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Background: Alzheimer’s disease (AD) is a degenerative brain disease without 
a cure. Lonicerae Japonicae Flos (LJF), a traditional Chinese herbal medicine, 
possesses a neuroprotective effect, but its mechanisms for AD are not well 
understood. This study aimed to investigate potential targets and constituents 
of LJF against AD.

Methods: Network pharmacology and bioinformatics analyses were performed 
to screen potential compounds and targets. Gene Expression Omnibus (GEO) 
datasets related to AD patients were used to screen core targets of differential 
expression. Gene expression profiling interactive analysis (GEPIA) was used to 
validate the correlation between core target genes and major causative genes 
of AD. The receiver operating characteristic (ROC) analysis was used to evaluate 
the predictive efficacy of core targets based on GEO datasets. Molecular docking 
and dynamics simulation were conducted to analyze the binding affinities of 
effective compounds with core targets.

Results: Network pharmacology analysis showed that 112 intersection targets 
were identified. Bioinformatics analysis displayed that 32 putative core targets 
were identified from 112 intersection targets. Only eight core targets were 
differentially expressed based on GEO datasets. Finally, six core targets of MAPK8, 
CTNNB1, NFKB1, EGFR, BCL2, and NFE2L2 were related to AD progression and 
had good predictive ability based on correlation and ROC analyses. Molecular 
docking and dynamics simulation analyses elucidated that the component of 
lignan interacted with EGFR, the component of β-carotene interacted with 
CTNNB1 and BCL2, the component of β-sitosterol interacted with BCL2, the 
component of hederagenin interacted with NFKB1, the component of berberine 
interacted with EGFR and BCL2, and the component of baicalein interacted with 
NFKB1, EGFR and BCL2.

Conclusion: Through a comprehensive analysis, this study revealed that six core 
targets (MAPK8, CTNNB1, NFKB1, EGFR, BCL2, and NFE2L2) and six practical 
components (lignan, β-carotene, β-sitosterol, hederagenin, berberine, and 
baicalein) were involved in the mechanism of action of LJF against AD. Our 

OPEN ACCESS

EDITED BY

Kongkai Zhu,  
Shandong University, China

REVIEWED BY

João M. L. Dias-Ferreira,  
University of Porto, Portugal
Mashoque Ahmad Rather,  
University of South Florida, United States

*CORRESPONDENCE

Binsheng He  
 hbscsmu@163.com  

Jianming Li  
 ljmingcsu@163.com

†These authors have contributed equally to 
this work

RECEIVED 22 July 2024
ACCEPTED 31 October 2024
PUBLISHED 13 November 2024

CITATION

Xiang Q, Xiang Y, Liu Y, Chen Y, He Q, Chen T, 
Tang L, He B and Li J (2024) Revealing the 
potential therapeutic mechanism of 
Lonicerae Japonicae Flos in Alzheimer’s 
disease: a computational biology approach.
Front. Med. 11:1468561.
doi: 10.3389/fmed.2024.1468561

COPYRIGHT

© 2024 Xiang, Xiang, Liu, Chen, He, Chen, 
Tang, He and Li. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 13 November 2024
DOI 10.3389/fmed.2024.1468561

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1468561&domain=pdf&date_stamp=2024-11-13
https://www.frontiersin.org/articles/10.3389/fmed.2024.1468561/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1468561/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1468561/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1468561/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1468561/full
https://orcid.org/0000-0002-2232-4634
https://orcid.org/0000-0002-5012-0989
mailto:hbscsmu@163.com
mailto:ljmingcsu@163.com
https://doi.org/10.3389/fmed.2024.1468561
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1468561


Xiang et al. 10.3389/fmed.2024.1468561

Frontiers in Medicine 02 frontiersin.org

work demonstrated that LJF effectively treats AD through its multi-component 
and multi-target properties. The findings of this study will establish a theoretical 
basis for the expanded application of LJF in AD treatment and, hopefully, can 
guide more advanced experimental research in the future.

KEYWORDS

Alzheimer’s disease, computational biology, Lonicerae Japonicae Flos, mechanisms, 
traditional Chinese medicine

1 Introduction

Alzheimer’s disease (AD) is the predominant neurological disease 
among the elderly population, recognized as the primary cause of 
dementia, and emerging as a significant public health concern with 
global implications (1). AD is characterized clinically by a progressive 
deterioration of cognitive functions and a gradual memory decline 
(2). Neuropathologically, AD is featured by significant cortical 
atrophy, ventricular enlargement, extracellular amyloid deposition, 
and intracellular neurofibrillary tangles composed of 
hyperphosphorylated tau proteins (1, 3). Research findings indicate 
that genetic risk factors associated with AD account for 60–80% of the 
overall risk (4). Presently, the pharmaceutical agents utilized in the 
treatment of AD, including donepezil, galantamine, rivastigmine and 
memantine, are characterized by their single-target mechanisms of 
action, which have demonstrated some efficacy in managing the 
symptoms of the disease (5, 6). However, due to the clinical and 
genetic heterogeneity of AD, the effectiveness and safety of single-
target drugs have yet to meet the anticipated outcomes. It is widely 
believed that multi-targeted drugs can target multiple factors within 
the disease network, leading to enhanced effect and reduced 
occurrence of side effects. Therefore, the development of multi-target 
drugs for the treatment of AD has emerged as a major focus of 
research in recent years to tackle these challenges.

Traditional Chinese medicinal herbs are well-suited for drug 
discovery in prolonged AD treatment (7, 8). Herba Epimedii, Coptis 
Chinensis Franch, Rhizoma Curcumae Longae, Green tea, Ganoderma, 
and Panax Ginseng have shown significant potential as herbal 
candidates for developing effective anti-AD medications (6, 9). 
Lonicerae Japonicae Flos (LJF) has been extensively applied to 
traditional Chinese medicine for numerous centuries as a medicinal 
remedy, demonstrating established therapeutic properties (10). LJF 
was initially documented in Li Shizhen’s “Compendium of Materia 
Medica” and incorporated into the Chinese Pharmacopoeia (11). 
According to the principles of Chinese medicine, LJF is believed to 
possess the capabilities of heat-clearing and detoxifying, as well as the 
dispersion of wind-heat, among other functions (12). Currently, over 
300 compounds, including volatile oils, organic acids, and flavonoids, 
have been found in LJF extract (13). These compounds demonstrate 
various beneficial properties, such as antiviral, anti-inflammatory, 
anti-tumor, antioxidant, and immune regulatory effects (13). 
Pharmacological studies have shown that LJF water extracts have the 
potential to be  therapeutically effective in treating Huntington’s 
disease, Parkinson’s disease, and AD (10, 14). Nevertheless, further 
research is needed to elucidate the molecular targets associated with 
pharmacological effects through which these effects are exerted.

