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Purpose: To evaluate the potential of radiomics approach for predicting No. 14v 
station lymph node metastasis (14vM) in gastric cancer (GC).

Methods: The contrast enhanced CT (CECT) images with corresponding 
clinical information of 288 GC patients were retrospectively collected. 
Patients were separated into training set (n  = 202) and testing set (n  = 86). A 
total of 1,316 radiomics feature were extracted from portal venous phase 
images of CECT. Seven machine learning (ML) algorithms including naïve 
Bayes (NB), k-nearest neighbor (KNN), decision tree (DT), logistic regression 
(LR), random forest (RF), eXtreme gradient boosting (XGBoost) and support 
vector machine (SVM) were trained for development of optimal radiomics 
signature. A combined model was established by combining radiomics with 
important clinicopathological factors. The diagnostic ability of the signature 
and model were evaluated.

Results: LR algorithm was chosen for signature construction. The radiomics 
signature exhibited good discrimination accuracy of 14vM with AUCs of 0.83 in 
the training and 0.77  in the testing set. The risk of 14vM showed significant 
association with higher radiomics score. A combined model exhibited increased 
predictive ability and good agreement in the training (AUC  =  0.87) and testing 
(AUC  =  0.85) sets.

Conclusion: The ML-based radiomics model provided a promising image 
biomarker for preoperative detection of 14vM and may help the surgeon to 
decide whether to add 14v dissection to lymphadenectomy.
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Introduction

Lymph node metastasis (LNM) significantly contributes to the poor prognosis of 
patients with gastric cancer (GC) (1). Adequate lymph node dissection is curial for the 
successful management of GC. According to the recommendation of NCCN and GC 
treatment guidelines, D2 lymphadenectomy is now the standard procedure of GC surgery 
(2, 3). Superior mesenteric lymph nodes, referred to as No. 14v, are involved in the 
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lymphatic drainage of the lower stomach (4). Nevertheless, the 
necessity of extended D2 lymphadenectomy with No. 14v 
dissection is still a hot point for GC surgery. Whether GC patients 
can benefit from No. 14v dissection remains controversial. It is well 
established that patients with No. 14v metastasis (14vM) are related 
to poor prognosis, similar to those of the M1 stage (5, 6). Upon the 
presence of undetectable microscopic metastases in the No. 14v 
station, systemic dissection of this area may prevent the metastatic 
process to adjacent retroperitoneal lymph nodes and reduce 
recurrence risk (7). Although the rate of 14vM is extremely low in 
early-stage GC at 0–1.3%, it rises up to 19.7% in advanced GC (6, 
8). Several studies have reported that extended D2 
lymphadenectomy with 14v dissection was related to better 
survival in advanced distal GC patients (7–9). However, No. 14v 
dissection may increase the risk of neighboring vessel injuries. 
Therefore, the third edition of Japanese gastric cancer treatment 
guidelines removed No. 14v lymphadenectomy from D2 
lymphadenectomy (3). Thus, it is of great help to guide surgeons 
on whether to involve No. 14v dissection in D2 lymphadenectomy 
if 14vM can be accurately determined preoperatively.

At present, CT is the routine technique for preoperative LNM 
diagnosis in GC. However, conventional CT relies only on 
morphological features and enhancement patterns to determine 
lymph node status, which leads to low sensitivity (10, 11). 
Endoscopic ultrasonography (EUS) determines LNM by 
evaluating the change of size, morphology, and internal 
echogenicity of the lymph nodes. However, EUS is susceptible to 
interference by air-containing tissues, and difficult to identify 
microscopic metastases that do not cause morphologic changes in 
lymph nodes. Although EUS-guided fine needle aspiration is able 
to improve LNM diagnostic accuracy, the invasiveness limits its 
application. Moreover, diagnostic performance of EUS depends 
greatly on the experience of the operator (12, 13). PET/CT can 
provide both morphological and metabolic information, allowing 
it to be  an important preoperative staging tool for GC (14). 
However, two key factors lead to the low sensitivity of PET/CT for 
detecting LNM. Metastatic lymph nodes with diameter less than 
1 cm or with low expression of Glut-1 are hard to detect by PET/
CT. In addition, lymph node micrometastasis was reported to 
be occurred in 10%–41.7% of GC patients, and it is impossible 
for conventional diagnostic imaging tools to detect 
micrometastasis (15).

