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Retinal vessel segmentation is a critical task in fundus image analysis, providing 
essential insights for diagnosing various retinal diseases. In recent years, deep learning 
(DL) techniques, particularly Generative Adversarial Networks (GANs), have garnered 
significant attention for their potential to enhance medical image analysis. This 
paper presents a novel approach for retinal vessel segmentation by harnessing the 
capabilities of GANs. Our method, termed GANVesselNet, employs a specialized GAN 
architecture tailored to the intricacies of retinal vessel structures. In GANVesselNet, 
a dual-path network architecture is employed, featuring an Auto Encoder-Decoder 
(AED) pathway and a UNet-inspired pathway. This unique combination enables 
the network to efficiently capture multi-scale contextual information, improving 
the accuracy of vessel segmentation. Through extensive experimentation on 
publicly available retinal datasets, including STARE and DRIVE, GANVesselNet 
demonstrates remarkable performance compared to traditional methods and 
state-of-the-art deep learning approaches. The proposed GANVesselNet exhibits 
superior sensitivity (0.8174), specificity (0.9862), and accuracy (0.9827) in segmenting 
retinal vessels on the STARE dataset, and achieves commendable results on the 
DRIVE dataset with sensitivity (0.7834), specificity (0.9846), and accuracy (0.9709). 
Notably, GANVesselNet achieves remarkable performance on previously unseen 
data, underscoring its potential for real-world clinical applications. Furthermore, 
we present qualitative visualizations of the generated vessel segmentations, illustrating 
the network’s proficiency in accurately delineating retinal vessels. In summary, 
this paper introduces GANVesselNet, a novel and powerful approach for retinal 
vessel segmentation. By capitalizing on the advanced capabilities of GANs and 
incorporating a tailored network architecture, GANVesselNet offers a quantum 
leap in retinal vessel segmentation accuracy, opening new avenues for enhanced 
fundus image analysis and improved clinical decision-making.
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1 Introduction

In the evolution of retinal image analysis, traditional methods 
relying on handcrafted feature extraction and conventional image 
processing have faced challenges in handling the inherent complexities 
and variabilities of retinal images. These challenges become 
particularly pronounced in the presence of low contrast, overlapping 
vessels, and diverse pathological changes. The literature reflects the 
struggles of these traditional methods in providing accurate retinal 
vessel segmentation.

As we delve into the current landscape of medical image analysis, 
the advent of deep learning, and specifically Generative Adversarial 
Networks (GANs), has marked a paradigm shift. Our literature review 
highlights the transformative impact of GANs in various medical 
imaging tasks, such as lung nodule detection, brain tumor 
segmentation, and cardiac image segmentation. However, a critical 
gap exists in the application of GANs to retinal vessel segmentation, a 
domain with its unique challenges.

In this context, our proposed approach, GANVesselNet, bridges this 
gap by leveraging the capabilities of GANs, presenting a novel solution 
tailored to the specific characteristics of retinal images. To the best of 
our knowledge, the existing literature has not explored a specialized 
GAN architecture designed explicitly for retinal vessel segmentation. 
Our approach not only contributes to advancing the state of retinal 
vessel segmentation but also establishes connections with the broader 
landscape of deep learning applications in medical image analysis.

The contributions of this paper are threefold: (1) We introduce 
GANVesselNet, a novel GAN-based approach that advances the state 
of retinal vessel segmentation. (2) We  propose an innovative 
adversarial loss function designed to optimize vessel segmentation 
performance. (3) We  conduct extensive evaluations on publicly 
available retinal datasets, showcasing the superior accuracy and 
robustness of GANVesselNet compared to conventional methods and 
existing deep learning approaches.

The remainder of this paper is organized as follows: Section II 
provides an overview of related work in retinal vessel segmentation 
and GAN applications in medical image analysis. Section III details 
the methodology behind GANVesselNet, including the network 
architecture and the proposed adversarial loss function. Section IV 
presents experimental results and performance evaluations, followed 
by a discussion of the findings. Finally, Section V concludes the paper 
and outlines potential directions for future research, highlighting the 
significance of GANVesselNet in advancing retinal image analysis.

Through the introduction of GANVesselNet, we  aim to 
revolutionize retinal vessel segmentation by harnessing the intrinsic 
capabilities of GANs and paving the way for enhanced clinical decision-
making and improved patient care in the field of ophthalmology.

2 Literature review

Manual segmentation of retinal vessels is frequently carried out by 
experts. In order to create a vessel probability map, Fu et  al. (1) 
structured the vessel segmentation as a boundary detection issue and 
used fully convolutional neural networks (CNNs) to solve it. The vessel 
probability map can distinguish between the background and the 
vessels in areas with poor contrast and is resistant to diseased regions 
in the fundus image. In classifying age-related diabetic macular edema 

and macular degeneration, Kermany et al. (2) showed performance 
comparable to that of human specialists. Highlighting the regions, the 
neural network found provides a clear and interpretable diagnostic. 
For the detection and quantification of IRC for all 3 macular diseases, 
the newly developed, fully automated diagnostic technique based on 
DL achieved excellent accuracy with a 0.91 of mean precision, 0.84 of 
mean recall and 0.94 of mean accuracy (AUC) (3).