Network pharmacology, an emerging methodology in drug 
discovery and development, integrates laboratory and clinical 

investigations with data analysis to comprehensively elucidate the 
pharmacological effects of traditional Chinese medicines on a range 
of disorders (15, 16). It is a comprehensive methodology that combines 
conventional pharmacology, bioinformatics, chemoinformatics, and 
systems biology to construct networks of interactions between drugs, 
targets, and diseases, thereby facilitating the discovery of innovative 
therapeutic interventions (17). Concurrently, it has been extensively 
employed to investigate the multi-target effects linked to central 
nervous system disorders, including ischemic stroke, vascular 
cognitive impairment, and AD (16, 18).

This study aimed to investigate the therapeutic targets of LJF and 
elucidate its anti-AD mechanisms using network pharmacology, Gene 
Expression Omnibus (GEO) datasets, molecular docking and 
dynamics simulation. Furthermore, we  analyzed putative targets 
linked to Aβ and tau pathology. This study successfully predicted six 
potential core targets, including mitogen-activated protein kinase 8 
(MAPK8), catenin beta-1 (CTNNB1), nuclear factor NF-kappa-B 
p105 subunit (NFKB1), epidermal growth factor receptor (EGFR), 
apoptosis regulator Bcl-2 (BCL2), and nuclear factor erythroid 
2-related factor 2 (NFE2L2), and six effective components, including 
lignan, β-carotene, β-sitosterol, hederagenin, berberine, and baicalein, 
involved in the therapeutic strategy for AD using LJF. Our study offers 
a comprehensive pharmacological rationale for utilizing LJF in 
treating AD. Furthermore, this study significantly contributes to the 
advancement and application of LJF, guiding future research 
endeavors in this field.

2 Materials and methods

2.1 Screening of bioactive constituents of 
LJF

The search term “Lonicerae Japonicae Flos” was employed to 
access the active constituents within the SymMap database (oral 
bioavailability ≥30%) (19), the BATMAN-TCM online bioinformatics 
analysis tool (score cutoff = 20, adjusted p-value <0.05) (20), the 
Traditional Chinese Medicine Systems Pharmacology Database and 
Analysis Platform (TCMSP) database (oral bioavailability ≥30%, 
drug-likeness ≥0.18) (17), and the Encyclopedia of Traditional 
Chinese Medicine (ETCM) database (drug-likeness weight ≥0.5) (21).

2.2 Screening of potential targets mapped 
by ingredients

The active components were screened for their targets using four 
databases, namely SymMap [false discovery rate 
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(Benjamini–Hochberg) <0.05], BATMAN-TCM (score cutoff = 20, 
adjusted p-value <0.05), TCMSP (random forest score ≥0.7, support 
vector machine score ≥0.8), and ETCM (similarity value >0.8), with 
a filter for Homo sapiens species. The target names of the proteins 
under investigation were consistently standardized using the RCSB 
Protein Data Bank database.1 Duplicate targets were eliminated, and 
related targets were retained for subsequent analysis.

2.3 Screening of potential targets of AD

Four disease databases included the MalaCards database (22), the 
GeneCards database,2 the DisGeNET database (23), and the Online 
Mendelian Inheritance in Man (OMIM) database3 were utilized to 
screen potential targets related to AD using the keyword “Alzheimer’s 
disease.” To enhance the correlation with AD, we filtered targets with 
a relevance score ≥10 in the MalaCards database, score ≥10 in the 
GeneCards database, score ≥0.05 in the DisGeNET database, and 
selected all targets in the OMIN database. Redundant targets were 
removed, while relevant targets were preserved for subsequent analysis.

2.4 Acquisition of intersection targets

To obtain the relationship between AD-related and LJF-related 
targets, we conducted an intersection analysis of the respective target 
lists using an online interactive tool that facilitates comparison 
through Venn diagrams.4 We  retained the intersection targets for 
subsequent analysis.

2.5 Function and pathway enrichment 
analyses

The Database for Annotation, Visualization and Integrated 
Discovery (DAVID)5 was utilized to distinguish and enrich the 
biological attributes, including biological processes, cellular 
components, molecular functions, and pathways. A false discovery 
rate (FDR) <0.05 significance threshold was established for 
enrichment analysis. The top 20 terms were selected for visualization 
according to their frequency count.

2.6 Analyses of protein–protein interaction 
network and putative core targets

Intersection targets were chosen and input into the STRING 
database6 to retrieve the protein interaction network with a confidence 
score of 0.4 or higher. The results were input into the Cytoscape 3.7.1 
software to establish and analyze the interaction network (24). In 

1 https://www.rcsb.org/

2 https://www.genecards.org/

3 https://www.omim.org/

4 https://bioinfogp.cnb.csic.es/tools/venny/index.html

5 https://david.ncifcrf.gov/

6 https://www.string-db.org/

order to identify potential core targets, the cytoHubba plugin was 
utilized to evaluate and prioritize nodes (proteins) based on network 
characteristics with seven scoring algorithms, including maximal 
clique centrality (MCC), density of maximum neighborhood 
component (DMNC), maximum neighborhood component (MNC), 
edge percolated component (EPC), degree, closeness, and betweenness 
(25). Ultimately, this study identified putative core targets that 
exhibited concordance across three or more topological algorithms.

2.7 Expression validation of putative core 
targets

The postulated core targets were validated differential expression 
in GEO datasets. To assess expression levels of putative core targets 
between AD cases and normal controls, we conducted differential 
expression analyses through the comprehensive AlzData database7 
with data from the hippocampal datasets, including GSE28146 
(expression data from early-stage AD), GSE29378 (expression data 
from late-stage AD), GSE36980 (expression data from post mortem 
AD brains), GSE48350 (expression data from post mortem AD 
brains), and GSE5281 (undistinguished stages). The data were shown 
as mean ± standard deviation, with a p-value of <0.05 indicating 
significant differences. Differentially expressed core targets were 
utilized for further validation.