Radiomics, a groundbreaking method, is significantly 
influencing and transforming the field of medical imaging in 
clinical settings. Radiomics offer novel perspectives for processing 
image data and can convert images into numerical data, enabling 
the detection of details and variations in tumors that are 
imperceptible to the naked eye when using traditional CT scans 
(16). GC patients can benefit from radiomics in multiple facets, 
including diagnosis, predicting metastatic risk, survival, as well as 
treatment response (17–19). Moreover, radiomics can be used to 
predict LNM in several tumors, including GC (20–23). However, 
most of the radiomics models proposed by previous studies can 
only be used for identifying the presence of LNM in patients but 
not for detecting LNM in a specific region. Herein, our aim is to 
investigate the radiomics approach potential for predicting 14vM 
in GC using machine learning (ML) algorithms. A comprehensive 

model incorporating radiomics and clinicopathological variables 
was developed and evaluated.

Materials and methods

Study population

Between January 2015 to December 2020, 288 consecutive 
GC patients were included. The inclusion criteria: (1) patients 
received No. 14v lymphadenectomy adding to standard D2 
lymphadenectomy; (2) received contrast enhanced CT (CECT) 
before surgery; (3) imaging quality meeting the analysis 
requirements. The exclusion criteria: (1) incomplete clinical 
records; (2) patients who had pre-CT treatment; (3) patients 
having a malignancy history. The patients were separated into a 
training (n = 202) and a testing (n = 86) sets in a 7:3 ratio based 
on the diagnosis time. According to the AJCC Staging Manual, 
8th Edition, pathologic stages were assigned. The study was 
approved by our institutional ethical review board, and informed 
consent form was waived (Ek2020125). Figure 1 shows the patient 
recruitment process.

CT image acquisition protocol

Discovery CT750 HD (GE Medical Systems, Milwaukee, 
Wisconsin) or Somatom Sensation 64 scanner (Siemens Medical 
Solutions, Forchheim, Germany) was utilized for performing contrast-
enhanced abdominal CT. Before undergoing a CT scan, the patient 
was given 500–1,000 mL of water orally for the purpose of distending 
the stomach. The parameters were as follows: 120 kVp tube voltage, 
150–200 mA tube current; field of view, 350 mm × 350 mm; matrix, 
512 × 512; images reconstruction section thickness: 1.25 or 1.5 mm. 
Contrast material (2.5 mL/s, 1.2 mL/kg; Omnipaque 300, GE 
Healthcare, Chicago, Illinois) was injected intravenously using a 
syringe pump, and arterial phase images were acquired 20 s later; after 
a 60 s delay, the portal venous phase was acquired, exporting the 
images in the Digital Imaging and Communications in Medicine 
(DICOM) format.

Lesion segmentation, feature extraction 
and signature building

The volume of interest (VOI) was delineated for each lesion 
using 3D Slicer software (5.0.2). One reader (7 year-interpretation 
experience in abdominal CT imaging, TM) independently 
performed segmentation of all tumors. PyRadiomics 2.2.0 was 
applied for feature extraction (24). From original and filtered 
images, 1,316 features were exacted and classifying as first-order 
statistics, shape, gray level dependence matrix (GLDM), gray level 
size zone matrix (GLSZM), neighbouring gray tone difference 
matrix (NGTDM), gray level run length matrix (GLRLM) and gray 
level co-occurrence matrix (GLCM).

To guarantee the stability of the chosen features, interclass 
correlation coefficients (ICCs) were calculated to analysis the 
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intraobserver and interobserver accessions. Thirty patients were 
randomly selected from the training set, and VOIs were draw 
independently by two readers. The features with ICCs >0.85 were 
considered stable and kept. Then, the Mann–Whitney U test 
identified features with significant differences between the two 
groups. Finally, the least absolute shrinkage and selection 
operator (LASSO) model was utilized to identify best features for 
signature building (25). After Lasso feature screening, seven ML 
algorithms including k-nearest neighbor (KNN), random forest 
(RF), support vector machine (SVM), decision tree (DT), 
eXtreme gradient boosting (XGBoost), naïve Bayes (NB) and 
logistic regression (LR) were utilized to construct radiomics 
signature. We  adopt 5-fold cross verification to obtain the 
final signature.