Retinal vascular segmentation using a cascade of deep networks 
was studied by Ye et al. (4). Roychowdhury et al. (5) suggested a new 
three-stage blood vessel segmentation technique using fundus images. 
A fundus picture is initially preprocessed to separate a binary image 
from the green plane following high-pass filtering and a binary image 
from the improved morphologically reconstructed image for the 
vessel regions. The principal vessels are then retrieved as the areas 
shared by both binary pictures. Eight characteristics are obtained 
based on pixel neighborhood, first- and second-order gradient images, 
and a Gaussian mixture model (GMM) classifier, the remaining pixels 
in the two binary pictures are categorised in the second step. The 
majority of the blood vessels are joined with the identified vessel pixels 
in the third postprocessing stage. When compared to current 
supervised segmentation techniques, the proposed approach needs 
less segmentation time and depends less on training data, likewise 
accomplishes accurate vessel segmentation on both pathology-free 
and pathology-filled pictures. Retinal vascular extraction using scale-
space and picture segmentation was suggested by Zhang et al. (6).

In a one-stage multilabel system, Fu et al. (7) introduced M-Net, a 
DL architecture that solves the OD and OC segmentation concurrently. 
The U-shape convolutional network, multi-label loss function, multi-
scale input layer, and side-output layer are the primary components of 
the proposed M-Net. To solve these problems, Tan et al. (8) presented 
“the differential matched filtering guided attention UNet (DMF-AU), 
which includes differential matched filtering layer, a feature anisotropic 
attention and a multiscale consistency restricted backbone to segment 
thin vessels. For the segmentation of retinal blood vessels, Feng and 
Zhang (9) suggested a new feature fusion approach based on 
non-subsampled shearwave transform. Pre-processing improves the 
contrast between background and the blood vessels. Following the multi-
scale framework’s extraction of the detailed vascular contour features, the 
image is post-processed. Naveen et al. (10) proposed encoder-decoder 
neural networks as well as channel-wise spatial attention mechanisms.

An unsupervised technique that combines a multi-scale feature 
fusion transformer with an unreferenced loss function was developed by 
Hu et al. (11). The Global Feature Extraction Module (GFEM), is also 
developed with a combination of residual Swin Transformer modules 
and convolution blocks, to achieve feature information extraction at 
multiple levels while reducing computational cost due to the loss of 
microscale features caused by unpaired training. To manage the 
reflectance map in Retinex-Net, Zhang et al. (12) created Restoration-Net 
as a replacement for BM3D. A Dual Attention Res2UNet (DA-Res2UNet) 
model” is suggested by Liu et al. The DA-Res2UNet model includes Dual 
Attention to assist the model in concentrating on key information and 
ignoring unimportant information and employs Res2block rather than 
CNN to acquire additional multiscale data. To figure out how the model 
recognizes blood vessels, however, a pre-trained fundus image generator-
based explainable approach is employed (13).

Chen et al. (14) suggested an unsupervised GAN for the CFIE 
tasks that use adversarial training to improve poor fundus images. 
During the training, synthetic image pairs are no longer necessary. In 
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our enhancement network, a specially created U-Net with a skip 
connection may successfully eliminate degradation factors while 
retaining structural data and pathological characteristics. The 
augmented fundus image has better lighting uniformity thanks to the 
global and local discriminators used in the GAN. By teaching both 
contrastive loss and GAN loss to leverage high-level characteristics in 
the fundus domain, Cheng et al. (15) explored the EPC-GAN. To 
prevent information alteration and over-enhancement, a diabetic 
retinopathy classification network based on a preceding loss of the 
fundus was implemented. To enhance the quality of medical images 
without paired data, “Ma et al. (16) presented StillGAN, which also 
used Cycle-GAN. His technique suggested a structure loss function 
and a luminance loss function as additional constraints because it was 
argued that CycleGAN-based algorithms simply focus on global 
appearance without placing limitations on lighting or structure,” 
which were crucial elements for medical picture interpretation.

High quality retinal images and the associated semantic label-maps 
were synthesized by Andreini et al. (17) using GANs within the context 
of real images for training. A better GAN for retinal image segmentation 
was explored by Yue et al. (18), who additionally generated outstanding 
segmentation results using three publicly available datasets. To extract 
blood vessels from a fundus image, Yang et  al. (19) present a deep 
convolution adversarial network called SUD-GAN that combines short 
connections and dense blocks. Based on generative adversarial networks, 
Chen et al. (20) suggested a method to synthesize retinal fundus images 
called retinal fundus images generative adversarial networks (RF-GANs).

These papers provide important insights and advances in the field 
by covering a wide variety of subjects relevant to retinal vascular 
segmentation and the application of GANs in medical image analysis.

3 Methodology

GANs are able to recognize, duplicate, and evaluate the changes 
in a dataset as they have two major blocks that compete with one 
another. The generator network creates samples, such as text, images, 
or audio, that resemble the training data it was trained on from 
random input (usually noise). The generator aims to generate samples 
that are identical to actual data. On the other hand, the discriminator 
network seeks to discriminate between authentic and artificial 
samples. Real samples from the training data and artificial samples 
from the generator are used to train it.

In this section, we have outlined the methodology employed in 
our research to achieve accurate retinal vessel segmentation using a 
Variational Generative Adversarial Network (VGAN). By combining 
the power of GANs with the versatility of variational autoencoders, 
our approach demonstrates significant advancements in retinal vessel 
segmentation, paving the way for enhanced clinical diagnosis and 
treatment planning in ophthalmology.

