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Eosinophils are polymorphonuclear cells that have progressively gained

attention due to their involvement in multiple diseases and, more

recently, in various homeostatic processes. Their well-known roles range

from asthma and parasitic infections to less prevalent diseases such as

eosinophilic granulomatosis with polyangiitis, eosinophilic esophagitis, and

hypereosinophilic syndrome. In recent years, various biological therapies

targeting these cells have been developed, altering the course of eosinophilic

pathologies. Recent research has demonstrated differences in eosinophil

subtypes and their functions. The presence of distinct classes of eosinophils has

led to the theory of resident eosinophils (rEos) and inflammatory eosinophils

(iEos). Subtype differences are determined by the pattern of protein expression

on the cell membrane and the localization of eosinophils. Most of this research

has been conducted in murine models, but several studies confirm these

findings in peripheral blood and tissue. The objective of this review is to provide

a comprehensive analysis of eosinophils, by recent findings that divide this cell

line into two distinct populations with different functions and purposes.
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Introduction

Jones ( 1) and Brewer (2) first described granular cells, but without appropriate staining
techniques, they were unable to correctly characterize or evaluate the various types of
granulocytes. Paul Ehrlich, in 1846, using his blood staining technique with coal tar dyes
(eosin), successfully described eosinophils based on their strong affinity for this marker
(3). In addition to describing the staining properties of their granules, Ehrlich studied
their distribution in various species and tissues, concluding that they likely developed in
the bone marrow. The discovery of the eosinophil precursor cell took much longer. The
higher density of these cells in the bone marrow was demonstrated in 1960 by Rytomaa,

Abbreviations: COPD, chronic obstructive pulmonary disease; ECP, eosinophil cationic protein;
EDN, eosinophil-derived neurotoxin; MBP, major basic proteins; rEos, resident eosinophils; iEos,
inflammatory eosinophils; SEA, Severe eosinophilic asthma; NSEA, non-severe eosinophilic asthma.
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but it was not until 1984 that Fischkoff et al. (4) showed
that eosinophils and neutrophils share the same precursor: the
promyelocytic cell line HL-60. In 1998, it was discovered that the
gene EOS47, specifically expressed in bone marrow eosinophils, has
a promoter region with binding sites for the transcription factors
Myb-Ets, c/EBP, and GATA (5), which are responsible for lineage
commitment. Subsequent studies have shown that eliminating the
high-affinity GATA-1 binding site in the GATA-1 gene promoter
results in the loss of the eosinophil lineage (6).

Another significant finding relates to eosinopoiesis and
its regulation. Boyer et al. (7) and Basten and Beeson (8)
demonstrated that immunocompetent lymphocytes are responsible
for the increased number of eosinophils in peripheral blood
during parasitic infections. A few years later, interleukin 5 (IL-
5) was isolated as the main protein associated with terminal
differentiation, eosinophil production in the bone marrow, their
growth, activation, and inhibition of apoptosis (9).

Granules and degranulation

Eosinophils contain numerous cytoplasmic granules that
include specific eosinophilic proteins, cytokines, chemokines,
enzymes, and lipid mediators contributing to their function
(10). These granules contain four specific proteins stored in
secondary granules (major basic proteins, MBP1 and MBP2;
eosinophil peroxidase, EPO, eosinophil cationic protein, ECP; and
eosinophil-derived neurotoxin, EDN), which can induce tissue
damage and dysfunction (11). ECP and EDN are ribonucleases
with antiviral activity, with ECP creating voltage-insensitive
toxic ion pores in target cell membranes, potentially facilitating
the entry of other cytotoxic molecules (12–15). ECP also has
additional non-cytotoxic activities, including suppressing T cell
proliferative responses, inhibiting immunoglobulin synthesis by
B cells, inducing mast cell degranulation, and stimulating airway
mucus secretion and glycosaminoglycan production by human
fibroblasts (16). MBP directly alters smooth muscle contraction
responses by dysregulating M2 and M3 vagal muscarinic receptor
function and inducing mast cell and basophil degranulation (17–
19). EPO, comprising approximately 25% of the total specific
granule protein mass, catalyzes the oxidation of pseudohalides and
nitric oxide to form highly reactive oxygen species (hypohalous
acids) and reactive nitrogen metabolites (peroxynitrite), which
oxidize nucleophilic targets in proteins, promoting oxidative stress
and subsequent cell death via apoptosis and necrosis (20–22).

Eosinophils degranulate through four mechanisms: classical
exocytosis, compound exocytosis, piecemeal degranulation
(regulated), and cytolysis (necrosis). Classical exocytosis refers to
the process by which secretory granules release their complete
contents into the extracellular space following the fusion of the
granule membrane with the plasma membrane. This process
encompasses compound exocytosis, which additionally involves
the fusion of intracellular granules prior to the subsequent release
of their contents into the extracellular environment (23). Piecemeal
degranulation (PMD) is a process characterized by the secretion of
substances from intracellular granules, facilitated by the transport
of vesicles (23). This mechanism allows for the gradual release of
granule contents, enabling precise regulation of cellular functions

and responses. Cytolysis, the release of granule contents due to
cell rupture, involves chromatolysis (disintegration of nuclear
chromatin) followed by the rupture of the cell’s plasma membrane.
This process leads to the release of membrane-bound eosinophilic
granules (FEGs) (24) and is often associated with the formation of
eosinophil extracellular traps (EETs) (25).