2.8 Correlation analysis between core 
target genes and main causative genes of 
AD

To further validate the relativity with AD, correlation analysis was 
performed on putative core target genes and major causative genes, 
including amyloid precursor protein (APP), microtubule-associated 
protein tau (MAPT), and presenilin2 (PSEN2) through the gene 
expression profiling interactive analysis (GEPIA) (26). Putative core 
target genes were imported into the search words, and brain-
hippocampus was selected from GTEx expression datasets. 
We selected genes that exhibited a significant association with major 
causative genes of AD for further validation.

2.9 Receiver operating characteristic 
analysis

To evaluate the predictive efficacy of core targets, we performed a 
ROC analysis, calculating the area under the receiver operating 
characteristic (ROC) curve (AUC) as a metric for their predictive 
capability. Therefore, we  applied ROC curve analysis with 
hippocampus datasets, including GSE28146, GSE29378, GSE36980, 
GSE48350, and GSE5281, to evaluate these core targets’ 
predictive utility.

7 http://www.alzdata.org
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2.10 Identification of bioactive ingredients 
interacting with core targets

Four databases, including SymMap, BATMAN-TCM, TCMSP, 
and ETCM, were used to investigate the essential bioactive 
constituents of core targets. Duplicate ingredients were removed, 
while pertinent ingredients were retained. To elucidate the interaction 
between core targets and essential ingredients, we  intersected 
ingredients of core targets mapped and LJF using an online tool to 
compare lists with Venn diagrams. Intersection ingredients with oral 
bioavailability (OB) ≥0.3, drug-likeness (DL) ≥0.18, and blood-brain 
barrier (BBB) ≥−0.3 were retained for subsequent analysis.

2.11 Molecular docking

The AutoDock Vina software evaluated the molecular binding 
affinity between bioactive constituents and their corresponding core 
targets. The two-dimensional molecular structures of bioactive 
compounds in LJF were acquired from the PubChem database.8 The 
crystallographic structures of core target proteins were acquired from 
the RCSB Protein Data Bank and SWISS-MODEL.9 PyMOL10 and 
AutoDock Vina were employed to structurally manipulate the 
proteins, involving eliminating water molecules and heteroatoms and 
incorporating charges and hydrogen atoms. The resulting profiles were 
then saved in the PDBQT format for binding studies. Subsequently, 
docking analyses were conducted utilizing AutoDock Vina, and the 
resulting docking conformations were visualized using PyMOL and 
Discovery Studio 2020 software. The results were presented through 
two-dimensional (2D) and three-dimensional (3D) graphical 
representations. Affinity was utilized to assess the binding efficacy of 
the primary active compounds with their respective targets. The 
affinity values of −4.25 kcal/mol, −5.0 kcal/mol, and −7.0 kcal/mol 
suggest varying degrees of binding strength between the compound 
and the target, with lower values indicating stronger binding and 
higher values indicating weaker binding interactions (24).

2.12 Molecular dynamics simulation

The molecular dynamics simulations of protein-component 
complexes derived from molecular docking were conducted using 
GROMACS (version 2020.6).11 The receptor proteins topology files 
were created utilizing the AMBER99SB force field, while the ligands 
component topology files were generated by applying the sobtop script 
with the AMBER force field. The system was neutralized with NaCl 
counterions. Before conducting the dynamics simulation, the complex 
underwent minimization for 10,000 steps and equilibration by 
executing canonical ensemble and constant-pressure, constant-
temperature simulations for 100 picoseconds. The Coulomb force 
intercept and van der Waals radius intercept measured 1.4 nm. The 
system was subsequently equilibrated with the regular and isothermal 

8 https://pubchem.ncbi.nlm.nih.gov/

9 https://swissmodel.expasy.org/

10 https://pymol.org/2/

11 https://www.gromacs.org/

isobaric system, followed by molecular dynamics simulations 
conducted for 10 nanoseconds under room temperature and pressure 
conditions. Ultimately, the root mean square deviation (RMSD) 
curves of protein-component complexes were analyzed to assess 
binding stability.

3 Results

3.1 Screening of potential targets of LJF 
against AD

Active constituents of LJF were identified through a 
comprehensive review of relevant literature from databases, including 
SymMap, BATMAN-TCM, TCMSP, and ETCM. A total of 132 active 
ingredients with an OB score ≥0.3 were identified from the SymMap 
database, 72 active ingredients with a score exceeding 20 from the 
BATMAN-TCM database, 23 active ingredients with an OB ≥0.3 and 
DL ≥0.18 from the TCMSP database, and 47 active constituents from 
the ETCM database were found to be effective (Figure 1A). Following 
the screening criteria, 212 species were identified after eliminating 
duplicates. The SymMap, BATMAN-TCM, TCMSP, and ETCM 
databases were utilized to identify potential targets of efficacious active 
compounds. The UniProt database was utilized to standardize the 
official names of all retrieved proteins. All duplication proteins were 
removed after merging to screen 566 potential targets (Figure 1B). 
MalaCards, GeneCards, DisGeNET, and OMIM databases were 
queried with the subject heading “Alzheimer’s disease” to screen 
potential targets. The MalaCards database yielded 112 related targets 
with a score greater than 10, the GeneCards database identified 338 
related targets with gifts exceeding 30 and relevance surpassing 25, the 
DisGeNET database revealed 220 related targets with a score 
exceeding 0.1, and the OMIM database provided information on 545 
related targets (Figure 1C). Four sources of targets were merged and 
duplication was removed to yield 1,020 AD-related targets. A total of 
112 intersection targets were identified between LJF and AD by 
constructing Venn diagrams, as shown in Figure 1D.

3.2 GO and KEGG enrichment analyses of 
intersection targets

The DAVID database was utilized to perform GO and KEGG 
enrichment analyses on 112 intersection targets. With FDR <0.05 as 
screening conditions, 923 GO entries (biological process 694 entries, 
cell composition 103 entries, and molecular function 126 entries) and 
175 KEGG pathways entries were acquired. According to counts and 
the FDR value, the top 20 items in the three biological attributes were 
selected to draw bubble diagrams, as shown in Figures 2A–C. In terms 
of biological processes, intersection targets are primarily involved in 
positive regulation of gene expression (GO: 0010628), positive 
regulation of transcription from RNA polymerase II promoter (GO: 
0045944), signal transduction (GO: 0007165), negative regulation of 
apoptotic process (GO: 0043066), positive regulation of apoptotic 
process (GO: 0043065), etc. In terms of cellular components, 
intersection targets are primarily involved in the cytoplasm (GO: 
0005737), cytosol (GO: 0005829), plasma membrane (GO: 0005886), 
nucleus (GO: 0005634), membrane (GO: 0016020), etc. In terms of 
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molecular functions, intersection targets are primarily involved in 
protein binding (GO: 0005515), identical protein binding (GO: 
0042802), enzyme binding (GO: 0019899), ATP binding (GO: 
0005524), protein homodimerization activity (GO: 0042803), etc. For 
the KEGG pathway enrichment, the re-screening condition is that the 
number of enriched targets is ≥20. The bubble chart of the top 20 
pathways is ranked according to the counts, and FDR value is shown 
in Figure 2D. Intersection targets are primarily involved in pathways 
in cancer (hsa05200), Alzheimer disease (hsa05010), pathways of 
neurodegeneration—multiple diseases (hsa05022), lipid and 
atherosclerosis (hsa05417), fluid shear stress and atherosclerosis 
(hsa05418), etc.