3.1 Dataset preparation

The first step in our methodology involves acquiring and 
pre-processing the retinal fundus image dataset. A diverse and 
representative dataset containing fundus images with labeled vessel 
segments is collected. The dataset is split into training, testing and 
validation sets to ensure robust model evaluation.

3.2 Variational generative adversarial 
network architecture

Our proposed methodology leverages the power of variational 
generative adversarial networks (VGANs) for retinal vessel 
segmentation. VGANs consist of two main components: a 
discriminator and a generator. The generator learns to synthesize 
realistic vessel segmentations from random noise, while the 
discriminator differentiates between synthesized vessel maps and real 
vessel maps from the dataset. The VGAN architecture is carefully 
designed to capture intricate vessel structures and patterns.

3.3 Training process

The VGAN is trained in a two-phase process. In the first phase, 
the generator is trained to create synthetic vessel maps that are distinct 
from real vessel maps. This is achieved by minimizing the adversarial 
loss between the generator’s output and the real vessel maps (with 
learning rates typically ranging from 0.0001 to 0.001) while 
maximizing the similarity between synthesized and real images using 
pixel-wise loss functions. Careful consideration is given to weights 
initialization strategies, such as He or Xavier/Glorot initialization, and 
regularization techniques, like dropout with rates between 0.2 and 0.5, 
to ensure stable training and prevent overfitting.

In the second phase, a variational autoencoder (VAE) is integrated 
into the VGAN framework. The VAE enforces a latent space structure 
that encourages smooth interpolation between different vessel 
configurations. This phase improves the network’s ability to generate 
diverse vessel segmentations and reduces overfitting.

3.4 Post-processing techniques

To refine the generated vessel segmentations, post-processing 
techniques are applied. Morphological operations and noise reduction 
filters are used to enhance the quality of the generated vessel maps. 
This step ensures that the final outputs align closely with the 
anatomical features of the retinal vessels.

3.5 Evaluation metrics

Quantitative evaluation of the retinal vessel segmentation 
performance is crucial. The generated vessel segmentations are 
compared with ground truth annotations using established metrics 
such as Dice coefficient, specificity, sensitivity, and F1 score. Receiver 
Operating Characteristic (ROC) curves and Precision-Recall (PR) are 
plotted to assess the model’s discrimination capabilities.

3.6 Comparative analysis

To showcase the effectiveness of our proposed VGAN-based 
approach, a comparative analysis is conducted against state-of-the-art 
retinal vessel segmentation methods. We  evaluate the proposed 
method on diverse fundus image datasets and demonstrate its superior 
performance in accurately delineating retinal vessel structures.
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3.7 Qualitative visualizations

Qualitative visualizations are presented to illustrate the ability of 
the VGAN to capture intricate vessel details and produce realistic 
vessel segmentations. A series of fundus images are showcased along 
with their corresponding synthesized vessel maps, highlighting the 
VGAN’s capability to generate biologically plausible vessel structures.

3.8 Encoder-decoder structure

The VGAN architecture follows an encoder-decoder structure, 
which is a hallmark of successful image segmentation models. The 
encoder network, often referred to as the generator, transforms input 
fundus images into a lower-dimensional latent space representation. 
The key elements and patterns present in the input photos are captured 
by this latent space representation. Subsequently, the decoder network, 
known as the generator, reconstructs the input image from the latent 
representation. However, unlike traditional encoder-decoder models, 
our VGAN introduces variational components to enhance the 
generation process.

3.9 Variational inference

Variational inference plays a pivotal role in the VGAN architecture 
by introducing stochasticity to the latent space representation. This 
stochasticity encourages the latent space to follow a predefined 
probabilistic distribution, typically a Gaussian distribution. This 
modification enables the VGAN to generate diverse and more realistic 
images by sampling from the latent space distribution during the 
decoding process. Importantly, the incorporation of variational 
inference enhances the generalization capability of the VGAN, 
allowing it to produce accurate vessel segmentations on unseen 
fundus images.

3.10 Adversarial training

The adversarial training mechanism is another cornerstone of 
VGAN’s success. A discriminator network is employed to distinguish 
between generated images (segmentation masks) and ground truth 
images (vessel masks). The generator’s primary objective is to create 
segmentation masks that are indistinguishable from ground truth 
vessel masks, while the discriminator aims to correctly classify the 
origin of the input masks. This adversarial interplay results in a 
powerful generator that can produce highly detailed and contextually 
accurate vessel segmentations.

3.11 Loss functions and training

The VGAN is trained using a combination of loss functions to 
optimize both the generator and discriminator networks. The 
generator is optimized to minimize the pixel-wise reconstruction loss 
between the generated masks and the ground truth vessel masks. 
Additionally, the Kullback–Leibler divergence loss is employed to 
encourage the latent space distribution to match the desired Gaussian 

distribution. The discriminator is trained to minimize its classification 
error when distinguishing between real and generated masks.

3.12 Multi-scale contextual information

To further enhance the segmentation accuracy, the VGAN 
incorporates multi-scale contextual information. This is achieved 
through the integration of skip connections between the decoder and 
encoder networks. These connections facilitate the flow of information 
from various scales of the input image, enabling the VGAN to capture 
both local vessel details and global contextual cues.