EETs consist of DNA fibers embedded with granule proteins,
such as MBP and ECP (25), or associated with FEGs (23) and
eosinophil sombrero vesicles EoSVs (24). The release of EETs has
been observed from both live eosinophils and those undergoing
cell lysis (EETosis) (26). In recent years, EETosis has gained more
attention (25, 27), it drives the release of EETs in tissues and
the secretion during several inflammatory diseases (26), playing a
critical role in the pathophysiology of severe asthma (28). External
stimuli have been suggested to influence EET release, and the
extent of release appears to be time-dependent based on exposure
duration (25). However, the molecular mechanisms underlying
this process remain poorly understood (25). The process of EET
formation is associated with the development of Charcot-Leyden
crystals (CLCs), which are composed of the protein galectin-10.
These crystals serve as a biomarker of eosinophil involvement in
conditions such as asthma, allergic rhinitis, and other forms of
eosinophilic inflammation (26, 29).

In areas of eosinophilic inflammation characterized by the
presence of FEGs and occasionally CLCs, EoSVs are often observed
near or intermingled with extracellular, expanded, and highly
decondensed chromatin (24). This represents an ultrastructural
hallmark of the late stage of EETosis (26). EoSVs are thought to be
crucial intermediaries in this process. The total number of EoSVs
increases when eosinophils are exposed to inflammatory stimuli
in activated eosinophils both in vitro and in vivo (24). In tissues
affected by eosinophilic cytolytic inflammation, extracellular EoSVs
are present; however, their clinical significance in eosinophil-
associated diseases remains unclear (24).

Different cytokines have distinct effects on eosinophil
degranulation, influencing both the type and extent of granule
release (27, 30, 31). The nature and extent of eosinophil
degranulation can vary depending on the specific cytokine
stimulation the cell receives (32, 33). For example, TNF-α is
a potent pro-inflammatory cytokine that induces oxidative
stress and membrane destabilization in eosinophils, promoting
cytolysis (23). However, it is hypothesized that each degranulation
form corresponds to the specific function the eosinophil is
performing. For instance, during PMD, eosinophils selectively
release components of their specific granules (34). IFN-γ is
associated with Th1 responses and can modulate eosinophil
degranulation in a more controlled manner. It often acts as a
suppressor of eosinophil degranulation, particularly in allergic
inflammation (32, 35). However, human eosinophil activation by
IFN-γ promotes the mobilization of RANTES (CCL5) derived from
granules to the cell periphery without releasing cationic proteins
(36, 37). Regulated exocytosis occurs through the formation of a
docking complex composed of soluble N-ethylmaleimide-sensitive
factor attachment protein receptors (SNAP receptors or SNARE)
located on the vesicle (v-SNARE) and the target membrane
(t-SNARE) (38).
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Migration

Under normal conditions, eosinophils migrate from the bone
marrow to specific organs, primarily the gastrointestinal system.
Most eosinophils reside in the non-esophageal portion of the
intestine. Other target organs include the uterus and mammary
glands of young women, the thymus, adipose tissue, and the lungs.

Traditionally, eosinophils have been associated with the
inflammatory response to helminth infections and allergic diseases.
However, it is now recognized that they have more varied functions
depending on the tissue in which they are found. Studies in
mice have shown that, under stable conditions, eosinophils play a
homeostatic role in these tissues. In the intestine, they are involved
in the IgA response and mucus production (39); in the mammary
glands, they seem to play a role in development (40), while in
adipose tissue, they are associated with insulin sensitivity and the
transition to brown fat (39).

Eosinophils are tissue cells, therefore typically constitute less
than 5% of the total leukocytes in the blood (39) (Figure 1A). In vivo
studies have shown that the residence time of eosinophils in the
bloodstream is quite short, approximately 8–10 h, although the
range can vary from 3 to 24 h (41–43). In contrast, their persistence
in tissues is longer, with a half-life of 36 h in the lung and up
to 6 days in the intestine, thymus, and uterus (41). The tissue
longevity of eosinophils appears to be related to the expression of
CD11c, which is expressed by eosinophils in the thymus, uterus,
and intestine but not by those in the blood and lung. This longevity
also depends on the inhibition of apoptosis mediated by IL-5 (41,
44, 45).

Cytokines and chemokines

The recruitment of eosinophils into tissues is driven by
the eotaxin family, primarily eotaxin-1 (CCL11), a chemokine
produced mainly by epithelial cells, endothelial cells, fibroblasts,
and monocytes in response to inflammatory signals such as
IL-4, IL-13, and TNF-α (46–49). The differential chemotactic
potential and expression profiles of CCL11, eotaxin-2 (CCL24),
and eotaxin-3 (CCL26) suggest that they play distinct roles over
time. CCL11 is the most potent eosinophil chemoattractant of
the three (50). CCL11 may act early in an inflammatory response
to recruit eosinophils quickly, while CCL24 and CCL26 might
sustain eosinophil accumulation and inflammation over longer
periods. Its strong affinity for CCR3 and the efficient signaling it
induces lead to rapid and robust eosinophil migration (51). The
loss of CCR3, the principal receptor for eotaxin-1 (52, 53), results
in defective localization of eosinophils in tissues, particularly in
the intestine, but does not affect the cell count in the lung or
thymus (54), suggesting that eotaxin-1 may act through alternative
receptors such as CCR5 (55). Interleukins, IL-5 and IL-13, released
by T lymphocytes and type 2 innate lymphoid cells (ILC2) (9,
56–59), can also promote eosinophil trafficking under normal
conditions (60, 61), albeit to a lesser extent than eotaxin-1. IL-13
enhances the production of eotaxin-3 (56), while IL-5 promotes
eosinophil generation from bone marrow progenitors, increases
their sensitivity to eotaxin-1, and maintains their survival (9,
57, 58).