3.3 PPI network construction and core 
targets analysis

To improve comprehension of targets interactions, the STRING 
online tool was utilized to analyze the protein–protein interaction 
(PPI) network involving intersection targets. The Cytoscape software 
presented 112 nodes (targets) and 2,069 edges (interactions), as shown 
in Figure  3A. We  used the MCC, MNC, DMNC, EPC, degree, 
closeness, and betweenness algorithms in the cytoHubba plug-in of 
the Cytoscape software to select potential core targets and the top 30 
targets of each algorithm for intersections, as shown in Figure 3B. As 
shown in Figure  3C, 32 putative core targets (TP53, TNF, TLR4, 

TGFB1, PTGS2, PTEN, PPARG, NFKB1, MTOR, MMP9, MAPK8, 
INS, IL6, IL1B, IL10, IFNG, ESR1, EGFR, CXCL8, CTNNB1, CCL2, 
CASP3, BCL2, ALB, AKT1, GSK3A, ERBB2, IL1A, ICAM1, NFE2L2, 
CAV1, and APP) shared more than three topological methods 
were obtained.

3.4 Differential expression evaluation of 
putative core targets based on GEO 
datasets

To verify the clinical implications of 32 putative core targets, 
the brain transcriptome datasets of GSE28146, GSE29378, 
GSE36980, GSE48350, and GSE5281, which examined the 
expression of human hippocampus in normal control (N = 76) and 
AD (N = 74) patients, were used to assess the expression changes 
in brain hippocampus tissue of AD patients. The result showed 
that MAPK8 significantly down-regulated, CTNNB1, NFKB1, 
EGFR, CXCL8, CCL2, BCL2, and NFE2L2 were significantly 
up-regulated in AD patients compared to controls (Figure  4). 
However, there was no significant difference in TP53, TNF, TLR4, 
TGFB1, PTGS2, PTEN, PPARG, MTOR, MMP9, INS, IL6, IL1B, 
IL10, IFNG, ESR1, CASP3, ALB, AKT1, GSK3A, ERBB2, IL1A, 
ICAM1, CAV1, and APP levels between control and AD groups in 
the hippocampus (data not shown). These results showed that 
only core targets of MAPK8, CTNNB1, NFKB1, EGFR, CXCL8, 

FIGURE 1

Screening of potential targets of Lonicerae Japonicae Flos in the treatment of AD. (A) Venn diagrams showing the numbers of bioactive compounds of 
Lonicerae Japonicae Flos in each database. The purple is TCMSP (23 ingredients), green is BATMAN-TCM (72 ingredients), red is ETCM (47 ingredients), 
and yellow is SymMap (132 ingredients). (B) Venn diagrams show the numbers of potential targets for ingredients in each database. The purple is 
TCMSP (210 potential targets), green is BATMAN-TCM (197 potential targets), red is SymMap (225 potential targets), and yellow is ETCM (140 potential 
targets). (C) Venn diagrams show the numbers of potential AD targets in each database. The purple is DisGeNET (220 potential targets), green is 
GeneCards (338 potential targets), red is OMIM (545 potential targets), and yellow is MalaCards (112 potential targets). (D) Venn diagram showing 
numbers of intersection targets. The purple is Lonicerae Japonicae Flos (566 potential targets), and the yellow is AD (1,020 potential targets).
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CCL2, BCL2, and NFE2L2 might play a significant role in 
AD progression.

3.5 Correlation analysis between putative 
core targets and main causative genes of 
AD

To verify the correlation between core targets screened by 
differential expression and the main causative genes APP, MAPT and 
PSEN2, correlation analysis was performed using GEPIA. The results 
displayed that only core targets of MAPK8, CTNNB1, NFKB1, EGFR, 
BCL2, and NFE2L2 were significantly related to APP, MAPT, and 
PSEN2 (Figures 5–7). It is well-established that six core targets of 
MAPK8, CTNNB1, NFKB1, EGFR, BCL2, and NFE2L2 were the most 
prominent factors in treating LJF against AD.

3.6 ROC curves analysis of core targets

We further utilize gene expression datasets of the human 
hippocampus (GSE28146, GSE29378, GSE36980, GSE48350, and 
GSE5281) to establish ROC curves to validate six core targets of 

MAPK8, CTNNB1, NFKB1, EGFR, BCL2, and NFE2L2 related to AD 
in diagnosis, as shown in Figure 8. The area under the ROC curve, 
commonly denoted as AUC, serves as a metric for evaluating the 
overall effectiveness of a predictive model. As the AUC score 
approaches 1, the diagnostic performance is better. The results showed 
that core targets of MAPK8 (AUC = 0.614), CTNNB1 (AUC = 0.606), 
NFKB1 (AUC = 0.635), EGFR (AUC = 0.649), BCL2 (AUC = 0.663), and 
NFE2L2 (AUC = 0.628) have good predictive ability. These results 
indicated that six core targets of MAPK8, CTNNB1, NFKB1, EGFR, 
BCL2, and NFE2L2 are associated with AD, indicating good specificity 
and sensitivity for diagnosing patients, as shown in Table 1. Accordingly, 
we speculated that MAPK8, CTNNB1, NFKB1, EGFR, BCL2, and 
NFE2L2 mediated the therapeutic effects of LJF against AD. But still 
we need to admit that the ROC analysis results for the predictive ability 
of the identified core targets show moderate values of AUC, it is 
necessary to further validate in the external and cross datasets.