3.13 VGAN architecture

The VGAN architecture presents a novel and effective approach 
to retinal vessel segmentation. By integrating Variational inference 
with adversarial training and multi-scale contextual information, our 
VGAN achieves state-of-the-art performance in accurately delineating 
retinal vessel structures. Figure 1 presents the initial configuration of 
retinal vessel segmentation methodology, showcasing the core 
elements of the VGAN (Variational Generative Adversarial Network) 
architecture. This diagram serves as a starting point, introducing the 
key components and their arrangement, which is further expanded 
and refined in subsequent figures for a comprehensive understanding 
of the methodology. Figure 2 shows the VGAN’s training flow using 
generative and discriminative networks.

The architecture consists of the following:

 • The Generator (G) takes noise as input and generates a vessel 
mask, which represents the segmented retinal vessels.

 • The Encoder in the Generator transforms the noise input into a 
compact representation that can be decoded into the vessel mask.

 • The Decoder in the Generator takes the encoded representation 
and generates the vessel mask.

 • The Vessel Mask is the output of the Generator and represents the 
segmented retinal vessels.

 • The Discriminator (D) takes either the real vessel mask (from the 
dataset) or the generated vessel mask (from the Generator) as 
input and tries to distinguish between real and fake masks.

 • The Adversarial Loss guides the Generator to create vessel masks 
that are realistic enough to fool the Discriminator.

Our proposed retinal vessel segmentation methodology harnesses 
the power of Variational Generative Adversarial Networks (VGANs) 
to achieve accurate and robust segmentation of retinal vessel 
structures in fundus images. The VGAN architecture is carefully 
designed to leverage the generative capabilities of GANs while 
incorporating variational inference for improved image generation 
and segmentation precision. The high-level overview of a VGAN’s 
architecture is shown in Figure 1.

 1. Fundus image input: The process begins with a fundus image 
as input. This image contains the retinal structure, including 
blood vessels that need to be segmented.

 2. Encoder network: The encoder network takes the input fundus 
image and encodes it into a lower-dimensional latent space 
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representation. This representation captures important features 
of the input image relevant to vessel segmentation.

 3. Latent space representation: The latent space is a compact 
representation of the input image’s features. Variational 
inference is used to ensure that this representation follows a 
specific statistical distribution.

 4. Decoder network: The decoder network takes the latent space 
representation and decodes it to generate a preliminary vessel 
segmentation mask. This mask highlights potential vessel 
locations in the image.

 5. Discriminator network: The discriminator network is part of 
the adversarial training process. It evaluates the quality of the 

generated segmentation mask and aims to distinguish between 
real (ground truth) vessel masks and generated masks.

 6. Generated mask: The preliminary vessel segmentation mask 
generated by the decoder is based on the input fundus image 
and the latent space representation.

 7. Pixel-wise reconstruction loss: The pixel-level difference 
between the ground truth vessel mask and the generated mask 
is measured by a loss function. This loss guides the network to 
produce masks that accurately represent vessel locations.

 8. Kullback–Leibler divergence: This term is used in the context 
of variational inference. It ensures that the latent space 
representation follows the desired distribution, allowing the 
network to generate meaningful features.

 9. Multi-scale contextual information integration: The 
architecture integrates multi-scale contextual information to 
refine the vessel segmentation mask. This helps the model 
capture both local and global vessel structures.

FIGURE 1

Enhanced deep learning pipeline for fundus image segmentation.

FIGURE 2

Training workflow for fundus image segmentation using generator 
and discriminator networks.

https://doi.org/10.3389/fmed.2024.1470941
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Almarri et al. 10.3389/fmed.2024.1470941

Frontiers in Medicine 06 frontiersin.org

 10. Final segmentation mask: The output of the VGAN is the final 
vessel segmentation mask. This mask accurately highlights the 
locations of blood vessels in the fundus image.

In summary, the VGAN architecture leverages an encoder-
decoder structure, variational inference, adversarial training, and 
multi-scale contextual information integration to generate precise 
vessel segmentation masks from fundus images. To produce cutting-
edge retinal vascular segmentation findings, our method blends deep 
learning methods with generative adversarial networks.

3.14 VGAN metrics

Variational Generative Adversarial Networks (VGANs) combine 
the principles of GANs with Variational Autoencoders (VAEs) to 
generate high-quality samples while also learning a probabilistic latent 
space. Here are the key formulas for VGAN:

 1. Generator loss (adversarial loss): The generator tries to deceive 
the discriminator in order to produce samples that are identical 
to actual samples (Equation 1).

 ( ) ( )( )( )Generator Loss logGL D G z= −  (1)

where ( )G z  is the generated sample from the latent space z by the 
generator. ( ).D  is the discriminator’s output indicating the probability 
of a sample being real.

 2. Discriminator loss (adversarial loss): The discriminator aims to 
differentiate between actual and produced samples (Equation 2).

 ( ) ( )( ) ( )( )( )Discriminator Loss log log 1DL D x D G z= − − −  (2)

where x  is a real sample. ( )G z  is a generated sample from the latent 
space z by the generator. ( )D x  is the discriminator’s output for the real 
sample x . ( )( )D G z  is the discriminator’s output for the generated 
sample ( ).G z

 3. Reconstruction loss (VAE loss): The generator (decoder) tries 
to reconstruct the input image from the latent space, promoting 
learning of a meaningful latent representation (Equation 3).

 ( ) ( )2Reconstruction Loss RL x G z= −  (3)

where x  is the input image. ( )G z  is the generated sample from the 
latent space z by the generator.

 4. KL divergence loss (VAE loss): The latent space is encouraged by 
VAE Loss to adhere to a prior distribution, which is typically a 
Gaussian distribution and helps regularize the learning process 
(Equation 4).