IL-5, the cytokine most specific to the eosinophil lineage, is
essential for eosinophil production in steady-state conditions. The
recruitment of resident eosinophils to tissues is independent in
the lungs, partially dependent in the gastrointestinal tract and
uterus, and completely dependent in adipose tissue on local IL-5
production (59–63).

In allergic and reactive diseases, eosinophils have been
identified as significant sources of IL-5, IL-13, IL-25, and CCL26,
contributing to the Th2-skewed immune response and subsequent
eosinophilic inflammation (64). Among the eotaxins, CCL26
displays the weakest chemotactic activity, despite also binding
to CCR3 with lower affinity and eliciting a reduced chemotactic
response. CCL26 is upregulated by IL-13 and is predominantly
expressed in airway epithelial cells during allergic inflammation.
Although its role in eosinophil recruitment is more limited
compared to CCL11 and CCL24, it is thought to play a role
in asthma (65). In the lung, IL-4 and IL-13 secreted locally are
responsible for increasing endothelial adhesiveness by upregulating
VCAM-1 (66) and inducing CCL11 secretion by bronchial
epithelial cells (50), which promotes greater eosinophil recruitment
into the tissue.

The enhanced tissue survival of eosinophils is mediated by
IL-5, IL-3 and granulocyte-macrophage colony-stimulating factor
(GM-CSF). These cytokines are essential hematopoietic signals
that regulate eosinophil development and differentiation within
the bone marrow (10, 67). IL-3 is primarily involved in the early
expansion of eosinophil progenitor cells, while IL-5 is crucial for
the terminal differentiation of these cells (56). GM-CSF further
supports the maturation and survival of both progenitors and
mature eosinophils. IL-3 signals through the IL-3 receptor (IL-
3R), composed of a specific α-subunit (IL-3Rα) and a shared
β-common chain (βc), the latter of which is also utilized by GM-
CSF and IL-5 (67). Upon ligand binding, IL-3R activates several
intracellular pathways, including JAK/STAT, MAPK, and PI3K,
which act in synergy with IL-5 and GM-CSF (68). Dysregulation of
IL-3 and GM-CSF signaling pathways is implicated in eosinophilic
disorders, contributing to excessive eosinophil survival, tissue
damage, and chronic inflammation (67, 69).

Eosinophils promote humoral immunity by priming B cells
(39) and play a central role in type 2 immunity, including antigen
presentation to CD4+ T cells and secretion of granular contents
containing type 2 mediators, such as IL-4, IL-5, and IL-13 (39),
thereby closely regulating Th1 and Th2 immunity (70).

Eosinophil activation

Eosinophils are terminal effector cells that degranulate and
release highly cytotoxic substances when activated. In the case
of infection, these granular proteins act directly against parasites;
however, in allergic situations, they contribute to tissue destruction,
as seen in patients with atopic asthma, where the number of
eosinophils in the bronchi correlates with lung epithelial damage
(71, 72). As mentioned above, fully activated eosinophils can also
expel EET composed of mitochondrial DNA and granular proteins,
which are destructive to tissues (73). In this way, eosinophils, like
neutrophils, can trap and kill other types of microorganisms.

However, this cytotoxic reaction occurs only under
inflammatory conditions when eosinophils are highly stimulated
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FIGURE 1

Human eosinophils in peripheral blood from an asthma patient. (A) Blood eosinophils were directly stained with Hematoxylin-eosin before sorting
(40×magnification). (B) Representative confocal microscopy photographs of blood rEos and iEos after FACS sorting, following the gating strategy of
Cabrera López et al. (93). Eosinophils were stained for CD62L (green) and DAPI (blue, nucleus). DAPI, 4′,6-diamidino-2-phenylindole; 63×
magnification. rEos: resident eosinophils, iEos: inflammatory eosinophils.

by cytokines such as interferon gamma (IFN-γ) and require
high levels of IL-5 to induce the formation of a DNA net (73).
EET formation has been observed to be triggered by eosinophil
activation through IL-5 and thymic stromal lymphopoietin (TSLP)
(74). Future studies are needed to better understand how the
molecular mechanisms of EET production are regulated (28).

Besides these inflammatory functions, eosinophils also play a
beneficial role in regulating and modulating immune responses,
partly by synthesizing and secreting a wide array of cytokines
and immune mediators (75). They do this, at least in part,
by synthesizing and secreting a surprisingly broad spectrum of
different cytokines and immune mediators (10).

The actions of eosinophils go beyond the secretion of toxic
proteins. Eosinophil activation promotes the secretion of various
pro-inflammatory cytokines (IL-2, IL-4, IL-5, IL-10, IL-12, IL-13,
IL-16, IL-18, and TGF-α/β), chemokines (RANTES and eotaxin-
1), and lipid mediators (platelet-activating factor and leukotriene
C4, LTC4) (76). These molecules have pro-inflammatory effects,
positively regulating adhesion systems, modulating cell trafficking,
activating and regulating vascular permeability, mucus secretion,
and smooth muscle constriction. Eosinophils can initiate antigen-
specific immune responses by acting as antigen-presenting cells
(APC) to major histocompatibility complex class II and co-
stimulatory molecules (CD40, CD80, CD86).