3.7 Bioactive ingredients of LJF mapped by 
core targets

Which chemicals in LJF can target the identified core targets? 
To address this question, SymMap, BATMAN-TCM, TCMSP, and 

FIGURE 2

Bubble diagrams of GO and KEGG enrichment analysis of intersection targets. (A) Biological process (BP) enrichment analysis showing the top 20 
terms. (B) Cell composition (CC) enrichment analysis showing the top 20 terms. (C) Molecular function (MF) enrichment analysis showing the top 20 
terms. (D) KEGG enrichment analysis showing the top 20 terms. The X-axis label represents the values of the count, and the Y-axis label represents the 
terms. A false discovery rate <0.05.
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FIGURE 3

Identification of core targets via protein–protein interaction (PPI) analysis. (A) PPI network analysis of 112 intersection targets. (B) The top 30 hub 
targets were chosen from the PPI network using the cytoHubba plugin (MCC, MNC, DMNC, EPC, degree, closeness, and betweenness). (C) Distribution 
of top 30 hub targets identified by topological analysis methods. MCC, maximal clique centrality; DMNC, density of maximum neighborhood 
component; MNC, maximum neighborhood component; EPC, edge percolated component.

FIGURE 4

Core targets differential expression validation between control and AD groups of GEO datasets. Target gene expression data were compared to the 
control and AD groups in the human hippocampus in the datasets GSE28146, GSE29378, GSE36980, GSE48350, and GSE5281. Control group (N  =  66) 
and AD group (N  =  74). Data are displayed as means ± standard errors. p  <  0.05 was deemed statistically significant.
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ETCM databases were utilized to screen for potential effective 
compounds of core targets of MAPK8, CTNNB1, NFKB1, EGFR, 
BCL2, and NFE2L2 (Figure  9A). In order to clarify the target-
active compounds mapping relationship, we intersected the 212 
LJF components and 122 core target components with an online 
interactive tool for comparing lists with Venn’s diagrams 
(Figure  9B). A total of 22 putative components were obtained 
(Table 2). After filtration with OB ≥0.3, DL ≥0.18, and BBB≥−0.3, 
only six effective active ingredients, including lignan (OB = 43.32, 
BBB = −0.16, DL = 0.65), β-carotene (OB = 37.18, BBB = 1.52, 

DL = 0.58), β-sitosterol (OB = 36.91, BBB = 0.99, DL = 0.75), 
hederagenin (OB = 36.91, BBB = 0.96, DL = 0.75), berberine 
(OB = 36.86, BBB = 0.57, DL = 0.78), and baicalein (OB = 33.52, 
BBB = −0.05, DL = 0.21), were screened, and the structures of 
which were shown in Figure 9C. Accordingly, we speculated that 
lignan, β-carotene, β-sitosterol, hederagenin, berberine, and 
baicalein mediated the preventive and therapeutic properties of 
LJF against AD. Intriguingly, the core targets of MAPK8 and 
NFE2L2 were not mapped by any effective active ingredients 
(Figure 9D).

FIGURE 5

Verification of dependencies between hub targets and APP protein.

FIGURE 6

Verification of dependencies between hub targets and tau protein.
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3.8 Molecular docking verification

To further validate the binding affinity of effective components 
(lignan, β-carotene, β-sitosterol, hederagenin, berberine, and 
baicalein) with core targets (CTNNB1, NFKB1, EGFR, and BCL2), 

molecular docking analysis was conducted utilizing AutoDock Vina, 
followed by visualization of the results using a visualization tool. The 
lower binding energy observed suggests a more favorable docking 
result. The binding energy (kcal/mol) and amino acid residues 
associated with the interaction between active ingredients and core 

FIGURE 7

Verification of dependencies between hub targets and PSEN1 protein.

FIGURE 8

Receiver operating characteristic curve analysis of core targets. The receiver operating characteristic curve evaluated the excellent clinical predictive 
utility of core targets based on GEO datasets of the human hippocampus (GSE28146, GSE29378, GSE36980, GSE48350, and GSE5281). Control group 
(N  =  66) and AD group (N  =  74). p  <  0.05 was deemed statistically significant.
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targets were displayed in Table 3. BCL2 exhibited binding affinities of 
−8.1, −7.57, −7.14, and −6.13 kcal/mol towards berberine, 
β-sitosterol, β-carotene, and baicalein, respectively. EGFR 
demonstrated binding affinities of −6.59, −6.23, and −4.13 kcal/mol 
towards baicalein, berberine, and lignan, respectively. NFKB1 
displayed binding affinities of −5.43 and −5.32 kcal/mol towards 
hederagenin and berberine, respectively. CTNNB1 exhibited a binding 

affinity of −5.85 kcal/mol towards β-carotene. Overall, lignan, 
β-carotene, β-sitosterol, hederagenin, berberine, and baicalein exhibit 
binding solid affinity towards their targets. The conformation with the 
lowest absolute binding energy values for each target was visualized 
using PyMoL and Discovery Studio 2020 software, as shown in 
Figure  10. Generally, lower free energy indicates a more stable 
structure. If a higher free energy conformation has been demonstrated 

TABLE 1 The core targets information associated with Alzheimer’s disease.

Gene UniProt Protein name Alteration Relationship to AD References

MAPK3 Q16644
MAP kinase-activated 

protein kinase 3
Up-regulation Prevent AD (45, 46)

CTNNB1 P35222 Catenin beta-1 Down-regulation Prevent AD (35)

NFKB1 P19838
Nuclear factor NF-

kappa-B p105 subunit
Activated NFKB1

Promote the development of 

AD
(39)

EGFR P00533
Epidermal growth 

factor receptor
Up-regulation

Promote the development of 

AD
(31)

BCL2 P10415
Apoptosis regulator 

Bcl-2
up-regulation Prevent AD (33)

NFE2L2 Q16236

Nuclear factor 

erythroid 2-related 

factor 2

Activated NFE2L2 Prevent AD (48)

FIGURE 9

Identification of bioactive ingredients of Lonicerae Japonicae Flos. (A) Venn diagrams show the numbers of potential bioactive ingredients mapped by 
hub targets in each database. The purple is TCMSP (5 key ingredients), green is BATMAN-TCM (0 key ingredients), red is SymMap (114 key ingredients), 
and yellow is ETCM (8 key ingredients). (B) Venn diagram showing numbers of Lonicerae Japonicae Flos intersection ingredients and hub targets. 
(C) Chemical structure formulas of crucial active ingredients. (D) Mapping between critical components and core targets.
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to be effective binding for a ligand-receptor complex, representative 
conformations of lower free energies are not shown.

