103). Studies have 
shown that hyperglycemia-induced oxidative stress exacerbates renal 
injury in diabetic nephropathy by affecting the function of nitric oxide 
synthases, specifically eNOS and iNOS. In a hyperglycemic 
environment, the production of reactive oxygen species (ROS) is 
significantly increased, impairing eNOS activity and reducing NO 
bioavailability, which in turn damages vascular endothelial function 
(104, 105). At the same time, high glucose levels trigger an 
inflammatory response that promotes the overexpression of iNOS 
(106). The excess NO produced by iNOS combines with superoxide 
radicals to form peroxynitrite, a potent oxidant that further aggravates 
renal cell damage and accelerates the progression of DKD (105, 107). 
These findings suggest that aerobic exercise can alleviate renal 
oxidative stress and inflammation by modulating the nitric oxide 
system. Similarly, moderate-intensity aerobic exercise has been shown 
to reduce the number of macrophages and lymphocytes in the 
glomeruli of DM mice, while also decreasing the expression levels of 
NF-κB gene and TGF-β1 mRNA in renal interstitial tissue (108). 
Additionally, research has found that aerobic exercise upregulates the 
expression of SIRT1 and inhibits the acetylation of NF-κB in the 
kidneys of DM mice (109). This suggests that aerobic exercise may 
have a protective effect on renal oxidative stress and inflammation by 
regulating the activity of SIRT1 and NF-κB.

In clinical applications, there are also studies demonstrating the 
positive effects of exercise in alleviating renal oxidative stress and 
inflammation. There is already evidence indicating that patients with 
CKD have significant organ damage (110, 111). However, there have 
been studies attempting a 3-month resistance exercise program in 
patients with chronic kidney disease (CKD), which reported an 
increase in the expression levels of Nrf2 mRNA and glutathione 
peroxidase (GSH-Px) mRNA, but no significant change in the 

expression level of NF-κB (112). This suggests that resistance exercise 
may have some improvement effect on oxidative stress in CKD 
patients, but its impact on inflammation may be limited. In addition, 
a 30-min walking exercise induced a significant increase in plasma 
anti-inflammatory cytokine IL-10 and pro-inflammatory cytokine 
IL-6 levels, while maintaining a regular walking exercise for 6 months 
resulted in a decrease in the IL-6/IL-10 ratio in the plasma and a 
reduction in the activation of T lymphocytes and monocytes (113). 
This suggests that long-term walking exercise can produce anti-
inflammatory effects and reduce the activation of immune cells, which 
may help alleviate renal inflammation.

Overall, animal and clinical studies demonstrate the positive 
effects of exercise in alleviating renal oxidative stress and 
inflammation. However, the differences in exercise type and intensity 
may have different impacts on the kidneys, and further research is 
needed to investigate the mechanisms and clinical application value 
in depth.

3.2.4 Exercise improves DKD through crosstalk 
between muscle and kidney

The interaction between the kidney and muscle forms a muscle-
kidney axis, which can be modulated by exercise. The muscle, aside 
from its role in movement, also functions as an endocrine organ by 
secreting myokines into the bloodstream, thereby exerting various 
biological effects (2, 13). Research has shown that muscle contraction 
during acute exercise releases a large amount of IL-6. However, regular 
and sustained exercise can significantly lower baseline levels of IL-6, 
reduce systemic inflammation, and delay the progression of diabetic 
kidney disease (DKD) (2, 114). One of the myokines, irisin, has been 
found to inhibit TGF-β1, thereby reducing renal fibrosis. Aerobic 
exercise induces the secretion of irisin, which can activate AMPK and 
dose-dependently inhibit high glucose-induced extracellular matrix 
accumulation in renal tubular epithelial cells, providing a protective 
effect on the kidney (114). In addition, several other myokines, 
including myostatin, YKL-40, fatty acid-binding proteins, and 
fibroblast growth factor 21, have been identified. Further research is 
needed to explore their potential associations with DKD (13).