Eosinophils are also activated by epithelial-derived innate
cytokines (TSLP and IL-33), promoting their recruitment by
amplifying Th2 responses and stimulating ILC2 cells to secrete IL-
5, IL-4, and IL-13, as well as by stimulating T lymphocytes. In
addition to promoting Th2 responses, TSLP and IL-33 act directly
on eosinophils, preventing apoptosis through direct activation of
the TSLP receptor (TSLPR) present on eosinophils (77, 78).

Eosinophil subtypes

In recent years, several publications have classified eosinophils
into different subtypes. It remains unclear whether these represent
the same cell line at different activation stages or, as occurs with

Th1 or Th2 lymphocytes, distinct cells with different properties
secreted from the bone marrow. A pivotal study by Mesnil et al.
(79) using an asthmatic murine model delineates the distinction
between resident, homeostatic or physiological eosinophils (rEos)
and inflammatory eosinophils (iEos). This research conducted
multiple experiments in the lungs and blood of mice, revealing
clear differences between populations in different models (allergic
asthmatic mice vs. healthy mice). In mice, this differentiation
is characterized by nuclear shape, membrane proteins, and
cell localization. rEos exhibit most typical eosinophil features,
including red-staining granules containing specific proteins (e.g.,
MBP, EPO) and combined expression of CCR3, Siglec-F, and
CD125 (the IL-5 receptor α subunit) (39, 45, 80). They can
also express CD11b (intestine, thymus, and adipose tissue), F4/80
(mammary glands, lung, and adipose tissue), CD69 and CD44
(intestine and thymus) (45, 79–85). Most tissue rEos have a
segmented nucleus and express CD11c (12, 75, 82–86).

Lung mice rEos are an exception and resemble resting blood
eosinophils with a ring-shaped nucleus, express CD62L, show
intermediate Siglec-F levels, and are CD11c negative (6, 79, 82,
85–87). In mice, such characteristics, especially the ring-shaped
nucleus, indicate cellular immaturity (88, 89), suggesting that lung
rEos retain an immature phenotype upon dissemination to the
lungs. These eosinophils undergo gradual degranulation and are
capable of phagocytosis, demonstrating their functionality.

Interestingly, the number, localization, and morphological,
phenotypic, and transcriptomic characteristics of lung rEos
remain unchanged and differ from iEos during allergic
airway inflammation. iEos, abundantly recruited to the
lungs during allergen exposure episodes, are defined as
SiglecFhiCD62L−CD101hi cells with a segmented nucleus (CD101
is an iEos marker not expressed in lung rEos). These observations
support the theory of rEos and iEos, suggesting that similar subsets
exist in the blood of asthmatic mice, indicating differentiation
occurs even before tissue recruitment. This study also conducted a
human experiment comparing lung tissue from healthy individuals
with sputum from asthmatic patients (79). The results showed
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FIGURE 2

Cell phenotyping of blood eosinophils subtypes in mouse and human. Data taken from the studies of Mesnil et al. (79) (mouse) and Cabrera López
et al. (93) (human). rEos: resident eosinophils, iEos: inflammatory eosinophils.

TABLE 1 Different antibodies used in cell phenotyping eosinophil panels.

Mesnil et al.
(79)

Januskevicius
et al. (96)

Matucci et al. (91)
and Vultaggio et al.

(92)

Cabrera López et al.
(93)

Mycroft et al.
(94)

Fricker M et al.
(95)

CD45 CD45 CD45 CD45 CD45

Siglec-8 Siglec-8 Siglec-8 Siglec-8 Siglec-8

CD62L CD62L CD62L CD62L CD62L CD62L

CD101 CD101 CD101 CD101

CD123 CD123 CD123

CD125 CD125 CD125 CD125 CD125

CD16 CD16 CD16

CD11b CD11b CD11b

CD193 CD193

CD86, CD28, CD69, CD294 CD66b, CD14

that parenchymal rEos in non-asthmatic human lungs (Siglec-
8+CD62LhiIL-3Rlo cells) are phenotypically distinct from iEos
isolated from asthmatic patient sputum (Siglec-8+CD62LloIL-3Rhi

cells), confirming mouse findings in humans (Figure 2).
Other studies have validated Mesnil et al. (79) proposed pattern

in horses (90) and humans (91–95) (Table 1). Matucci et al.
(91) focused on different eosinophil subpopulations in peripheral
blood and nasal polyps in patients with severe eosinophilic asthma
(SEA) with chronic rhinosinusitis with nasal polyps (CRSwNP).
They recruited 23 SEA patients (14 with CRSwNP), comparing
them with 15 non-severe asthma patients (NSEA), 15 allergic
rhinitis without asthma patients, and 15 healthy volunteers. They
also studied eotaxin-3 and eotaxin-1 expression in nasal polyps.
They observed an increase in peripheral blood eosinophils in
SEA patients (Siglec8+CD45+CD16−), revealing two eosinophil
subtypes based on CD62L expression across all groups. There was
a higher number of CD62Llo eosinophils in SEA patients compared

to controls, expressing high CCR3, CD69, and low CD125 (IL-
5R), CRTH2, CD86, CD28, CD101, and VLA-4 levels. Nasal polyps
had a higher proportion of CD62Llo eosinophils than peripheral
blood. Surface expression of IL-3R, IL-5R, CD69, and CD86 was
significantly higher in CD62Llo eosinophils from nasal polyps
compared to blood. Further, eotaxin-3 expression correlated with
the percentage of CD62Llo eosinophils in nasal polyps. In relation
to what was previously published, CD62Llo was associated with iEos
and CD62Lbright with rEos (79, 96).