3.9 Molecular dynamics simulation

Molecular dynamics simulation offers more valuable insights into 
the stability of target-compound complexes. Molecular dynamics 
simulations were performed to assess binding affinities of BCL2/
baicalein, EGFR/lignan, NFKB1/baicalein, and CTNNB1/β-carotene 
complexes. Generally, RMSD analysis is crucial for assessing the 
stability of targets and compounds, and lower RMSD values suggest 
more excellent stability in the target-compound complex. Figure 11 
illustrates the fluctuation and stabilization of RMSD values for 
various protein-ligand complexes over time. Specifically, the RMSD 
of the BCL2/baicalein complex stabilized after 1,500 ps, while the 
EGFR/lignan complex reached stability at 5,000 ps. The NFKB1/
baicalein complex showed stabilization between 4,000–8,000 ps, and 
the CTNNB1/β-carotene complex exhibited fluctuation before 
stabilizing at 7,000 ps. The RMSD values suggest that the active 
pockets of small molecules and proteins are stable. These findings 
indicate that the protein’s shape remains stable when the small 
molecule ligand binds to it, suggesting a strong interaction. These 

findings provide strong evidence in support of the accuracy of the 
molecular docking results.

3.10 Identification of new targets 
interacting with active ingredients

Molecular docking was performed to assess interactions between 
core targets (MAPK8 and NFE2L2) and active compounds, including 
lignan, β-carotene, β-sitosterol, hederagenin, berberine, and baicalein. 
The docking simulations showed strong binding affinities, with free 
energies ranging from −4.33 to −7.84 kcal/mol for MAPK8 and −3.40 
to −7.11 kcal/mol for NFE2L2 (Figure 12A). The interactions between 
compounds and targets, characterized by binding energy scores 
<−7 kcal/mol (strong binding), were further examined using PyMoL 
and Discovery Studio 2020 software visualization techniques. Binding 
affinities were attributed to conventional hydrogen bond interactions 
with Met-111 and Gln-117 residues, Pi-donor hydrogen bond 
interactions with Asp-112 residue, Pi-Sigma interaction with Val-158 
residue, as well as Pi-alky/alky interactions with Ile-32, Val-40, Ala-53, 
Lys-55, Met-108, Leu-110, Val-158, and Leu-168 residues of MAPK8 
(Figures  12B,C). Binding affinities were attributed to Pi-sigma 
interaction with Phe-37 residue, Pi-alky/alky interactions with Val-32, 

TABLE 2 Twenty-two putative active compounds mapped by core targets.

MOL ID Molecule 
name

MW OB (%) BBB DL TCMSP SymMap BATMAN-
TCM

ETCM

TCMID13295 Macranthoside A 913.10 None None None − − + +

TCMID15511
New triterpennoid 

glycoside
1399.52 None None None − − + +

TCMID13296 Macranthoside B 1075.24 None None None − − − +

TCMID11118 Ioniceroside C 1075.24 None None None − − − +

MOL001924 Paeoniflorin 480.51 53.87 −1.86 0.79 − + − −

MOL001454 Berberinea 336.39 36.86 0.57 0.78 − + − −

MOL000359 β-sitosterola 414.79 36.91 0.99 0.75 + + − −

MOL000296 Hederagenina 414.79 36.91 0.96 0.75 − + + +

MOL002776 Baicalin 446.39 40.12 −1.74 0.75 − + − −

MOL002695 Lignana 458.55 43.32 −0.16 0.65 − + − −

MOL000357 Sitogluside 576.95 20.63 −0.93 0.62 − − − +

MOL002773 β-carotenea 536.96 37.18 1.52 0.58 + + − −

MOL000098 Quercetin 302.25 46.43 −0.77 0.28 + + − −

MOL000006 Luteolin 286.25 36.16 −0.84 0.25 + + + +

MOL000422 Kaempferol 286.25 41.88 −0.55 0.24 + + − −

MOL002714 Baicaleina 270.25 33.52 −0.05 0.21 − + − −

MOL000414 Caffeate 180.17 54.97 0.11 0.05 − + − −

MOL000254 Eugenol 164.22 56.24 1.32 0.04 − + + −

MOL002042 Thymol 150.24 41.47 1.68 0.03 − + − +

MOL000700 Nerol 154.28 35.66 1.14 0.02 − + + −

MOL000745 Macranthoidin A 1237.55 4.06 −4.94 0.01 − − + +

MOL003042 Macranthoidin B 1399.71 6.69 −6.98 0.01 − − + +

MW, molecular weight; OB, oral bioavailability; BBB, blood-brain barrier; DL, drug-likeness.
aIndicates effective compounds.
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Val-36, Arg-42, Lys-516, Leu-519, and Val-523 residues of NFE2L2 
(Figure 12D). Molecular dynamics simulation provided insight into 
that the RMSD curves of the MAPK8/β-carotene complex stabilized 
after 1,500 ps, the RMSD curves of the MAPK8/berberine complex 
stabilized after 1,000 ps, and the RMSD curves of NFE2L2/
hederagenin complex stabilized after 7,000 ps (Figure  12E). The 
findings of this study suggest that β-carotene and berberine exhibit 
significant binding affinity with MAPK8, while hederagenin 
demonstrates a binding solid affinity with NFE2L.

4 Discussion

AD is a persistent degenerative central nervous system disorder, 
distinguished by the accumulation of Aβ plaques, neuroinflammation, 
and oxidative stress (27). Individuals diagnosed with AD encounter 
challenges in communication, verbal expression, and cognitive 
processing, often accompanied by the gradual deterioration of long-term 
memory (4). Due to the intricate nature of its pathophysiological 
mechanism, AD has been a significant health concern. Therefore, the 
management of AD has become a prominent area of research. Currently, 
pharmaceutical interventions utilized for AD primarily consist of single-
target medications that offer limited symptomatic relief and are 
associated with various adverse effects (5). Consequently, there is 
growing interest in developing multi-target drugs as a novel research 
focus. Traditional Chinese medicine has been a significant resource for 
medicinal treatments for centuries, employing systematic multi-target/
multi-component strategies. Specifically, certain herbs within TCM have 
demonstrated pharmacological properties pertinent to AD (8, 28).