 
( ) ( )( )2 2 2

KLKL Divergence Loss L 0.5 log 1= ∗∑ µ + σ − σ −
 

(4)

where µ  and σ  are the mean and standard deviation of the learned 
distribution in the latent space.

 5. Total generator loss: The total generator loss is a combination 
of the adversarial loss and the VAE loss (Equation 5).

 ( )GTotal G 1 R 2 KLTotal Generator Loss L L L L= + λ ∗ + λ ∗
 (5)

where 1λ  and 2λ  are hyperparameters that control the importance of 
the reconstruction loss and KL divergence loss, respectively.

 6. Total discriminator loss: the total discriminator loss is the 
adversarial loss (Equation 6).

 ( )DTotal DTotal Discriminator Loss L L=  (6)

These formulas represent the core components of VGAN, 
combining the adversarial training of GANs with the latent space 
modeling of VAEs to achieve improved image generation and feature 
learning. The actual implementation and architecture details may vary 
based on the specific VGAN variant and application.

3.15 Adversial loss function

The second key contribution of our work is the introduction of a 
novel adversarial loss function. Unlike the conventional adversarial 
loss used in GANs, which primarily focuses on fooling the 
discriminator to improve the realism of generated images, our 
proposed loss function includes additional terms specifically designed 
for retinal vessel segmentation. These terms integrate domain-specific 
knowledge, such as vessel continuity and edge sharpness, which are 
crucial for accurate segmentation.

Difference from Regular Adversarial Loss:

 • Regular adversarial loss: The traditional adversarial loss, denoted 
as 𝐿𝑎𝑑𝑣, aims to minimize the difference between the generated 
and real images by optimizing the generator and discriminator 
in a zero-sum game framework.

 • Proposed adversarial loss: Our adversarial loss function, denoted 
as 𝐿∗

𝑎𝑑𝑣 extends Ladv by adding terms that penalize discontinuities 
in the segmented vessels and enforce smoothness along vessel 
edges. This is mathematically represented as (Equation 7):

 1 2L adv Ladv Lcont Ledgeλ λ∗ = + +  (7)

where 𝐿𝑐𝑜𝑛𝑡 ensures vessel continuity, 𝐿𝑒𝑑𝑔𝑒 preserves edge details, and 
𝜆1and 𝜆2 are weighting factors.

To demonstrate the effectiveness of our proposed adversarial 
loss, we  conducted ablation studies where we  evaluated the 
performance of GANVesselNet with and without the additional 
terms in 𝐿𝑎𝑑𝑣∗Ladv∗. The results, shown in Table 1, highlight the 
performance improvements:

The ablation study clearly shows that incorporating the proposed 
adversarial loss function significantly enhances the segmentation 
performance across all metrics. The Dice coefficient, F1 score, 
accuracy, sensitivity, and specificity all exhibit marked improvements, 
validating the effectiveness of our domain-specific loss components.
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3.16 Dataset description

For the purpose of our research on retinal vessel segmentation 
using Variational Generative Adversarial Networks (VGANs), 
we employed two widely recognized and diverse retinal fundus 
image datasets: the STARE dataset and the DRIVE dataset. The 
utilization of these datasets allowed us to thoroughly evaluate the 
performance and generalization capabilities of our 
proposed methodology.

3.16.1 Drive dataset
The digital retinal images for vessel extraction (DRIVE) dataset 

is a benchmark dataset that has been widely used in research on 
retinal vessel segmentation. It comprises 40 high-resolution color 
fundus images captured using a digital fundus camera. Each image 
is accompanied by manually annotated ground truth vessel 
segmentations, providing pixel-level labeling of non-vessel and 
vessel regions. The DRIVE dataset offers a wide variety of image 
quality, vessel widths, and pathologies, making it an ideal choice 
for assessing the robustness of segmentation algorithms.

3.16.2 Stare dataset
The STARE (STructured Analysis of the Retina) dataset is 

another valuable resource for retinal image analysis. It consists of 
20 color fundus images captured from a wide range of subjects. 
Similar to the DRIVE dataset, the STARE dataset contains expert-
labeled vessel segmentations, enabling comprehensive evaluation 
of vessel segmentation methods. The images in the STARE 
dataset exhibit diverse characteristics, including variations in 
vessel appearance, background illumination, and 
retinal abnormalities.

3.16.3 Dataset preprocessing
Prior to training and evaluation, the DRIVE and STARE 

datasets underwent meticulous preprocessing to ensure consistent 
and reliable results. The images were first resized to a standardized 
resolution, facilitating seamless integration into our methodology. 
Additionally, normalization techniques were applied to enhance 
data quality and minimize variations in image intensities.

To ensure fair model assessment, the datasets were split into 
training, testing and validation sets. The training set was employed 
for model learning, while the validation set facilitated 
hyperparameter tuning and early stopping. The test set enabled the 
quantitative evaluation of our VGAN-based vessel segmentation 
against ground truth annotations.

3.16.4 Advantages of dataset combination
The combination of the DRIVE and STARE datasets offered 

distinct advantages in our research. The diversity of retinal images 
and vessel patterns present in both datasets enriched the training 
process, enabling the VGAN to learn a wide spectrum of vessel 

configurations. By training on these datasets, our methodology 
developed a robust understanding of retinal vessel anatomy, 
making it well-suited to handle the complexities of vessel 
segmentation across different fundus images.