Model establishment and evaluation

Multivariable logistic regression analysis was performed to 
select independent predictors of 14vM, based on which a combined 
model was constructed. The AUC was utilized to evaluate and 
compare the diagnostic ability of radiomics signature, clinical 
predictor and the combined model. Moreover, a nomogram was 

developed to facilitate the clinical application. The performance of 
the model was validated in testing set. Figure 2 shows the flowchart 
of the overall radiomics procedure.

Statistical analysis

Segmentation agreement of interobserver was analyzed by Dice 
similarity coefficient. The fitness of the model was evaluated by 
drawing calibration curves and Hosmer–Lemeshow analysis. 
Decision curve analysis was mapped out to assess the clinical 
utility of predictive model in the entire cohort. The t-test or the 
Mann–Whitney test was utilized for continuous variables. The 
chi-squared test was utilized for categorical variables. All statistical 
analyses were performed with R (version 3.4.2).

Results

Clinical information

The study enrolled 288 patients including 178 males and 110 
females (median age, 62 and 56 years; interquartile range, 55–66 

FIGURE 1

Recruitment pathways for patients.
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and 47–63 years, respectively). The training set contained 27 
(13.4%) 14vM+ patients, while the testing set contained 12 
(14.0%) 14vM+ patients. In both sets, the 14vM rate was 
positively associated with a higher LNM category (both 
CT-reported and pathological N stage). In the training set, the 
14vM rate was positively related to the tumor invasion depth 
(pathological T stage, p = 0.03). However, in the testing set, 
although the proportion of 14vM+ in pT3–4 stage was higher than 
that in pT1–2 stage, no significant difference was observed 
(p = 0.06). The 14vM+ and 14vM− groups exhibited no significant 
difference in age, gender, differentiation status, and four serum 
biomarker levels. Detailed information of patients was shown in 
Table 1.

Feature selection and signature 
development

The Dice similarity coefficient was 0.85, indicating that the 
readers had good consistence of segmentation. The details of 
ICCs analysis were shown in Supplementary Figure S1. Out of the 
1,316 features retrieved from the training set images, 955 were 
excluded due to ICCs below 0.85. Among the remaining 
361features, 96 features showed significant differences between 
the 14vM− and 14vM+ groups. These 96 features were putted 
into the LASSO algorithm. The radiomics signature was 
constructed based on 7 features with non-zero coefficients 
(Figure  3). Subsequently, seven other ML models were also 
trained to determine the best classifier algorithms The AUCs of 
SVM, DT, KNN, NB, LR, RF and XGBoost models were 0.79, 
0.76, 0.80, 0.81, 0.78, 0.83, and 0.69, respectively. The detailed 
performance of ML models was shown in Table 2. Therefore, LR 
model was used for developing the signature. The R-score 
calculation formula is as follows:

 

-score = 5.138 × Maximum 3D diameter 1.028

log-sigma-1-0-mm-3D-NGTDM-Busyness 0.0324

wavelet-HHL-NGTDM-Coarseness

GLRLM-Gray Level NonUniformity Normalized

wavelet-LLH-firstorder-Skewness

R − + 0.357

× +

× − 0.2512

×

+ 0.0267×

+

wavelet-LLH-firstorder-Kurtosis

wavelet-LLH-GLRLM-RunEntropy

+ 0.621

× −1.416

×

Performance of radiomics signature

The patients with14vM+ had a significant higher level of R-score 
than the 14vM− patients in both sets (p < 0.001, Figures 4a,b). The 
R-score showed favorable performance in both sets with AUCs of 0.83 
for the training [95% confidence interval (CI): 0.73–0.93, Figure 4c] 
and 0.77 for the testing sets (95% CI: 0.58–0.96, Figure 4d).