Lactate, another muscle-derived factor, is produced not only 
during high-intensity exercise but also accumulates in muscle tissue 
even during low to moderate intensity exercise, potentially influencing 
renal function (115, 116). The kidneys play a key role in lactate 
clearance and metabolism, but elevated lactate levels, especially in 
patients with DKD, can increase the metabolic burden on the kidneys 
(117). Additionally, lactate may impact renal function by affecting 
endothelial cell function and enhancing oxidative stress (115). 
However, the specific effects of lactate on kidney function during 
moderate-intensity exercise remain to be fully understood and warrant 
further investigation (115, 116). Exercise may improve DKD by 
regulating pathways such as fatty acid metabolism, podocyte apoptosis, 
and renal fibrosis. Although clinical evidence supporting the effects of 
exercise on lipid metabolism in DKD is limited, animal studies have 
shown that exercise can increase the expression of medium-chain acyl-
coenzyme A dehydrogenase and PGC-1α, both of which are involved 
in fatty acid metabolism. This can independently reduce glomerular 
and tubulointerstitial damage, regardless of blood glucose regulation 
(118). Furthermore, skeletal muscle contraction increases the body’s 
energy demand, promotes peripheral fat breakdown, and enhances 
hepatic free fatty acid oxidation, thereby improving glucose 
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homeostasis and contributing to DKD improvement (119). Treadmill 
training has also been found to reverse the downregulation of 
cystathionine β-synthase and cystathionine γ-lyase, thereby enhancing 
endogenous hydrogen sulfide production in the kidney, inhibiting the 
SIRT1/p53 apoptosis pathway, and alleviating diabetes-associated renal 
injury in streptozotocin-induced diabetic mice (120). Additionally, 
aerobic exercise can reduce the expression of TGF-β, type I collagen, 
type IV collagen, and smooth muscle actin antibodies, thus slowing the 
progression of renal fibrosis (121).

In conclusion, muscle plays a significant role in DKD, and exercise 
can regulate the muscle-kidney interaction through various pathways, 
thereby improving DKD progression. A deeper understanding of this 
crosstalk and the impact of exercise on DKD can provide valuable 
insights into the prevention and treatment of the disease.

3.2.5 Exercise improves endothelial cell function 
associated with DKD

Exercise improves endothelial cell function associated with 
DKD. Research has shown that exercise can increase the expression of 
nitric oxide synthase (NOS), reduce oxidative stress, and improve 
vascular relaxation in diabetic mice. Specifically, exercise significantly 
improves the expression of endothelial NOS in obese diabetic rats 
(122). Eight weeks of aerobic exercise can significantly reduce 
albuminuria in obese diabetic rats, improve renal nitric oxide 
metabolism, but may induce renal damage under conditions of low 
nitric oxide bioavailability. Therefore, the protective effects of aerobic 
training on the kidneys may depend on the bioavailability of nitric 
oxide (123). Moreover, long-term regular exercise can activate the 
AMPK/miR-181b axis by increasing blood flow, thereby improving 
endothelial dysfunction (124). Thus, long-term and sustained exercise 
is important for improving endothelial cell function and protecting 
kidney health.

3.2.6 The impact of exercise on dyslipidemia and 
its progression in patients with DKD

Patients with diabetic kidney disease (DKD) frequently present 
with dyslipidemia, a pathological condition typically characterized by 
elevated levels of low-density lipoprotein cholesterol (LDL-C) and 
triglycerides (TG), alongside reduced levels of high-density 
lipoprotein cholesterol (HDL-C). Research indicates that these lipid 
abnormalities play a critical role in the development of DKD. For 
instance, elevated TG and decreased HDL-C levels are closely 
associated with the onset and progression of chronic kidney disease 
(CKD) (125). High TG levels and low HDL-C levels are not only 
significantly correlated with advanced stages of CKD but may also 
accelerate the deterioration of DKD through various 
mechanisms (126).