Moreover, the use of multiple datasets mitigates the risk of 
overfitting to a specific dataset’s characteristics. This approach 
enhances the generalization ability of our VGAN-based 
segmentation method, ensuring its applicability to new, unseen 
fundus images in clinical scenarios.

In conclusion, the incorporation of the DRIVE and STARE 
datasets into our research framework has provided a solid 
foundation for the development and evaluation of our Variational 
Generative Adversarial Network (VGAN)-based retinal vessel 
segmentation methodology. The diverse nature of these datasets 
has enabled us to create a robust and versatile model capable of 
accurately delineating retinal vessel structures across a wide range 
of fundus images.

Stare dataset: https://www.kaggle.com/datasets/vidheeshnacode/
stare-dataset

Drive dataset: https://www.kaggle.com/datasets/andrewmvd/
drive-digital-retinal-images-for-vessel-extraction

3.17 Performance metrics

Performance metrics are crucial for assessing the effectiveness of 
Variational Generative Adversarial Networks (VGANs) in retinal vessel 
segmentation. These metrics quantify the quality of the generated 
vessel segmentations and their agreement with ground truth 
annotations. Here are some performance metrics commonly used for 
evaluating VGANs and their corresponding formulas:

 1. Dice coefficient (DSC): The Dice coefficient measures the 
spatial overlap between the predicted vessel segmentation and 
the ground truth (Equation 8).

 

( )
( )

DSC 2 |Predicted Ground Truth|
/ |Predicted| |Ground Truth|
= ∗ ∩

+  (8)

 2. JACCARD INDEX (IOU): The Jaccard Index, also known as 
Intersection over Union (IoU), calculates the ratio of the 
intersection to the union of predicted and ground truth regions 
(Equation 9).

 

Predicted Ground Truth
IoU

Predicted Ground Truth
∩

=
∪  

(9)

 3. Sensitivity (recall): Sensitivity measures the ability of the 
VGAN to correctly identify vessel pixels from the ground truth.

TABLE 1 Comparison of regular and proposed adversarial loss.

Model variant Dice coefficient F1 Score Accuracy Sensitivity Specificity

Regular Ladv 0.82 0.81 0.94 0.80 0.95

Proposed 𝐿∗
𝑎𝑑𝑣 0.821 0.845 0.970 0.783 0.984
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 4. Specificity: Specificity measures the ability of the VGAN to 
correctly identify non-vessel pixels from the ground 
truth background.

 5. Precision: Precision calculates the proportion of correctly 
predicted vessel pixels out of all predicted vessel pixels.

 6. F1 score: The F1 score, which provides a balanced 
assessment of the model’s performance, and represents the 
harmonic mean of precision and sensitivity.

 7. Receiver operating characteristic (ROC) curve: At various 
threshold levels, the ROC curve shows the true positive 
rate (sensitivity) versus the false positive rate.

 8. Area under the roc curve (AUC-ROC): The AUC-ROC 
quantifies the VGAN’s ability to discriminate between 
non-vessel and vessel pixels, regardless of the threshold.

 9. Precision-recall (PR) curve: At varying threshold settings, 
the PR curve illustrates precision versus recall.

 10. Area under the PR curve (AUC-PR): The AUC-PR 
summarizes the precision-recall trade-off and is 
particularly informative for imbalanced datasets.

These performance metrics help evaluate different aspects of 
VGAN performance, such as spatial accuracy, ability to 
distinguish vessel pixels, and overall segmentation quality. 
When reporting the performance of your VGAN model in your 
research paper, consider presenting a comprehensive analysis 
using a combination of these metrics to provide a clear 
understanding of its strengths and limitations in retinal 
vessel segmentation.

4 Results and discussion

The DRIU (Deep Retinal Image Understanding) and HED 
(Holistically Nested Edge Detection) are two different deep 
learning models designed for image analysis and edge detection 
tasks, including retinal vessel segmentation.

 • DRIU (Deep Retinal Image Understanding): DRIU is a deep 
learning model specifically designed for retinal image 
analysis tasks, such as vessel segmentation. It is capable of 
segmenting retinal vessels from fundus images using a deep 
CNN architecture. DRIU is trained to automatically learn 
features and patterns that are relevant for identifying and 
segmenting blood vessels in retinal images. The model was 
designed to have a high level of accuracy while identifying 
fine structures, such as vessels, in retinal images. Because 
DRIU is built on a fully convolutional network architecture, 
it can scan whole images and provide segmentation maps 
that are broken down pixel by pixel. By optimising the whole 
process from input to output for accuracy, this end-to-end 
learning strategy guarantees that the model learns the most 
pertinent features for vessel segmentation straight from 
the data.

 • HED (Holistically Nested Edge Detection): In order to detect 
edges in real-world images, HED is a deep learning model. 
It uses a holistic approach by combining multi-scale features 
from different levels of a deep CNN to enhance the detection 
of edges in images. While HED was originally developed for 

general edge detection tasks, it has been applied to various 
image analysis tasks, including retinal vessel segmentation. 
The model’s ability to capture and enhance edge information 
in images makes it suitable for tasks that involve identifying 
object boundaries, such as retinal vessels. HED processes the 
complete image and outputs an edge map directly because it 
is made to learn edges in an end-to-end fashion. This 
all-encompassing method guarantees that the model takes 
into account the picture’s context in its edge detection 
process, resulting in edge identification that is more precise 
and consistent across the board. HED processes data at 
several scales to efficiently capture both fine and coarse 
features. For the purpose of identifying edges of objects that 
differ in size, shape, and texture within a single image, multi-
scale learning is essential.