Model construction and evaluation

The multivariate analysis revealed that radiomics signature, 
CT-reported and pathological N stage were independent 14vM 
predictors (Table 3). Because pathological N stage can only be determined 
postoperatively, we  therefore established a combined model by 
incorporating the R-score and CT-reported N stage (Figure 5a).

The combined model had improved AUCs of 0.87 in the training 
(Figure 5b) and 0.85 in the testing set (Figure 5c). As shown in Table 4, 
in both sets, the model achieved superior performance compare to the 
radiomics signature and CT-reported N stage. The calibration curve 

FIGURE 2

Flowchart of study design.
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analysis reflected good fitness of the model (training, p = 0.76, Figure 5d; 
testing, p = 0.65, Figure 5e). As shown in Supplementary Figure S2, the 
DCA also indicated that the model added more benefit than single 
radiomics and clinical features.

Discussion

Several studies have reported that 14vM was related to the worse 
prognosis of GC (5, 7, 8, 26). However, there is still a lack of an 

effective tool for the prediction of 14vM preoperatively. As far as 
we  are aware, this is the first study to exploit the potential of 
radiomics in predicting 14vM in GC. In the current study, a 
ML-based radiomics signature was developed for detecting 14vM in 
GC patients, showing good predictive power in both sets with AUCs 
of 0.83 and 0.77, respectively. Moreover, a combined model was 
developed by integrating the R-score with CT-reported N status. The 
model showed better discrimination power in predicting 14vM.

GC is a highly heterogeneous malignancy disease, and the 
intratumoral heterogeneity contributes to the risk of metastasis 

TABLE 1 Characteristics of the study population.

Variable Training set (n =  202) Testing set (n =  86)

14vM− (n =  175) 14vM+ (n =  27) p 14vM− (n =  74) 14vM+ (n =  12) p

Age 0.66 0.30

  <65 136 (77.7) 22 (81.5) 54 (73.0) 7 (58.3)

  ≥65 39 (22.3) 5 (18.5) 20 (27.0) 5 (41.7)

Gender 0.51 0.13

  Male 115 (65.7) 16 (44.4) 38 (51.4) 9 (75.0)

  Female 60 (34.3) 11 (55.6) 36 (48.6) 3 (25.0)

Tumor site 0.04 0.03

  Upper-middle 42 (24.0) 6 (22.2) 6 (8.1) 2 (16.7)

  Lower 62 (35.4) 16 (59.3) 31 (41.9) 9 (75.0)

  Overlap 71 (40.6) 5 (18.5) 37 (50.0) 1 (8.3)

Pathologic T stage 0.03 0.06

  T1–2 48 (27.4) 2 (7.4) 26 (35.1) 1 (8.3)

  T3–4 127 (72.6) 25 (92.6) 48 (64.9) 11 (91.7)

Pathologic N stage <0.01 0.02

  N0–1 102 (58.3) 6 (11.1) 39 (52.7) 2 (16.7)

  N2–3 73 (41.7) 24 (88.9) 35 (47.3) 10 (83.3)

CT reported N stage <0.01 <0.01

  N0–1 141 (80.6) 1 (40.7) 59 (79.7) 5 (41.7)

  N2–3 34 (19.4) 16 (59.3) 15 (20.3) 7 (58.3)

Differentiation 0.09 0.54

  Well-moderate 32 (18.3) 1 (3.7) 13 (17.6) 3 (25.0)

  Poor 143 (81.7) 26 (96.3) 61 (82.4) 9 (75.0)

CEA 0.61 0.80

  ≥5.0 μg/mL 20 (11.4) 4 (14.8) 8 (10.8) 1 (8.3)

  <5.0 μg/mL 155 (88.6) 23 (85.2) 66 (89.2) 11 (91.7)

CA19-9 0.22 0.43

  ≥27 U/mL 34 (19.4) 8 (29.6) 12 (16.2) 3 (25.0)

  <27 U/mL 141 (80.6) 19 (70.4) 62 (83.8) 9 (75.0)