The Vultaggio et al. (92), study is notable for correlating iEos
presence with clinical outcomes, is undoubtedly one of the most
interesting published so far. It examined the relationship between
iEos (characterized by CD62Llo) in blood and the severity of severe
eosinophilic asthma, evaluating the impact of mepolizumab on
iEos (92). They recruited 112 patients: 51 naive and 61 previously
treated with biologics. They analyzed 19 naive patients before and
after 100 mg SC mepolizumab/4 weeks treatment, and 23 patients
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already on mepolizumab at study start. In vitro effects of IL-5 and
mepolizumab on CD62L expression were also evaluated. There was
a significant correlation between CD62Llo cells and better ACT
scores in asthma, lower SNOT-22 scores in nasal polyposis (better
asthma and nasal polyposis control in patients with low CD62Llo

eosinophils), as well as exacerbations in untreated patients. The
Naive group showed a reduction in CD62Llo with an increase in
CD62bright proportion after mepolizumab treatment, associating
with improved asthma control, resembling healthy volunteer
rEos/iEos proportions. In vitro, IL-5 and anti-IL-5 regulated CD62L
expression on eosinophils. IL-3, GM-CSF, IL-33, TSLP, and TNF-α
modulated CD62L expression, but not IL-4.

Fricker et al. (95) analyzed eosinophil subpopulations in
patients with severe asthma, finding results similar to those of
Matucci et al. (91) and Cabrera López et al. (93). Additionally,
a longitudinal analysis was conducted in patients undergoing
treatment (n = 30) at two timepoints (4–24 weeks) post-initiation
of mepolizumab (n = 20) or benralizumab (n = 10). Similar
to Vultaggio’s findings, both mepolizumab and benralizumab
effectively iEos to a comparable extent. Mepolizumab, however,
specifically depleted iEos while preserving a residual population
of rEos in patients with severe asthma, whereas benralizumab
depleted both subtypes. This confirms that an increase in the
proportion of circulating iEos is associated with poorer asthma
control (95).

The Cabrera López et al. (93), study highlights the presence
of iEos in asthmatic patients (over 20% of the total count)
with minimal percentages (less than 1%) in healthy subjects,
smokers without chronic obstructive pulmonary disease (COPD),
and COPD subjects. In this study, it was observed that iEos
are independent of disease severity, treatment, and exacerbations
in patients with COPD. Additionally, the proportion of iEos in
asthmatic subjects is independent of the total blood eosinophil
count. For instance, patients with only 250 eosinophils per
microliter can have up to 45% iEos. This finding may explain
the discrepancy between the number of eosinophils in the blood
and in the tissues.

Cabrera López et al. (93) analyzed freshly unfractionated blood
(100 µl) from 10 stable subjects of four groups: (COPD),
asthma, smokers without COPD, and healthy volunteers;
data were validated in 59 patients with COPD and in 17
patients with asthma. Cell phenotyping was according to
the Mesnil criteria and other crucial proteins as CD125 and
CD11b (Table 2). iEos were identified following the algorithm:
CD45+Siglec8+CD16−CD62LloCD11bhiCD125hiCD101lo and rEos
were identified as CD45+Siglec8+CD16−CD62LhiCD11bdCD125d

CD101d by flow cytometry and confocal microscopy (Figure 1B).
For the purposes of this review, these asthmatic patients were

divided into SEA and NSEA. The observed variations in the
proportions of human blood eosinophils subpopulations may be
attributed to divergent processing methods of the samples in the
different studies. Specifically, Januskevicius et al. (96) demonstrated
higher levels of iEos in SEA patients (Table 3), likely due to the
magnetic selection of eosinophils using CD62L as a marker. This
selection process may lead to the downregulation of the protein
following interaction with the magnetic beads.

Conversely, the proportions reported by Matucci et al. (91),
Vultaggio et al. (92), and Cabrera López et al. (93) exhibit greater

similarity. However, discrepancies persist that could be linked to
different methods employed. Matucci et al. (91) and Vultaggio et al.
(92) observed a lower percentage of iEos in their studies compared
to Cabrera López et al. (93) (Tables 3, 4); a difference that cannot be
explained by the analysis algorithm alone. It is possible that there
could be a loss of cellularity due to the methodology employed:
Ficoll (91, 92) vs. lysis (93), under the hypothesis that the latter
method subjects eosinophils to less stress than the Ficoll method,
resulting in less loss of eos especially iEos. Furthermore, it is known
that in the Canary Islands there is an increase in the number of
eosinophils in the blood due to their weather conditions, which
could explain the differences found between iEos in SEA and NSEA
with other studies.