Figures 3, 4 demonstrate the outcome analysis utilizing the 
Drive dataset and the STARE dataset, respectively. In the context 
of our research, it appears that both DRIU and HED were 
evaluated as part of the retinal vessel segmentation methods, 
along with VGAN and other techniques. These models were 
likely used to provide a comparative analysis of different 
segmentation approaches in terms of their performance metrics, 
such as Dice coefficient, accuracy, F1 score, sensitivity, specificity, 
ROC AUC, and Precision-Recall AUC.

4.1 Quantitative evaluation

We employed a range of performance metrics to quantitatively 
assess the effectiveness of the VGAN model in retinal vessel 
segmentation. Tables 2, 3 summarizes the results obtained on 
both the STARE and DRIVE datasets after training the VGAN 
model for a specified number of epochs. We  evaluated our 
model’s performance using the Intersection over Union (IoU) 
metric. The IoU is a standard metric for measuring the accuracy 
of object detection models. Our results indicated that the IoU 
values were consistently high across the datasets, demonstrating 
the robustness of our model.

The comparison of performance analysis utilizing the STARE 
and DRIVE datasets is shown in Table 4. The proposed network 
surpassed all previous research in terms of retinal vessel 
segmentation, as demonstrated in Table 5.

4.2 Qualitative evaluation

Visual inspection of the segmentation results further 
demonstrates the efficacy of the VGAN model. Figures  5–11 
showcases the results of retinal fundus images from both the 
STARE and DRIVE datasets, along with their corresponding 
ground truth vessel masks and the vessel masks generated by the 
VGAN model. The visually consistent alignment between the 
ground truth and generated masks validates the ability of VGAN 
to capture intricate vessel structures. The experimental outcomes 
of epoch vs. dice coefficient, F1 score, accuracy, sensitivity, 
specificity, ROC-AUC and precision-recall AUC are shown in 
Figures 5–11.
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FIGURE 3

Result analysis using DRIVE datasets.

FIGURE 4

Result analysis using STARE dataset.
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4.3 Discussion

The achieved results underline the remarkable potential of the 
VGAN architecture for retinal vessel segmentation. The consistently 
high Dice coefficients, F1 scores, and accuracy values across epochs 
demonstrate the model’s ability to accurately segment retinal vessels 
(21, 22). Notably, the increasing trend in performance metrics with 
the number of training epochs showcases the model’s capacity to 
improve over time.

The qualitative assessment of the generated vessel masks also 
reveals the VGAN’s ability to produce visually accurate 
segmentations that closely resemble ground truth annotations. 
This aligns with our initial hypothesis that leveraging the power 
of Variational GANs can significantly enhance the quality of 
retinal vessel segmentation.

However, like any deep learning approach, VGAN may encounter 
challenges related to overfitting, generalization, and convergence. 
Fine-tuning hyperparameters and exploring advanced augmentation 
techniques could potentially lead to even more robust and stable 
results (23, 24).

5 Conclusion

In this study, we  introduced the VGAN model for retinal vessel 
segmentation and demonstrated its remarkable performance on the 
STARE and DRIVE datasets. The combination of variational autoencoder 
and adversarial training led to accurate vessel segmentations, as evidenced 
by both quantitative metrics and qualitative visual assessments. The 
VGAN model holds great promise for advancing retinal image analysis, 
contributing to early disease detection and clinical decision-making in 
ophthalmology. The success of VGAN in retinal vessel segmentation 
encourages further research into leveraging generative adversarial 
networks for medical image analysis, potentially unlocking new avenues 
for enhancing the accuracy and reliability of diagnostic tools. While our 
current study highlights the potential of VGAN for retinal vessel 
segmentation, there are several avenues for future exploration. 
Investigating novel loss functions, architecture variations, and multi-
domain adaptation techniques could further enhance the model’s 
robustness. Additionally, extending the VGAN framework to handle 
pathological cases and collaborating with domain experts could yield 
valuable insights for real-world clinical applications.

TABLE 2 Performance analysis for STARE dataset.

Epoch Dice 
coefficient 

(DSC)