In the pathological progression of DKD, dyslipidemia plays a key 
role. Elevated LDL-C and TG levels can damage renal microvascular 
endothelial cells, leading to increased oxidative stress and 
inflammatory responses, which in turn promote glomerulosclerosis 
and tubulointerstitial fibrosis (127). Additionally, lipid deposition in 
the glomeruli and renal tubules significantly affects kidney structure 
and function, potentially resulting in proteinuria and declining renal 
function. Lipid accumulation due to disrupted renal lipid metabolism 
can induce inflammation and fibrosis, further impairing renal 
function (128). Lipid deposition in tubular cells may also exacerbate 
renal injury by affecting cellular energy metabolism, ultimately driving 
the progression of proteinuria and CKD (129).

Exercise, as an effective non-pharmacological intervention, 
significantly slows the progression of DKD by improving dyslipidemia. 
Existing studies have shown that exercise enhances the activity of 
lipoprotein lipase (LPL), increases hepatic lipid uptake and 
metabolism, and effectively reduces blood lipid levels. Exercise not 
only improves systemic lipid metabolism but also reduces renal lipid 
deposition and associated inflammatory responses, thereby delaying 
the progression of DKD (130, 131). Specifically, aerobic exercise has 
demonstrated significant effects in reducing LDL-C and TG levels 
while increasing HDL-C levels.

A substantial body of research has confirmed the significant 
efficacy of exercise interventions in improving dyslipidemia in DKD 
patients. For example, 12 weeks of moderate-intensity aerobic exercise 
has been shown to significantly lower LDL-C and TG levels in patients 
with type 2 diabetes while increasing HDL-C levels. In one study, 
participants engaged in 30 min of aerobic exercise three times a week, 
resulting in significant reductions in LDL-C and TG levels, and an 
increase in HDL-C levels after 12 weeks (132). These improvements in 
lipid parameters not only help reduce cardiovascular disease risk but 
also slow the progression of diabetes-related complications.

To maximize the improvement of dyslipidemia in DKD patients, 
individualized exercise intervention programs are particularly 
important. Studies suggest that moderate aerobic exercise and 
resistance training, when conducted under medical supervision, can 
effectively improve lipid levels (133). Personalized exercise programs 
should be tailored to the patient’s specific conditions, such as age, 
fitness level, and severity of the disease, to achieve optimal lipid 
control by lowering LDL-C and TG levels while raising HDL-C levels. 
Future research should further clarify the optimal strategies for 
different types and intensities of exercise in lipid management and 
explore ways to enhance patient adherence to exercise, thereby 
optimizing lipid management and slowing the progression of DKD.

3.2.7 Physical decline and exercise in diabetic and 
pre-diabetic CKD

Evidence has shown that DKD is a subtype or specific type of 
CKD. Thus, it is also necessary to discuss “Physical Decline and 
Exercise in Diabetic and Pre-Diabetic CKD.” The issue of physical 
decline in patients with chronic kidney disease is particularly severe 
among those with diabetes and pre-diabetes. Diabetes complicates 
the progression of CKD, accelerating renal function decline, 
especially through the effects of hypertension and metabolic 
abnormalities (110, 134). Insulin resistance is a key pathological 
mechanism between diabetes and CKD, leading to increased risk of 
cardiovascular diseases in patients (135). Furthermore, these 
patients often experience endothelial dysfunction, such as 
proteinuria, which is greatly linked to cognitive impairments and 
physical frailty (110). As chronic kidney disease progresses, with the 
decline in glomerular filtration rate (eGFR), patients’ physical 
functions gradually deteriorate. Studies have shown that patients 
with lower eGFR are more likely to experience declines in cognitive 
and physical functions (136). Additionally, cardiovascular diseases 
(CVD) and diabetes also increase the all-cause mortality and 
physical dysfunction in these patients (135). Accompanying these 
health issues, the decline in physical capacity in CKD patients not 
only limits daily activities but also affects their ability to engage in 
rehabilitation and exercise therapy (135). Despite the common 
decline in physical function among CKD patients, the role of 
exercise interventions in delaying this process cannot be overlooked. 
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Existing research indicates that regular aerobic and resistance 
training can improve glycemic control, insulin sensitivity, and 
reduce chronic inflammation in CKD patients (137, 138). In 
prediabetic and diabetic patients, exercise effectively enhances 
glucose metabolism, boosts muscle strength, and reduces 
complications associated with cardiovascular diseases (138). 
Moreover, exercise can also improve cognitive functions in these 
patients (137). In elderly CKD patients, research has found that 
regular exercise helps to delay cognitive decline, which is especially 
important for diabetic and prediabetic patients (72).