Possible implications in asthma and
COPD of the different eosinophil’s
subpopulations

The concept of iEos and rEos is novel. There is limited
evidence regarding the mechanisms and roles these cells play
in various diseases. No studies have been conducted on these
cellular phenotypes in exacerbations or in patients treated with
monoclonal antibodies other than mepolizumab and benralizumab.
Furthermore, their functional roles have not been published, and
their potential contributions remain speculative. This has been
highlighted by the EAACI task force paper on new molecular
insights and clinical functions of eosinophils states (97), which
calls for research in this topic for the next years. However, several
thoughts arise when addressing the possible role of the eosinophil’s
subpopulations. One possibility is that identifying a threshold of
iEos (probably a 8–10% would be adequate) may be sufficient to
categorize an asthmatic patient as having a Th2-high endotype. It
is well established that approximately 20% of patients with severe
asthma exhibit discordance between blood and tissue eosinophils.
This discrepancy might be explained by different eosinophil
subpopulations. As exposed previously, asthmatic patients can have
a low blood eosinophil count but a high proportion of them can be
iEos. This could be the case of the iEos found in non-eosinophilic
asthma patients in the study of Fricker et al. (95). We speculate
that iEos, due to their molecular surface markers, are the ones
driven to the inflammation site. iEos in the blood may serve as
a surrogate marker of a Th2 signal, even when the total blood
eosinophil count does not exceed 250 cells/mm3. This could allow
iEos to endotype severe asthma patients, pointing out candidates
for biological therapy with anti-IL-5/IL-5R agents even though
they do not have a high eosinophil count in peripheral blood.
This might also explain why Tezepelumab is effective in non-Th2
asthma. Asthma has traditionally been classified as Th2-high based
on blood eosinophil counts rather than tissue eosinophils. There
could be a subset of patients with low blood eosinophil counts
but elevated eosinophil levels in the bronchi, who may respond
well to treatments like Tezepelumab. However, this could represent
only part of the explanation, as Tezepelumab affects multiple cell
types and mechanisms beyond IL-5 inhibition. According to data
from Vultaggio et al. (92) these eosinophil subpopulations may be
more predictive of symptom control (asthma and nasal polyposis)
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TABLE 2 Expression and function of the crucial surface markers of the eosinophils and their importance in flow cytometry.

Surface markers Expression Function Eosinophil
Flow cytometry

CD45 Phosphotyrosine
phosphatase

Expressed on nucleated
hematopoietic human cells,
lymphocytes, monocytes,
eosinophils, basophils, and
neutrophils, except
erythrocytes and platelets.

-CD45 is a transmembrane glycoprotein with tyrosine
phosphatase activity. Can be expressed as one of at least five
isoforms (180 to 220 kDa) by alternative splicing of exons
comprising the extracellular domain, depending on cell
type and activation state.
-Functions as a tyrosine phosphatase, regulating T and B
cell receptor signaling. Critical for the development,
differentiation, and activation of immune cells.

CD45 is a pan-leukocyte marker,
essential in eosinophils (98).

CD11b (Integrin subunit αM) Highly expressed on
monocytes, macrophages,
granulocytes, dendritic cells,
and NK cells. Also found on
some T cells during activation.

-CD11b, in combination with CD18, forms a αMβ2
heterodimer (Mac-1) (99).
-Plays a crucial role in cell adhesion, phagocytosis,
migration, and inflammation. Involved in innate immune
responses. Important in inflammation, tissue injury, and
autoimmunity.
-Upregulated during infections and inflammatory
conditions. Upregulated in eosinophil activation during
inflammatory responses (93)

Used as a general granulocytes marker,
it is one of the most critical markers to
differentiate eosinophil subtypes (93)

CD16 (FcγRIII) Found on NK cells,
macrophages, neutrophils,
and some T cells.
No expression on eosinophils.

Functions as a low-affinity receptor for the Fc portion of
IgG antibodies, mediating antibody-dependent cellular
cytotoxicity (ADCC) (98).
- Plays a role in phagocytosis of immune complexes.
Central to NK cell function and phagocytes
-The absence of this receptor in eosinophils may be due to
the low phagocytic capacity compared to the neutrophil.

Eosinophils are differentiated
from neutrophils by lack of CD16
expression (98)

Siglec-8 (Sialic acid-binding
immunoglobulin-like
lectin-8)

Primarily expressed on
eosinophils, mast cells, and
basophils (100).

-Siglec-8 are involved in eosinophil survival and apoptosis
when bound to sialylated glycan ligands (100, 101),
positioning it as a therapeutic target for
eosinophil-associated conditions such as asthma and
eosinophilic esophagitis

Highly expressed on eosinophils. Used
as a eosinophils marker (100)

CD62L (L-selectin) Found on leukocytes,
including naive and memory
T cells, B cells, monocytes, and
granulocytes.

-CD62L is an adhesion molecule that facilitates leukocyte
transmigration.
-Mediates the capture and rolling of leukocytes on the
endothelium at sites of inflammation, facilitating their
migration to secondary lymphoid organs and inflamed
tissues (102), playing a critical role in both adaptive
immune responses and inflammation.
-Data suggest that shedding of L-selectin from the surface
of granulocytes occurs in the peripheral circulation as a
prelude to diapedesis of granulocytes into peripheral tissues
(103). Downregulated upon activation during allergic
responses and chronic inflammation.

Expressed on circulating eosinophils
(103), it is one of the most critical
markers to differentiate eosinophil
subtypes (79).

CD125 (IL-5Rα) Expressed predominantly on
eosinophils, basophils, and
certain activated T cells.

-Interleukin 5 receptor (IL-5R) complex comprises an
IL-5-binding protein, commonly referred to as IL-5Rα

(CD125), and a ß-chain (CD131) (56).
-CD125 is crucial for eosinophil proliferation, immune
responses activation, and survival in response to IL-5 (104).
- Involved in allergic immune responses and eosinophilic
disorders, such as asthma eosinophilic esophagitis,
hypereosinophilic syndrome and allergic rhinitis, making it
a target in the treatment of eosinophilia-associated
disorders.