LJF refers to the dried bud or flower at the initial blooming stage 
of the plant. LJF is traditionally used for its medicinal properties, 
including clearing heat, detoxification, and dispersing wind heat. 
Chemical analysis has identified various components in LJF, such as 
essential oils, organic acids, flavonoids, iridoids, saponins, and other 
compounds (11). LJF demonstrates various effects, including anti-
inflammatory, antioxidant, hypotensive, hypolipidemic, anti-
thrombotic, and immunomodulatory properties (10). Prior research 
has indicated that LJF can inhibit the deposition of Aβ42 and decrease 
its neurotoxic effects on SH-SY5Y cells, thus indicating potential 
therapeutic implications for AD (14). Thus, a network pharmacology 
approach was employed with GEO datasets, molecular docking, and 
dynamics simulation to elucidate potential targets and compounds of 
LJF in the treatment of AD. Effective bioactive constituents and 
constituents-related targets were screened from SymMap, 
BATMAN-TCM, TCMSP, and ETCM databases. AD-related targets 
were identified using MalaCards, GeneCards, DisGeNET, and OMIM 
databases based on the scores assigned by the databases. Gene 
expression data sets of clinical AD patients were obtained from the 
GEO database to verify core target expression. The further validation 
of core targets entailed performing correlation analyses between these 
targets and the major causative genes associated with AD, as well as 
employing ROC curve modeling. The accuracy of the predictive 
results was validated through molecular docking and molecular 
dynamics simulations.

Through the analysis of the PPI network of intersection targets, 
we  identified 32 putative core targets of LJF against AD. Gene 
expression analysis showed that the expression of MAPK8, CTNNB1, 
NFKB1, EGFR, CXCL8, CCL2, BCL2, and NFE2L2 increased or 

TABLE 3 Molecular docking between active compounds and core targets.

Protein UniProt ID Ligand MOL ID
Binding energy 

(kcal/mol)
Amino acid 
residues

BCL2(6O0M) P10415 Berberine MOL001454 −8.1
Asp111, Phe112, Glu114, 

Met115, Val156

BCL2(6O0M) P10415 β-sitosterol MOL000358 −7.57 Phe112, Met115, Leu137

BCL2(6O0M) P10415 β-carotene MOL002773 −7.14

Leu104, Tyr108, Phe112, 

Met115, Leu119, Val133, 

Leu137, Ala149

BCL2(6O0M) P10415 Baicalein MOL002714 −6.13a
Asp111, Phe112, Glu114, 

Met115, Ala149

EGFR(8A27) P00533 Baicalein MOL002714 −6.59

Lys745, Met766, Cys775, 

Leu777, Leu788, Asp855, 

Phe856, Leu858

EGFR(8A27) P00533 Berberine MOL001454 −6.23 Lys806, Asp807, Phe910

EGFR(8A27) P00533 Lignan MOL002695 −4.13a

Leu799, Trp880, Arg841, 

Val876, Ile878, Lys879, 

Pro941, Ala920

NFKB1(1SVC) P19838 Hederagenin MOL000296 −5.43
His108, Gly169, His173, 

Pro174

NFKB1(1SVC) P19838 Baicalein MOL002714 −5.32a
Lys147, Val150, Lys206, 

Met208

CTNNB1(3SLA) P35222 β-carotene MOL002773 −5.85a
Ile153, Pro154, Lys158, 

Arg190

aThe molecular docking mode of the lowest absolute values of binding energy of every target is shown in figures.
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decreased in the hippocampus of patients with AD. To validate the 
correlation between core targets and AD, we performed the correlation 
analysis with major causative genes of AD and the ROC curve analysis. 
Correlation analysis showed that except for CXCL8 and CCL2, the 
other six targets (MAPK8, CTNNB1, NFKB1, EGFR, BCL2, and 
NFE2L2) were significantly positively linked to both Aβ and tau 
pathology of AD. ROC curve analysis showed that core targets of 
MAPK8, CTNNB1, NFKB1, EGFR, BCL2, and NFE2L2 have good 
predictive power, specificity, and sensitivity for diagnosing patients 
with AD. These results showed that core targets of MAPK8, CTNNB1, 
NFKB1, EGFR, BCL2, and NFE2L2 were involved in the treatment of 
LJF against AD.

Network pharmacology was utilized to identify bioactive 
ingredients related to core targets and investigate the underlying 
mechanism of LJF against AD. After filtration with OB ≥0.3, DL 
≥0.18, and BBB ≥−0.3, only six effective compounds (lignan, 
β-carotene, β-sitosterol, hederagenin, berberine, and baicalein) were 
identified from a pool of 22 putative components. Subsequently, 
molecular docking and dynamics simulation were conducted to 
verify the accuracy of the predicted bioactive ingredients. The 
findings indicated that six bioactive ingredients could successfully 
interact with four key targets (CTNNB1, NFKB1, EGFR, and BCL2). 
Prior research has demonstrated lignans’ efficacy in safeguarding 
neuronal cells and enhancing cognitive function (29). EGFR in the 
CNS maintains neural stem cells, promotes astrocyte and 
oligodendrocyte maturation, and supports neurite outgrowth (30). 
Upregulation of EGFR can lead to Aβ42 neurotoxicity and 
neuroinflammation, while inhibiting EGFR can reduce Aβ plaque 
deposition and improve cognitive function in AD mouse models (31). 
In this study, lignan targets EGFR in treating AD, suggesting a 

potential mechanism for LJF in AD therapy. Increasing evidence 
suggests that administering β-sitosterol in APP/PS1 mice may 
decrease Aβ accumulation and enhance cognitive function (32). 
Previous studies have identified a negative association between 
cortical BCL2 protein expression and immediate recall memory in 
individuals with AD, with an observed upregulation of BCL2 protein 
in the precuneus cortex of these patients (33). This study highlights 
BCL2 as a key target protein in the therapeutic effects of β-sitosterol 
for AD, shedding light on the potential mechanism of LJF in treating 
this condition. β-Carotene, a significant provitamin A compound, 
possesses an unsaturated hydrocarbon chain with β-rings at both 
termini (34). CTNNB1, a prominent kinase in tau pathology, exhibits 
abundant expression within the brain. In addition to its role in 
regulating tau phosphorylation, the high expression of CTNNB1 is 
associated with the proteolytic cleavage of the Aβ peptide precursor, 
specific inhibition of which has been shown to reduce Aβ production 
through a mechanism involving BACE1 (35). β-carotene has been 
demonstrated to disrupt apoptotic pathways in the brain, as evidenced 
by its ability to mitigate the reduction of BCL-2 and the buildup of 
BAX and caspase-3 in a mouse model of traumatic brain injury (36). 
Our investigation identified CTNNB1 and BCL2 as crucial protein 
targets of β-carotene in the context of AD treatment, suggesting a 
potential mechanistic pathway for LJF in managing AD. In previous 
studies, hederagenin, a triterpenoid saponin, has been found to 
exhibit anti-apoptotic, anti-oxidative, anti-inflammatory, and 
neuroprotective properties (37). Specifically, hederagenin has been 
found to mitigate oxidative stress and apoptosis in neuronal cells 
stimulated with Aβ and enhance the degradation of Aβ deposition in 
APP/PS1 mice (37, 38). NF-KB transcriptional regulation in the 
BACE1 promoter affects the amyloidogenic process in AD brains by 