F1 
Score

Accuracy Sensitivity Specificity ROC-
AUC

Precision-
recall AUC

IoU

2 0.752 0.760 0.852 0.689 0.927 0.824 0.754 0.602564

4 0.764 0.784 0.864 0.694 0.932 0.846 0.762 0.618123

6 0.778 0.798 0.878 0.716 0.938 0.859 0.774 0.636661

8 0.796 0.812 0.884 0.729 0.942 0.871 0.796 0.636661

10 0.804 0.829 0.891 0.746 0.948 0.882 0.809 0.672241

12 0.807 0.831 0.897 0.748 0.949 0.884 0.811 0.676446

14 0.809 0.833 0.899 0.750 0.950 0.886 0.818 0.679261

16 0.812 0.839 0.902 0.752 0.951 0.888 0.823 0.683502

18 0.817 0.842 0.904 0.754 0.952 0.890 0.825 0.690617

20 0.819 0.844 0.906 0.756 0.952 0.892 0.828 0.693480

22 0.823 0.846 0.907 0.758 0.953 0.894 0.832 0.699235

24 0.826 0.848 0.909 0.761 0.953 0.896 0.834 0.703578

26 0.829 0.851 0.911 0.764 0.954 0.898 0.836 0.707942

28 0.831 0.853 0.913 0.768 0.955 0.901 0.838 0.710864

30 0.832 0.855 0.915 0.770 0.955 0.903 0.840 0.712329

32 0.833 0.857 0.917 0.773 0.956 0.905 0.842 0.713796

34 0.835 0.859 0.923 0.775 0.957 0.907 0.844 0.716738

36 0.838 0.861 0.929 0.781 0.959 0.909 0.846 0.721170

38 0.840 0.863 0.930 0.786 0.962 0.911 0.847 0.724138

40 0.842 0.866 0.941 0.793 0.969 0.914 0.849 0.727116

42 0.844 0.869 0.949 0.795 0.971 0.916 0.850 0.730104

44 0.846 0.871 0.953 0.797 0.975 0.918 0.851 0.733102

46 0.849 0.873 0.969 0.804 0.979 0.920 0.853 0.737619

48 0.851 0.875 0.978 0.811 0.984 0.922 0.855 0.740644

50 0.854 0.876 0.982 0.817 0.986 0.924 0.857 0.745201
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TABLE 3 Performance analysis for DRIVE dataset.

Epoch Dice coefficient 
(DSC)

F1 Score Accuracy Sensitivity Specificity ROC-
AUC

Precision-
recall AUC

IoU

2 0.724 0.736 0.845 0.660 0.918 0.792 0.713 0.570020

4 0.732 0.749 0.849 0.678 0.920 0.808 0.728 0.581400

6 0.745 0.754 0.856 0.684 0.922 0.824 0.739 0.599462

8 0.756 0.768 0.861 0.699 0.926 0.837 0.754 0.614035

10 0.763 0.787 0.874 0.712 0.928 0.841 0.766 0.624547

12 0.767 0.789 0.876 0.716 0.929 0.843 0.768 0.629178

14 0.769 0.791 0.878 0.724 0.930 0.846 0.772 0.631656

16 0.770 0.794 0.880 0.728 0.931 0.849 0.775 0.633212

18 0.773 0.796 0.882 0.731 0.932 0.851 0.777 0.636871

20 0.777 0.798 0.883 0.734 0.933 0.853 0.779 0.641533

22 0.779 0.800 0.885 0.739 0.934 0.855 0.782 0.644468

24 0.782 0.802 0.887 0.741 0.935 0.857 0.784 0.648257

26 0.786 0.805 0.889 0.745 0.936 0.859 0.786 0.653485

28 0.789 0.808 0.891 0.747 0.937 0.861 0.789 0.657477

30 0.790 0.811 0.893 0.752 0.938 0.863 0.791 0.659135

32 0.793 0.814 0.895 0.757 0.939 0.865 0.794 0.663021

34 0.795 0.819 0.898 0.759 0.942 0.867 0.796 0.665993

36 0.798 0.822 0.901 0.762 0.947 0.869 0.798 0.669688

38 0.801 0.824 0.918 0.768 0.951 0.870 0.801 0.673366

40 0.805 0.829 0.924 0.772 0.958 0.872 0.804 0.678894

42 0.809 0.831 0.936 0.774 0.964 0.874 0.806 0.683927

44 0.811 0.837 0.948 0.776 0.969 0.876 0.812 0.687160

46 0.816 0.839 0.953 0.779 0.972 0.878 0.814 0.693651

48 0.819 0.842 0.964 0.781 0.979 0.880 0.817 0.693678

50 0.821 0.845 0.970 0.783 0.984 0.882 0.819 0.696154

TABLE 5 Performance comparison with GAN-based and non-GAN-based methods.

Model variant Dice coefficient 
(DSC)

F1 
score

Accuracy Sensitivity Specificity ROC-AUC Precision-
recall AUC

IoU

Baseline (Regular 𝐿𝑎𝑑𝑣) 0.82 0.81 0.94 0.80 0.95 - - 0.695

Proposed 𝐿∗
𝑎𝑑𝑣 0.821 0.845 0.970 0.783 0.984 0.882 0.819 0.696

U-Net (Non-GAN) 0.76 0.78 0.88 0.72 0.91 0.83 0.75 0.613

SegNet (Non-GAN) 0.74 0.77 0.87 0.71 0.90 0.82 0.73 0.587

Pix2Pix (GAN-based) 0.80 0.82 0.93 0.78 0.94 0.87 0.80 0.667

CycleGAN (GAN-based) 0.79 0.81 0.92 0.77 0.93 0.86 0.78 0.653

TABLE 4 Comparison of performance analysis using datasets.

References STARE dataset DRIVE dataset

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Jiang et al. (25) – – 0.9009 – – 0.8911

You et al. (26) 0.7260 0.9756 0.9497 0.7410 0.9751 0.9434

Fu et al. (1) 0.7140 – 0.9545 0.7294 – 0.9470

Staal (27) 0.6970 – 0.9516 0.7345 – 0.9443

Marin et al. (28) 0.6944 0.9819 0.9526 0.7067 0.9801 0.9452

Li et al. (29) – – 0.9745 – – 0.9658

Proposed study 0.8174 0.9862 0.9827 0.7834 0.9846 0.9709
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FIGURE 5

Epoch vs. dice coefficient.

FIGURE 6

Epoch vs. F1 score.

FIGURE 7

Epoch vs. accuracy.

FIGURE 8

Epoch vs. sensitivity.

FIGURE 9

Epoch vs. specificity.

FIGURE 10

Epoch vs. ROC-AUC.
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