Highly expressed on eosinophils, is
one of the most critical markers to
differentiate eosinophil subtypes (93).

CD101 Expressed on dendritic cells,
monocytes, macrophages,
granulocytes, memory T cells,
and regulatory T cells (Tregs).
(13).

-Modulates immune activation by regulating T cell
proliferation and Treg function. Its expression has been
linked to modulating the severity of autoimmune diseases
and inflammatory responses. Contributes to the
maintenance of immune tolerance and immune
suppression.
-The expression of CD101 on myeloid cells induces the
release of IL-10 and TGF-β, but has no effect on the release
of inflammatory cytokines. A (relative) lack of CD101
signals promotes the expansion of T cells and the induction
of an inflammatory cytokine profile (105).

Low expression in eosinophils.
However is one of the most critical
markers to differentiate eosinophil
subtypes (93)

(Continued)
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TABLE 2 Expression and function of the crucial surface markers of the eosinophils and their importance in flow cytometry.

Surface markers Expression Function Eosinophil
Flow cytometry

CD123 (IL-3Rα) Expressed on plasmacytoid
dendritic cells (pDCs),
basophils, monocytes, and
some hematopoietic
progenitor cells. Expressed at
low levels in eosinophils

-Cytokine receptor important for the proliferation and
differentiation of hematopoietic cells, potentially
influencing activation, survival and differentiation of
eosinophils via IL-3-mediated signaling. Expressed during
all stages of eosinophil maturation, but the highest levels
are found in mature eosinophils (67).
- Regulates the activation of plasmacytoid dendritic cells,
which are involved in producing large amounts of type I
interferons in response to viral infections.

While not a major marker in
eosinophils, it may play a role to
differentiate eosinophil subtypes (79)

TABLE 3 Percentages of rEos and iEos in human peripheral blood.

Eosinophils
count, cell/µL

% iEos Eosinophils
count, cell/µL

% iEos Eosinophils
count, cell/µL

% iEos

NSEA 530± 80 37.2± 5.8 205± 3 3.28± 1.8 380± 164 21.5± 16.6

SEA 680± 110 36.2± 3.8 604± 79 12.3± 3.5 730± 91 30.1± 13.1

Healthy 170± 20 48.7± 5.9 109± 22 2.25± 1.5 203± 92 0.67± 1.72

COPD 239± 181 0.7± 1.1

Januskevicius et al. (96) Matucci et al. (91) and Vultaggio et al. (92) Cabrera López et al. (93)

NSEA, non-severe asthma patients; SEA, severe eosinophilic asthma; COPD, chronic obstructive pulmonary disease.

TABLE 4 Differences expression of iEos markers in human blood,
nasal polyp and lung.

iEos Blood Nasal
polyp

Lung

CD62L Low Low Low

CD125 High High

CD11b High

CD101 Low High

CD123 Low High High

Data taken from the studies of Cabrera López et al. (93), Matucci et al. (91), and Mesnil et al.
(79), respectively.

than the total blood eosinophil count and could maybe serve as a
biomarker of control in patients treated with mepolizumab.

Studies of biological therapies have been disappointing in
COPD. Only dupilumab can reduce exacerbations so far and
the population where it works better is in those who have high
eosinophil blood count, high FENO and IgE. It is necessary
to define accurately the COPD patient suitable for monoclonal
antibodies in order to achieve a good therapeutic response.
Eosinophil’s subpopulations may help identify those who are
suitable candidates for anti-eosinophilic treatments. In the study
by Cabrera López et al. (93) we found that COPD patients, even
those with elevated eosinophil blood counts, had less than 1% of
iEos. Identifying COPD patients with a significant percentage of
iEos could be highly useful for selecting those who are more likely
to respond to monoclonal antibody therapies.

Another gap is if the proportion of iEos and rEos could vary
between stable states and exacerbations. iEos could potentially
increase during an exacerbation both in asthma and COPD. Such
findings could also have important implications for identifying
candidates for biological therapies.

Conclusion

Eosinophils are granulocytic cells historically viewed as purely
inflammatory and defensive, often associated with pathological
conditions. In recent years, this perception has evolved as research
has uncovered their homeostatic roles and synergistic interactions
with other immune cells. Recent advancements have demonstrated
the existence of different eosinophil subtypes and their potential
association with disease severity. However, several questions
remain unanswered: Are these true subtypes or merely activated
cells? Are they generated in this form in the bone marrow, or
do they differentiate later? Can they serve as biomarkers for
the use of monoclonal antibodies in asthma and COPD? Do
they function similarly when stimulated? Is their genetics similar?
Most studies on eosinophils have treated them as a homogeneous
population without distinguishing subtypes. To address these
questions, it is essential to conduct subtype-specific investigations,
as previous studies that did not differentiate subtypes are less
comparable. Future research should focus on resolving these
issues, which could significantly improve the characterization
of patients with eosinophilia and facilitate the development of
personalized medicine.
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94. Mycroft K, Paplińska-Goryca M, Proboszcz M, Nejman-Gryz P, Krenke R,
Górska K. Blood and sputum eosinophils of COPD patients are differently polarized
than in asthma. Cells. (2023) 12:1631. doi: 10.3390/cells12121631

95. Fricker M, Harrington J, Hiles SA, Gibson PG. Mepolizumab depletes
inflammatory but preserves homeostatic eosinophils in severe asthma. Allergy (2024)
79:3118–28. doi: 10.1111/all.16267