3.3 Clinical research on the improvement 
of diabetic kidney disease through exercise

Numerous clinical studies have demonstrated the benefits of 
exercise in helping diabetic patients control blood sugar, lipids, and 
weight, improving insulin sensitivity, enhancing cardiovascular and 
pulmonary function, and reducing the risk of cardiovascular and 
microvascular complications. This section reviews key studies that have 
focused specifically on the impact of exercise interventions on diabetic 
kidney disease (DKD) outcomes (139). Additionally, meta-analyses 
have shown that exercise has a beneficial effect on improving the renal 
function of diabetic patients, effectively reducing the incidence of 
microalbuminuria and renal failure (140). The results of a large 
randomized controlled trial, T2D Patients with Intensive Glucose 
Control and Vascular Complications showed that patients who 
performed moderate to high-intensity exercise had a lower risk of 
microvascular events compared to those who did not exercise or only 
performed light physical activity during a median follow-up period of 
5 years (141). The FinnDiane study in Finland found that physical 
activity was related to DKD in T1D patients, and compared to patients 
with normal urinary albumin excretion rates, those with 
microalbuminuria had a higher frequency of low-intensity physical 
activity. After adjusting for confounding factors, higher frequencies and 
intensities of physical activity were found to reduce the risk of DKD in 
T1D patients (142). A recent large-sample study in elderly patients with 
diabetes found that regular physical activity (at least 2 times per week) 
was significantly associated with lower ESKD and proteinuria rates, as 
well as a slower decline in GFR (143). In a 39-month prospective 
follow-up study conducted by Tamiya et al. on a cohort of 173 patients 
with DKD, it was found that sedentary behavior of ≥525 min/day 
increases the risk of kidney and cardiovascular events and/or all-cause 
mortality among DKD patients (144).

The latest studies have shown that a combination of aerobic 
exercise and quadriceps muscle strengthening training for 6 months 
can reduce the risk of peritoneal/hemodialysis, cardiovascular disease, 
and all-cause mortality in DKD patients, while also increasing high-
density lipoprotein cholesterol levels and improving lip metabolism 
(145). These clinical studies have proven the beneficial effects of 
exercise on DKD, but currently, most studies on exercise intervention 
in DKD are small clinical trials with short durations, and more large-
sample, long-term randomized controlled studies are needed to 
provide evidence for the exercise guidance of DKD patients.

Despite the abundant evidence showing the benefits of regular 
exercise for diabetic patients, the majority of diabetic patients have not 
developed a regular exercise habit. A large cross-sectional study in 
Europe on 18,028 adult T1D patients showed that less than 20% of 
patients were able to perform aerobic exercise at least twice a week 

(146). The results of a self-reported exercise study in American T2D 
patients showed that only 42.6–65.1% of patients met the American 
Diabetes Association (ADA) guideline-recommended exercise 
duration (147).

There is currently a lack of research on the current status of exercise 
in DKD patients, but epidemiological studies on CKD show that CKD 
patients average 9 days of exercise per month, and 45% of ESKD patients 
do not exercise (148). The reasons for the decreased exercise in DKD 
patients may include difficulty in controlling blood sugar, decreased 
muscle function, co-morbidities such as cardiovascular disease, and 
reduced hemoglobin levels due to decreased erythropoietin production. 
In addition, inadequate exercise counseling by healthcare providers, 
lack of exercise prescriptions, and incentives are also contributing 
factors to the lack of exercise in DKD patients (139).

In general, regular exercise has been proven to have numerous 
benefits for individuals with diabetes, including helping to control 
blood sugar, lipids, and weight, improving insulin sensitivity, and 
enhancing cardiovascular and pulmonary function. It also improves 
overall health and reduces the risk of cardiovascular and microvascular 
complications and mortality. Exercise has also been shown to have 
beneficial effects on improving renal function, reducing 
microalbuminuria, and decreasing the incidence of renal failure. 
Please refer to Table 1 for clinical research on the improvement of 
diabetic kidney disease through exercise.

