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Inadequate bioavailability of therapeutic drugs, which is often the consequence 
of their unacceptable solubility and dissolution rates, is an indisputable 
operational challenge of pharmaceutical companies due to its detrimental effect 
on the therapeutic efficacy. Over the recent decades, application of supercritical 
fluids (SCFs) (mainly SCCO2) has attracted the attentions of many scientists as 
promising alternative of toxic and environmentally-hazardous organic solvents 
due to possessing positive advantages like low flammability, availability, high 
performance, eco-friendliness and safety/simplicity of operation. Nowadays, 
application of different machine learning (ML) as a versatile, robust and accurate 
approach for the prediction of different momentous parameters like solubility 
and bioavailability has been of great attentions due to the non-affordability and 
time-wasting nature of experimental investigations. The prominent goal of this 
article is to review the role of different ML-based tools for the prediction of 
solubility/bioavailability of drugs using SCCO2. Moreover, the importance of 
solubility factor in the pharmaceutical industry and different possible techniques 
for increasing the amount of this parameter in poorly-soluble drugs are 
comprehensively discussed. At the end, the efficiency of SCCO2 for improving 
the manufacturing process of drug nanocrystals is aimed to be discussed.
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1 Introduction

Over the recent decades, the manufacturing process of innovative, 
affordable and effective therapeutic agents with optimum 
physicochemical and biological profiles has been the most important 
mission of scientists in the pharmaceutical industry (1–4). Despite 
great importance and significant endeavors, pharmaceutical 
companies have currently faced with different challenges like patent 
considerations, decrement in the number of novel marketed products, 
time/cost-intensiveness of R&D regulatory pathways toward the 
advancement of Active Pharmaceutical Ingredients (APIs) and their 
appropriate dosage of administration (5–9). It is momentous to note 
that some operational/functional parameters like bioavailability, 
solubility, dissolution rate, permeability and morphology can 
considerably influence the physicochemical property and therefore, 
the therapeutic efficacy of each determined drug (10–12). Nearly 65 
to 75% of prevalent APIs are recently in solid structure or consists of 
solid APIs formulated as solid suspensions. Owing to the presence of 
important characteristics like simplicity of synthesis, higher 
physicochemical stability and crystallinity, formation of APIs in the 
solid state seems to be more appropriate. It is worth mentioning that 
safety, medical efficacy, physicochemical stabilities and sufficient 
solubility in aqueous media can be  considered as momentous 
parameters for the development of novel API (13–16). In the current 
years, application of novel types of ionic liquids (ILs) in the 
pharmaceutical industry has paved the way for more efficient delivery 

of drugs. These novel, effective and green compounds have shown 
their great potential to deal with the challenges related to conventional 
dosage forms like insufficient solubility and low permeability in 
topical drug delivery systems (17, 18).

Drug formulation is usually implemented by the combination of 
inert excipients with active APIs for the production of highly-
effective drug with favorable therapeutic efficacy. In the current 
years, serious endeavors are being made to improve/optimize the 
momentous parameters related to drug formation for decreasing 
side effects and enhancing API stability and patient compliance 
(19–22). On the basis of appropriate route of administration, 
formulation of APIs can be done via disparate set of materials like 
inert excipients (i.e., polymers, surfactants) and in an extensive type 
of delivery systems including microparticles (MPs) and nanoparticles 
(NPs) (7, 23–26). On-time innovation of highly-efficacious 
therapeutic agents to the market depends on the advancement of 
promising drug delivery systems. Despite the great success of 
conventional approaches for the formulation and discovery of 
effective drugs for patients, the emergence of several challenges like 
high cost and long process time has restricted their application in 
pharmacology (27–30). In doing so, finding novel, time-saving and 
affordable techniques for the prediction of drug properties is of 
great necessity.