96. Januskevicius A, Jurkeviciute E, Janulaityte I, Kalinauskaite-Zukauske V,
Miliauskas S, Malakauskas K. Blood eosinophils subtypes and their survivability in
asthma patients. Cells. (2020) 9:1248. doi: 10.3390/cells9051248

97. Jesenak M, Diamant Z, Simon D, Tufvesson E, Seys SF, Mukherjee M, et al.
Eosinophils-from cradle to grave: An EAACI task force paper on new molecular
insights and clinical functions of eosinophils and the clinical effects of targeted
eosinophil depletion. Allergy. (2023) 78:3077–102. doi: 10.1111/all.15884

98. Thurau AM, Schylz U, Wolf V, Krug N, Schauer U. Identification of
eosinophils by flow cytometry. Cytometry (1996) 23:150–8. doi: 10.1002/(SICI)1097-
0320(19960201)23:23.0.CO;2-O

99. Gomułka K, Tota M, Brzda̧k K. Effect of VEGF stimulation on CD11b receptor
on peripheral eosinophils in asthmatics. Int J Mol Sci. (2023) 24:8880. doi: 10.3390/
ijms24108880

100. Johansson MW, Kelly EA, Nguyen CL, Jarjour NN, Bochner BS.
Characterization of siglec-8 expression on lavage cells after segmental lung allergen
challenge. Int Arch Allergy Immunol. (2018) 177:16–28. doi: 10.1159/000488951

101. O’Sullivan JA, Carroll DJ, Bochner BS. Glycobiology of eosinophilic
inflammation: Contributions of siglecs, glycans, and other glycan-binding proteins.
Front Med. (2017) 4:116. doi: 10.3389/fmed.2017.00116

102. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil
function: From mechanisms to disease. Annu Rev Immunol. (2012) 30:459–89. doi:
10.1146/annurev-immunol-020711-074942

103. Kuhns DB, Long Priel DA, Gallin JI. Loss of L-selectin (CD62L) on human
neutrophils following exudation in vivo. Cell Immunol. (1995) 164:306–10. doi: 10.
1006/cimm.1995.1174

104. Sato S, Katagiri T, Takaki S, Kikuchi Y, Hitoshi Y, Yonehara S, et al. IL-
5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and
activation of Bruton’s tyrosine and Janus 2 kinases. J Exp Med. (1994) 180:2101–11.
doi: 10.1084/jem.180.6.2101

105. Wrage M, Kaltwasser J, Menge S, Mattner J. CD101 as an indicator molecule
for pathological changes at the interface of host-microbiota interactions. Int J Med
Microbiol. (2021) 311:151497. doi: 10.1016/j.ijmm.2021.151497

Frontiers in Medicine 11 frontiersin.org

https://doi.org/10.3389/fmed.2024.1470381
https://doi.org/10.1111/j.1398-9995.2012.02868.x
https://doi.org/10.1146/annurev.immunol.24.021605.090720
https://doi.org/10.1016/S0091-6749(96)80061-3
https://doi.org/10.1016/j.coph.2013.03.013
https://doi.org/10.1016/j.coph.2013.03.013
https://doi.org/10.1038/ni.2104
https://doi.org/10.1038/ni.2104
https://doi.org/10.1172/JCI85664
https://doi.org/10.4049/jimmunol.0801581
https://doi.org/10.1084/jem.20131800
https://doi.org/10.1084/jem.20131800
https://doi.org/10.1242/dev.127.11.2269
https://doi.org/10.1038/mi.2014.123
https://doi.org/10.4049/jimmunol.165.4.1965
https://doi.org/10.4049/jimmunol.165.4.1965
https://doi.org/10.1126/science.1201475
https://doi.org/10.1073/pnas.95.11.6273
https://doi.org/10.1073/pnas.95.11.6273
https://doi.org/10.1111/all.12776
https://doi.org/10.1128/iai.58.3.816-821.1990
https://doi.org/10.1128/iai.58.3.816-821.1990
https://doi.org/10.1016/j.jaci.2012.07.025
https://doi.org/10.1016/j.jaci.2012.07.025
https://doi.org/10.1111/all.15859
https://doi.org/10.1111/all.15859
https://doi.org/10.1111/cea.14153
https://doi.org/10.1111/all.15909
https://doi.org/10.1164/rccm.202301-0149OC
https://doi.org/10.3390/cells12121631
https://doi.org/10.1111/all.16267
https://doi.org/10.3390/cells9051248
https://doi.org/10.1111/all.15884
https://doi.org/10.1002/(SICI)1097-0320(19960201)23:23.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-0320(19960201)23:23.0.CO;2-O
https://doi.org/10.3390/ijms24108880
https://doi.org/10.3390/ijms24108880
https://doi.org/10.1159/000488951
https://doi.org/10.3389/fmed.2017.00116
https://doi.org/10.1146/annurev-immunol-020711-074942
https://doi.org/10.1146/annurev-immunol-020711-074942
https://doi.org/10.1006/cimm.1995.1174
https://doi.org/10.1006/cimm.1995.1174
https://doi.org/10.1084/jem.180.6.2101
https://doi.org/10.1016/j.ijmm.2021.151497
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/

	Eosinophils: old cells, new directions
	Introduction
	Granules and degranulation
	Migration
	Cytokines and chemokines
	Eosinophil activation
	Eosinophil subtypes
	Possible implications in asthma and COPD of the different eosinophil's subpopulations
	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