3.4 Potential exercise prescriptions for DKD

According to the American Diabetes Association (ADA)’s 
Lifestyle and Healthcare Guidelines released in 2023, patients with 
diabetes should engage in diversified exercises including aerobic 
exercise, resistance exercise, combination exercise, and flexibility 
exercise (139). The specific recommendations are as follows: 
children and adolescent diabetes patients should engage in 60 min 
of moderate to vigorous intensity aerobic exercise daily, and at least 
3 sessions of high-intensity resistance exercise per week; adults 
should engage in at least 150 min of moderate to vigorous intensity 
aerobic exercise per week and perform resistance exercise 2–3 times 
per week; elderly individuals should participate in 2–3 sessions of 
flexibility training and balance training per week (139). Resistance 
exercise and high-intensity interval training (HIIT) are not 
recommended for elderly patients (149). It is worth noting that 
ADA’s guidelines on physical activity/exercise do not restrict the 
exercise modalities for diabetes patients (150) but recommend 
individuals with microalbuminuria to participate in moderate to 
vigorous intensity exercise. For individuals with macroalbuminuria, 
exercise should start with low-intensity, low-impact activities and 
gradually increase intensity and duration. In 2022, the Kidney 
Association released clinical practice guidelines for exercise and 
lifestyle management in patients with chronic kidney disease 
(CKD), providing relevant recommendations for non-dialysis CKD 
patients, dialysis patients, and kidney transplant patients, 
encouraging them to break sedentary behavior and gradually 
increase exercise intensity, performing 150 min of moderate-
intensity aerobic exercise per week or 75 min of moderate to 
vigorous intensity exercise (149).

A large body of research has confirmed the efficacy and safety of 
exercise in DKD patients, and thus, the guidelines recommend that 
dialysis patients with no contraindications engage in 150 min of 
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TABLE 1 Clinical research on the improvement of diabetic kidney disease through exercise.

Authors
Publication 

year
Research object

Exercise intervention
Research findings Clinical significance for DKD References

EG CG

ElSayed et al. 2023 Diabetes patients Not applicable Not applicable

Blood Glucose: Decreased HbA1c

Blood Lipids: Increased HDL, decreased LDL

Blood Pressure: Reduced blood pressure

Kidney Markers: Increased urinary protein, no 

DKD worsening

DKD Progression: Slowed progression

Diabetes self-management education and 

support are crucial for improving clinical 

outcomes, health status, and well-being

(139)

Blomster et al. 2013
Patients with type 2 

diabetes
None or mild Moderate to vigorous

Moderate to vigorous activity associated with 

reduced risk of cardiovascular events, 

microvascular complications, and all-cause 

mortality

Moderate to vigorous activity can reduce the 

risk of cardiovascular and microvascular 

complications and mortality in patients with 

type 2 diabetes

(141)

Pongrac et al. 2022 Type 1 diabetes patients

Not specifically divided into 

experimental and control 

groups, but varied levels of LTPA 

(Leisure Time Physical Activity) 

were analyzed

Low level of LTPA associated with poor 

glycemic control.

High intensity LTPA does not confer additional 

benefit on HbA1c level.

High frequency and intensity of LTPA reduced 

risk of CVD events.

Intensive physical activity prevents the 

initiation and progression of diabetic 

nephropathy.

Frequent physical activity reduces the risk of 

severe diabetic retinopathy.

Emphasizes the importance of avoiding 

sedentary behavior.

Suggests that exercise should be a part of 

treatment regimen for diabetic kidney 

disease (DKD).

Indicates high-intensity exercise may have 

mixed effects on diabetic retinopathy.