CA242 0.51 0.90

  ≥20 U/mL 24 (13.7) 5 (18.5) 7 (9.5) 1 (8.3)

  <20 U/mL 151 (86.3) 22 (81.5) 67 (90.5) 11 (91.7)

CA72-4 0.14 0.68

  ≥6.9 U/mL 47 (26.9) 11 (40.7) 14 (18.9) 1 (8.3)

  <6.9 U/mL 128 (73.1) 16 (59.3) 60 (81.1) 11 (91.7)

14vM, No. 14v station lymph node metastasis; CEA, carcinoembryonic antigen; CA, carbohydrate antigen.
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(27). The radiomics methods have been widely used in the 
characterization of heterogeneity of the tumor microenvironment 
(28). Instead of focusing on traditional features, radiomics 
techniques offer a comprehensive understanding of the tumor’s 
environment and heterogeneity (29). In our study, rather than 
extracting features from 2D maximum dimension (23), the 
radiomics features were extracted through 3D VOIs, presenting 
the whole landscape of tumor bulk. This extraction procedure 
allowed our model to provide more information for the evaluation 
of tumor heterogeneity. In addition, the features selected for our 
model were found to be  valuable for characterizing tumor 
heterogeneity and providing clinicopathological information. 
Gray level nonuniformity was considered a crucial factor for 
determining intratumoral heterogeneity (30). NGTDM-busyness 
and NGTDM-coarseness, which described the pattern and spatial 
distribution of the voxel intensity of VOI, could also provide 
information on tumor heterogeneity (31). Features including 
uniformity and entropy were suggested to have a correlation to 
the poor prognosis of several tumors (32, 33). It was noted that 
the size of the tumor is a significant risk factor for 14vM (7). 

However, as the exact determination of tumor size can only occur 
after surgery, this parameter was not included in our model. 
However, one of the radiomic features in our model, the 
maximum 3D diameter, can enhance information regarding 
tumor size.

The lymphatic vessel network of the stomach is intricate and 
characterized by multidirectional flow. Lymphatic vessels from the 
upper stomach drain into various vessels through the left and 
posterior gastric arteries, the left inferior phrenic artery and the 
splenic artery, without connecting to the retro-pancreatic (No. 13) 
or mesenteric (No. 14) station; while spreading along the common 
hepatic and superior mesenteric arteries, the lymphatic vessels 
from the lower stomach drain into the hepatoduodenal ligament 
(No. 12) and retro-pancreatic (No. 13) nodes station (34). 
Therefore, the location of GC is related to the risk of LNM in 
different stations. Previous study revealed that the frequency of 
14vM+ was 15.6% in the lower GC, while the frequency was only 
4.6% in the upper or middle GC. In patients with 14vM+, 87.8% of 
the tumor occurred in lower1/3 of stomach (6). Wu et al. (26) also 
revealed that the 14vM risk was significantly increased in the lower 
1/3 of the stomach than in the other sites. Similar to their results, 
in the current study, 75.8% of the tumor with 14vM+ were localized 
in the lower stomach.

Tumor infiltration depth correlates positively with the occurrence 
of lymphovascular invasion and LNM (35, 36). An et al. (5) reported 
that the risk of 14vM in a tumor that invaded the serosa or deeper was 
much higher than that confined in mucosal-muscularis propria layers. 
Eom et al. (7) also showed that the risk of 14vM increased with a 
higher pathological T stage. In line with prior studies, the depth of 
tumor invasion was also found to be a significant factor for 14vM. In 
both sets, the rate of 14vM in T3–4 stage was higher than that in T1–2 
stage patients. These results indicated that the risk of 14vM was 
increased significantly once tumor invades the serosa. However, the 
pathological T stage was not determined as a 14vM independent risk 
factor by multivariable analysis. Thus, this factor was not included in 
our model.

FIGURE 3

Feature selection using least absolute shrinkage and selection operator (LASSO) logistic regression. (a) Selection of tuning parameter (λ) in the LASSO 
model via 10-fold cross-testing based on minimum criteria. The AUC curve was plotted against log (λ). Dotted vertical lines were drawn at the optimal 
values by using the minimum criteria and the 1 standard error of the minimum criteria (the 1-standard error criteria). (b) LASSO coefficient profiles of 
the selected features. A vertical line was plotted at the optimal λ value, which resulted in seven features with nonzero coefficients.