Machine learning (ML) can be interpreted as a subdivision of 
artificial intelligence (AI) that has illustrated its brilliant potential of 
utilization for the prediction of momentous parameters in different 
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processes via training computational models on the basis of a body 
of data (25, 31, 32). Over the last years, artificial intelligence (AI) has 
substantially improved the formulation /development of novel 
therapeutic agents. Using AI, scientists are now able to optimize the 
formulation of drugs and increase the accuracy of clinical trials 
(33–35). For example, ML can facilitate the stability prediction of a 
special drug formulation by the consideration of data from numerous 
experimental investigations that evaluated the stability of API 
formulations. Current developments in ML algorithms as well as the 
advancement of robust and cost-effective have substantially 
enhanced availability to precise ML-based models (36–38). The 
abovementioned advancements have eventuated in the emergence of 
unbelievable tendency in the real-world utilization of different ML/
AI-based algorithms in several industrial aspects like gas separation, 
cancer diagnosis, membrane processes, absorption/adsorption, 
catalysis and pharmaceuticals (39–45). Other noteworthy utilization 
of ML-based algorithms are the use of supervised learning algorithms 
and deep reinforcement learning for the estimation of momentous 
parameters in chemical reactions and the employment of deep 
learning (DL) to specify the 3D structure of a protein from its amino 
acid sequence (46–50). Figure 1 schematically demonstrates various 
approaches of ML.

This paper aims to review the role of disparate ML-based tools 
for the prediction of solubility/bioavailability of drugs using SCCO2. 
Moreover, the importance of solubility factor in the pharmaceutical 
industry and different possible techniques for increasing the 
amount of this parameter in poorly-soluble drugs are 
comprehensively discussed. At the end, the efficiency of SCCO2 for 
improving the manufacturing process of drug nanocrystals is aimed 
to be discussed.

2 Definition and importance of the 
solubility factor in pharmaceutical 
industry

Solubility may be  well considered as a momentous physical 
property and is defined as the ability of a specific solvent absorption 
in solvents. This factor is extensively employed in disparate scientific 
fields like liquid–liquid extraction, membrane-based separation, drug 
delivery, material science and medicine (51–56). Poor solubility of 
therapeutic medicines in water can be  regarded as an important 
challenge in the pharmaceutical industry, which may lead to reducing 
the bioavailability and therapeutic performance. This challenge has 
motivated the researchers to develop novel ways to overcome this 
problem (56–58). Figure 2 schematically presents different common 
techniques for increasing the solubility of poorly-soluble drugs.

To conduct the scientific researches in the scientific scope of 
solubility, experimental analysis and computer simulation must 
be incorporated. Owing to the presence of various challenges during 
the conduction of investigational experiments under high 
temperature/pressure, particularly accompanying with stirring and 
vibration (with the aim of accelerating solubility), scientists have made 
their efforts to use accurate techniques for the prediction of 
momentous parameters related to drug development (59, 60). Over 
the last decades, development of predictive modeling tools has 
attracted the attentions of academic/industrial researchers. For 
instance, three eminent scientists (Martin Karplus, Michael Levitt, and 
Arieh Warshel) were the winner of the 2013 Nobel Prize in chemistry 
for the advancement of multiscale models for complicated chemical 
systems (61). The multiscale technique applies disparate time and 
space scales for the investigation of prevalent problem in all the 

FIGURE 1

Various approaches of ML (106).
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micro-, meso- and microspatial scales (62–64). Figure 3 schematically 
demonstrates the employed models and methods of multiscale model.

It is of great importance to note the fact that the solubility of 
therapeutic drugs at the macroscale and its rate at the micro/meso 
scales results in the emergence of important challenges to the 
conventional research procedures (54, 65). The multiscale solubility 
investigation can be regarded as one of the most efficient procedures 
to show the inherence of dissolution process. This type of study has 
recently demonstrated great potential for the prepare scientific 
reference for process parameter selection at the multiscale level. This 

technique possesses great potential in various scientific scopes like 
self-assembly and dynamic evaluation of polymers (66, 67).

3 Employed ML tools for the 
development of the pharmaceutical 
formulation

The ongoing approach toward the development of novel drugs 
must be  on the basis of the quality by design principles (QbD) 

FIGURE 2

Schematic presentation of common techniques for enhancing the solubility of poorly-soluble drugs (57).