(142)

Böhm et al. 2022

Diabetic and non-

diabetic individuals at 

high cardiovascular risk

Engaged in moderate exercise
Lower exercise 

frequency

Moderate exercise inversely associated with 

renal and cardiovascular risks, effective in both 

diabetic and non-diabetic patients

Exercise benefits kidney outcomes, effective 

with at least two sessions per week, 

particularly crucial for diabetic patients

(143)

Tamiya et al. 2020
Patients with diabetic 

kidney disease (DKD)
Not specified Not specified

Extended sedentary time increases the risk of 

all-cause death and new cardiovascular events

Reducing sedentary time may be an 

important treatment strategy to prevent 

cardiovascular events and all-cause death, 

and may delay the initiation of hemodialysis

(144)

Tamiya et al. 2023
Patients with diabetic 

kidney disease (DKD)

67 participants received 

intervention

67 participants did 

not receive 

intervention

Long-term tailor-made exercise reduces the 

risk of cardiovascular diseases and all-cause 

mortality

Long-term individualized exercise may 

be an effective means of reducing 

cardiovascular events and all-cause 

mortality in DKD patients

(145)

Bohn et al. 2015
Adults with type 1 

diabetes

Active group (more than two 

times per week)

Inactive group (no 

exercise)

Regular physical activity improves glycemic 

control and cardiovascular risk factors without 

increasing the risk of adverse events

Regular physical activity may be effective in 

glycemic control and cardiovascular risk 

management in patients with type 1 diabetes

(146)

(Continued)
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moderate-intensity exercise or 75 min of high-intensity exercise per 
week (150). Early studies have demonstrated the benefits of different 
forms of exercise in diabetic kidney disease (DKD), with aerobic 
training being the most effective for enhancing cardiorespiratory 
fitness, improving insulin sensitivity, reducing weight, and improving 
glycemic and lipid metabolism; resistance exercise and HIIT can 
increase skeletal muscle mass and decrease the risk of exercise-
induced hypoglycemia in individuals with type 1 diabetes (T1D) 
(151). Interestingly, comparing the effects of different exercise 
modalities, including aerobic, resistance, combination, and HIIT, on 
DKD, it was found that they can improve microvascular vasodilation 
in patients with type 2 diabetes (T2D), with aerobic and combination 
exercise having the most significant improvement on endothelial 
function (118); HIIT and moderate-intensity continuous aerobic 
exercise can significantly enhance activation of the renin-angiotensin-
aldosterone system (RAAS) regulatory axis, with the latter having a 
more pronounced effect (152). However, the optimal exercise modality 
and regimen for DKD have not been established globally, and 
healthcare professionals should actively encourage patients to 
participate in exercise, select appropriate exercise modalities based on 
individual conditions, and gradually increase exercise intensity.

When prescribing exercise for patients with diabetic kidney disease 
(DKD), healthcare professionals need to carefully consider the patient’s 
overall health status and any potential complications to tailor appropriate 
exercise recommendations. In certain cases, exercise may not be suitable 
for all patients, particularly for those with proliferative diabetic 
retinopathy or severe non-proliferative diabetic retinopathy (88), 
cardiovascular disease including myocardial ischemia, heart failure, or 
peripheral arterial disease, patients with autonomic neuropathy resulting 
in impaired regulation of heart rate and blood pressure (153), as well as 
those with peripheral neuropathy and foot ulcers. In such cases, the type 
and intensity of exercise should be carefully considered, and it may 
be necessary to avoid or reduce exercise intensity.

Additionally, patients with type 1 diabetes (T1D) are at a higher risk 
of experiencing fluctuations in blood glucose levels during and after 
exercise, which increases the risk of hypoglycemia. To minimize this 
risk, patients should select appropriate types of exercise, control the 
intensity and duration of exercise, adjust insulin doses, consume 
additional carbohydrates, and continuously monitor blood glucose levels 
before, during, and after exercise to enhance glycemic control (154).