FIGURE 10

Molecular docking for crucial ingredients and hub targets. Molecular docking results for the BCL2/baicalein (A), EGFR/lignan (B), NFKB1/baicalein (C), 
and CTNNB1/β-carotene (D) complexes (3D and 2D).
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stimulating astrocytes and repressing neuronal cells and non-activated 
astrocytes, and the NF-KB signaling activation plays a critical role in 
inflammatory responses, a key characteristic in AD development 
(39). The current investigation observed that NF-KB serves as the 
primary target protein for hederagenin in managing AD, suggesting 
the potential mechanism of LJF in AD treatment. Berberine, classified 
as an alkaloid, has been demonstrated to effectively treat AD through 
the modulation of amyloid precursor protein processing, reduction 
of Aβ secretion, and amelioration of spatial memory deficits in rat 
models of AD (40). Molecular mechanisms were implicated in 
inhibiting key pathogenic enzymes, mitigating intracellular oxidative 
stress, reducing neuroinflammation, inducing autophagy, and 
preserving neurons from apoptotic cell death (41). In the current 
investigation, the primary protein targets of berberine in AD therapy 
were identified as EGFR and BCL2, both of which play essential roles 
in neuroinflammation and apoptosis, aligning with the proposed 
mechanism of action. Studies have shown that baicalein, a flavonoid, 
has important pharmacological effects such as reducing oxidative 
stress, inflammation, and preventing deposition of amyloid proteins, 
excitotoxicity, promoting neurogenesis and differentiation, and 
having anti-apoptotic effects (42). Baicalein improves cognitive 
function in 3 × Tg-AD mice by modulating activated microglia and 
reducing neuroinflammation through the CX3CR1/NF-KB pathway 

(43, 44). Our current results indicate that the principal target proteins 
of baicalein in AD therapy are NFKB1, EGFR, and BCL2, suggesting 
baicalein’s underlying mechanism of action in AD treatment. In spite 
of these, the potential roles of core targets in AD still need to be more 
critically evaluated based on AD pathology. There is no reason to 
suspect that they will not be involved in the occurrence of NDs.

Intriguingly, findings of molecular docking and dynamics 
simulations revealed that β-carotene and berberine exhibit effective 
binding to MAPK8, while hederagenin demonstrates effective binding 
to NFE2L2  in this study. MAPK8 is essential for cell processes like 
proliferation, differentiation, and transcription. Low levels of MAPK8 
can lead to reduced BACE1 expression, potentially affecting the 
amyloidogenic pathway (45). MAPK8 could also activate MAPK 
signaling pathways which were believed to contribute to AD pathogenesis 
by inducing neuronal apoptosis and activating β-and γ-secretases (46). 
Oxidative stress has been strongly implicated in the pathophysiology of 
AD, antioxidants, particularly those derived from dietary sources, have 
been proposed as potential agents for the prevention and treatment of 
AD (47). NFE2L2 is an essential transcription factor that combats 
oxidative stress in AD by activating antioxidant genes. Hence, it is 
possible that certain mechanisms are inhibiting the nuclear activity of 
NFE2L2, potentially leading to neuronal dysfunction (48). As far as 
we know, there are no reports that compounds of β-carotene, berberine, 

FIGURE 11

Molecular dynamics simulation analysis. The BCL2/baicalein (A), EGFR/lignan (B), NFKB1/baicalein (C), and CTNNB1/β-carotene (D) complexes root 
mean square deviation (RMSD) plot during molecular dynamics simulations. The X-axis represents the time (ps), and the Y-axis represents the RMSD 
(nm).
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and hederagenin interact with MAPK8 and NFE2L2, indicating that 
MAPK8 and NFE2L2 are probable potential new therapeutic targets for 
LJF against AD. In spite of these, the new findings still need to be for 
further verification. These new findings provided potential novel targets 
for AD targeted intervention in the future.

Nevertheless, it is essential to admit the limitations of this study. 
Current network pharmacology technology struggles to quantify 
the dose-effect relationship between herbs and diseases, and its 
network modeling relies on existing databases and experimental 
data, leading to some compounds and targets being excluded or 
some potential biases being introduced. In addition, the study using 
network pharmacology is a static analysis, but disease progression 
and drug action are dynamic processes. It’s a challenge to find an 
effective strategy to overcome it. Further in vivo or in vitro 
experiments should be  validated LJF’s mechanism in treating 
AD. LJF’s mechanism in treating AD. Despite limitations, the 
study’s results provide insight into LJF’s effectiveness against AD, 
with clinical and research value. Of course, potential side effects, 
toxicity, or long-term safety should also be considered for LJF in the 
context of AD treatment in future.

5 Conclusion

This study indicated that compounds of lignan, β-carotene, 
β-sitosterol, hederagenin, berberine, and baicalein from LJF mainly 
regulated core targets of MAPK8, CTNNB1, NFKB1, EGFR, BCL2, 
and NFE2L2 that involved in AD progression. Our work revealed that 
LJF effectively treats AD with multi-component and multi-target 
properties from a systematic perspective. The findings of this study 
will establish a theoretical basis for the expanded application of LJF 
against AD and, hopefully, can guide more advanced experimental 
studies in the future. However, particular in vitro and in vivo 
experiments should be  performed to validate the computational 
findings in the future.
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FIGURE 12

Identification of new targets by molecular docking and dynamics simulation. (A) The heat map shows the binding free energy (kcal/mol) of molecular 
docking. (B) Interactions between MAPK8 and β-carotene. (C) Interactions between MAPK8 and berberine. (D) Interactions between NFE2L2 and 
hederagenin. (E) MAPK8/β-carotene, MAPK8/berberine, and NFE2L2/hederagenin complexes root mean square deviation (RMSD) plot during 
molecular dynamics simulations. The X-axis represents the time (ps), and the Y-axis represents the RMSD (nm).
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