FIGURE 3

Schematic demonstration of employed models and methods of multiscale model. Reprinted from (54) with permission from Elsevier.
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(68–70). The primary level toward the implementation of this aspect 
is the interpretation of the quality target product profile (QTPP) and 
the critical quality attributes (CQA) of the product. By the 
identification of the relationships, the appointment of design space 
takes place, which provides an appropriate opportunity to optimize/
control the product’s quality (71–75). From the past till now, 
quantitative evaluation and appointment of the design space were on 
the basis of experimental design, regression procedures and prevalent 
statistical analysis. ML algorithms [particularly Artificial neural 
network (ANN)], have been applied in different complex examples 
of QbD-based pharmaceutical development. Extensive application of 
ANN in pharmaceutical industry is prominently due to their brilliant 
characteristics like non-linear nature and great capability to make 
complex relationships between CMAs or CPPs with CQAs for 
disparate pharmaceutical dosage forms (76–81). For instance, Simões 
et al. (77) have assessed the role of using ANN predictive model 
based on ML approach for the QbD-based advancement of a poorly 
soluble therapeutic medicine fabricated in industrial settings and its 
comparison with the reference product and bioequivalence 
investigations. To implement this research, ANN was constructed 
using only 5 hidden nodes in 1 hidden layer. Development of this 
predictive model was on the basis of the use of hyperbolic tangent 
functions and its validation was corroborated by a random holdback 
of 33% of the dataset. Application of this model resulted in the 
emergence of valid prediction formulas for all 3 responses, with R2 
values higher than 0.94 for training and validation datasets (78).

In a comprehensive scientific investigation, Belič et al. employed 
ANNs and fuzzy models to evaluate the impact of particle size and 
tableting parameters on the tablet capping tendency. The results 
demonstrated the fact that the developed model-based expert systems 
can dramatically enhance the trial-and-error procedures (82). Lee 
et  al. developed an ML-based approach for the identification of 
emerging techniques at early stages applying immediately-defined 
multiple patent indicators. They also successfully applied a feed-
forward multilayer neural network to provide the nonlinear 
connection between input and output indicators. They concluded that 
the developed approach could appropriately facilitate the responsive 
technology forecasting and planning in the pharmaceutical industry 
(83, 84). In the current years, the supremacy of deep learning (DL) 
than commonly-applied ML approaches has been recently approved 
(50, 85, 86). DL has illustrated their great potential of application in 

different industrial approaches such as the prediction of solubility and 
drug release (28, 87, 88). Apart from DL technique, other cutting-edge 
and breakthrough ML-based algorithms such as Light gradient 
boosting machine algorithm (lightGBM) have illustrated their 
noteworthy efficiency in the prediction of functional/operational 
parameters and complexation between cyclodextrins and APIs (89, 
90). Decision tree (DT)-based techniques have shown their great 
potential to predict particle size of solid lipid nanoparticles (91). 
Figure 4 schematically depicts the incorporation potential of AI with 
drug development and research.

4 SCCO2 for increasing the solubility 
and manufacturing drug nanocrystals

The use of supercritical fluids for the formulation of drugs has 
recently attracted great attentions as an outstanding alternative for 
commonly-applied organic solvents owing to its brilliant positive points 
like non-toxicity, affordability and great efficiency (92–94). Rapid 
Expansion of Supercritical Solutions (RESS) is considered as the first 
technique of particle formation initially developed in the 1980’s (95). 
Despite the extensive application of disparate organic solvents (i.e., 
chlorodifluoromethane, trifluoromethane and ethane), A prevalent SCF 
in RESS is SCCO2 (96–98). Table 1 enlists the role of SCFs (especially 
CO2) solvents for the synthesis of the micro/nano amorphous/
crystalline particles and micro/nano cocrystals using RESS method.