Exercise recommendations for DKD patients also vary depending 
on their age and health status. For children and adolescents with 
diabetes, it is recommended to engage in 60 min of moderate to 
vigorous aerobic exercise daily, with at least three sessions of high-
intensity resistance exercise per week. Adults are advised to engage in 
at least 150 min of moderate to vigorous aerobic exercise per week, 
along with 2–3 sessions of resistance exercise. For older adults, 2–3 
sessions of flexibility and balance training per week are recommended. 
Dialysis patients are advised to engage in 150 min of moderate-
intensity exercise or 75 min of vigorous-intensity exercise per week. 
Healthcare professionals should select suitable exercise modalities 
based on the patient’s specific health status and physical condition and 
gradually increase exercise intensity to ensure safety and effectiveness. 
In conclusion, exercise recommendations for DKD patients should 
be  individualized to meet the needs of different patients while 
minimizing the risk of complications and other potential hazards. 
These potential exercise prescription recommendations for patients 
with DKD are represented in Table 2.T
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4 Conclusion

4.1 Summary of current research progress

In conclusion, exercise has shown promising potential as a 
therapeutic approach to alleviate DKD. Exercise can improve blood 
glucose stability associated with DKD, RAAS, reduce renal oxidative 
stress and inflammation, enhance the crosstalk between muscle and 
kidney, and improve endothelial cell function. These mechanisms 
contribute to the overall improvement of DKD. Exercise offers several 
advantages over traditional treatment methods, including its safety, 
effectiveness, and lack of apparent side effects. It can be used as an adjunct 
treatment to medication, blood glucose control, protein-restricted diet, 
and blood pressure management. Despite the clear benefits of exercise in 
DKD management, there is still a lack of large-scale, long-term 
randomized controlled trials to provide more evidence and establish 
exercise guidelines specific to DKD. Healthcare professionals should 
actively encourage DKD patients to engage in exercise and prescribe 
personalized exercise regimens based on individual conditions.

4.2 Prospects for future research

Future research should focus on exploring optimal exercise 
modalities, intensities, and durations for DKD patients, as well as 
investigating the long-term effects of exercise on DKD outcomes. 
Additionally, efforts should be made to address the barriers and 
challenges that prevent DKD patients from engaging in regular 
exercise, such as lack of awareness, motivation, and guidance. 
Therefore, exercise holds great potential as a non-pharmacological 
intervention for DKD and can significantly improve the quality 

of life for DKD patients. By integrating exercise into the 
management of DKD, we can reduce the burden on families and 
societies and ultimately improve the overall clinical outcomes of 
DKD patients.
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TABLE 2 Potential exercise prescription recommendations for people with DKD.

Patient category Exercise type and intensity Frequency and duration Special considerations

Children and adolescents (139, 150)

Moderate to vigorous intensity aerobic 

exercise
60 min daily –

High-intensity resistance exercise At least 3 sessions per week –

Adults (139, 150)

Moderate to vigorous intensity aerobic 

exercise
At least 150 min per week –

Resistance exercise 2–3 times per week –

Elderly individuals (139, 149) Flexibility training and balance training 2–3 sessions per week
Avoid resistance exercise and high-

intensity interval training (HIIT)

Dialysis patients (150)
Moderate-intensity exercise or high-

intensity exercise

150 min of moderate or 75 min of 

high intensity per week
No contraindications

Type 1 diabetes (T1D) patients (151, 154)
Exercise modality based on individual 

condition

Adjust intensity, duration, and 

insulin doses

Monitor blood glucose levels to prevent 

hypoglycemia

Patients with microalbuminuria (150) Moderate to vigorous intensity exercise Adjust according to condition –

Patients with macroalbuminuria (150)
Start with low-intensity, low-impact 

activities

Gradually increase intensity and 

duration
–

Patients with contraindications (88, 153) Avoid or reduce exercise intensity Based on individual health status

Includes retinopathy, cardiovascular 

diseases, autonomic neuropathy, 

peripheral neuropathy, and foot ulcers

This table summarizes exercise prescription recommendations for various types of patients with diabetic kidney disease (DKD), including children and adolescents, adults, the elderly, dialysis 
patients, patients with type 1 diabetes, those with microalbuminuria, macroalbuminuria, and those with contraindications. The content is organized by patient category, providing the 
recommended type and intensity of exercise, frequency and duration, as well as any special considerations. These guidelines are designed to assist clinicians in creating personalized exercise 
plans for DKD patients with different health conditions, with the goal of promoting overall health and preserving kidney function.
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