In the recent decades, pharmaceutical industry has encountered 
with different challenges. One of the most important concerns of 
scientists is the unacceptable solubility of therapeutic agents in water, 
which significantly affects their bioavailability, dissolution rates and 
hence, reduces the therapeutic performance of approved drugs (99). 
There are two prominent approaches that are being extensively applied 
in current years to overcome inadequate drug solubility concerns. (1) 
Techniques related to particle size reduction of drugs (i.e., 
micronization/nanonization). (2) Modification of physicochemical/
structural characteristics of poorly water-soluble drugs (5, 100, 101). 
Currently, application of SCFs (particularly SCCO2), have been of 
paramount attentions to enhance the solubility/bioavailability and 
therefore, the therapeutic efficiency of medicines. Great interest toward 
the employment of SCCO2 is owing to its disparate advantageous 
technical properties, as well as noteworthy technical features like 

TABLE 1 Formation of micro/nano amorphous/crystalline particles and micro/nano cocrystals using RESS method.

API/bioactive 
substance

Employed SCF Particle/cocrystal type Particle size 
(nm)

References

Simvastatin CHF3 Micro/nano amorphous/crystalline particle 47 (107)

Sirolimus CO2 Micro/nano amorphous/crystalline particle Less than 1,000 (108)

Raloxifene CO2 Micro/nano amorphous/crystalline particle 18–137 (109)

Amoxicillin CO2 Micro/nano amorphous/crystalline particle 1,080–5,720 (110)

Naproxen CO2 Micro/nano amorphous/crystalline particle 560–820 (111)

Cholesterol-caffeine CO2 Micro/nano cocrystal 81–169 (112)

Chlorpropamide-urea CO2 Micro/nano cocrystal N/A (113)

Digitoxin CO2 Micro/nano amorphous/crystalline particle 68–458 (114)

Felodipine CO2 Micro/nano amorphous/crystalline particle 2000–6,000 (115)

Ibuprofen-nicotinamide CO2 Micro/nano cocrystal N/A (116)
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greenness, safety, versatility, simplicity of operation and low 
flammability (58, 102–104). Another practical CO2-based methodology 
for the formulation/synthesis of medical-based nanoparticles/
nanocrystals or co-precipitated drugs is the application of SCCO2 as 
namely as high mobility solutes or co-solvents. By changing the use of 
this SCF from solvents to antisolvents and additives, the required value 
of CO2 to prepare micro/nanoparticles and the size of equipment to 
allow the needed CO2 action is declined dramatically (105).

5 Conclusion and future outlook

As mentioned in the manuscript, the integration of web innovation 
with medical science to enhance the precision and efficiency of 
predictive models in decision-making and deep learning algorithms. 
Thus, the motivation of scientists has recently been towards the use of 
different ML-based approaches in pharmaceutical industries. To reach 
this purpose, different ML-based approaches like support vector 
machine (SVM), multiple linear regression (MLR), radio frequency 
(RF) and deep learning techniques are being extensively implemented 
for the prediction of different momentous parameters like solubility and 

bioavailability. Over the last four decades, unique/tunable incorporation 
of brilliant and noteworthy physicochemical futures of SCCO2 with the 
growing regulatory needs and global requirements for more eco-friendly 
processes have increased the interest of researchers to develop and apply 
SCCO2-based bottom-up processes for enhancing the solubility and 
solubility of poorly-soluble therapeutic agents and forming drug-based 
nanoparticles/nanocrystals. This paper aimed to overview the role of 
different ML-based tools for the prediction of solubility/bioavailability 
of drugs using SCCO2. Moreover, the importance of solubility factor in 
the pharmaceutical industry and different possible techniques for 
increasing the amount of this parameter in poorly-soluble drugs are 
comprehensively discussed. At the end, the efficiency of SCCO2 for 
improving the manufacturing process of drug nanocrystals is aimed to 
be  discussed. As the future perspective, different endeavors must 
be made to evaluate the rate of SCF-based reaction-mediated synthesis 
compared to conventional techniques. Moreover, the great potential of 
SCFs to manufacture environmentally-friendly and green extracts from 
plant substrates or industrial biowaste has motivated the researchers to 
pay more attention to the use of these solvents compared to organic 
solvents. Finding promising ways to facilitate the scale-up of these 
technologies can be another action, which can be under evaluation in 

FIGURE 4

Schematic demonstration of AI contribution with drug development and research (88).
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the future for the production of pharmaceutical components, biowaste 
and different liquid extracts.
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