TABLE 2 Predictive performances of different machine learning 
classifiers.

Model AUC Accuracy Sensitivity Specificity

SVM 0.79 0.75 0.78 0.73

RF 0.76 0.68 0.72 0.67

DT 0.80 0.70 0.69 0.71

KNN 0.81 0.73 0.66 0.78

NB 0.78 0.71 0.65 0.76

LR 0.83 0.86 0.70 0.88

XGBoost 0.69 0.65 0.71 0.60

SVM, support vector machine; RF, random forest; DT, decision tress; KNN, k-nearest 
neighbor; NB, naïve Bayes; LR, logistic regression; XGBoost, eXtreme gradient boosting; 
AUC, area under the receiver operating characteristic.
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There are three main lymphatic drainage pathways along the 
lower stomach: the pathway from lesser curvature (No. 3) or 
suprapyloric (No. 5) to common hepatic artery (anterosuperior 
group, No. 8a) lymph nodes, from infrapyloric (No. 6) to No. 8a and 
from No. 6 to 14v. Eventually, the lymphatic fluid drains into 
paraaortic lymph nodes (No. 16) (37). Previous studies demonstrated 
that patients with 14vM tended to have multiple positive nodes in the 
other stations (6, 26). Furthermore, studies have indicated a strong 
correlation between 14vM and station 6, suggesting that the station 
6 lymph node could serve as the sentinel lymph node for 14vM (6, 8, 
26). Therefore, metastasis of other regional lymph nodes along the 
drainage pathways of 14v can also increase the risk of 14vM. In this 
study, the rate of 14vM in N2–3 patients was 23.9%, which exhibited a 
more significant increase than in N0–1 patients (3.4%). The 
multivariable analysis further demonstrated that the both 
CT-reported and pathological N category were independent 
predictors of 14vM. Since pathological N stage can only 

be determined postoperatively, we only enrolled CT-reported N stage 
in our model.

Serum tumor biomarkers, including CEA and CA19-9/24-2/72-4, 
have been frequently utilized as GC diagnosis biomarkers (38–40). 
Previous study has reported that CA 72-4 had an added value for 
LNM predictive accuracy in GC (41). Herein, the correlation between 
the 4 serum biomarkers with 14vM was investigated, revealing that 
none of the markers was related to 14vM, which indicates that the 
traditional serum biomarkers had limited value in detecting 14vM.

Several limitations of this study warrant consideration. Firstly, as a 
retrospective study, since not all patients received No. 14v dissection, 
the current analysis may include selection bias. Secondly, variations in 
scanner parameters can lead to inconsistencies in radiomics features 
across different institutions. Thirdly, the process of segmentation is both 
computationally intensive and time-consuming. Lastly, the study was 
conducted at a single center, indicating a need for larger, prospective 
multicenter studies to verify the clinical utility of this model.

FIGURE 4

Comparison of radiomics score between No. 14v station lymph node metastasis 14vM− and 14vM+ groups in the training (a) and testing (b) sets. The 
ROC curves of the radiomics signature in the training (c) and testing (d) sets.
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In summary, the current study highlighted the value of combining 
ML methods with radiomics technology for predicting 14vM. The 
radiomics signature showed strong predictive performance 14vM. The 
nomogram provided a convenient predictive biomarker for 
preoperative detection of 14vM and help the surgeon to decide 
whether to add 14v dissection to lymphadenectomy, which may 
contribute to prognosis improvement of patients.
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TABLE 3 Risk factors for 14vM in gastric cancer.

Variable Univariate logistic regression Multivariate logistic regression

OR (95% CI) p-value OR (95% CI) p-value

Gender (male vs. female) 0.76 (0.33–1.74) 0.51

AGE (<65 vs. ≥65) 0.79 (0.28–2.23) 0.66

Tumor site 0.71 (0.42–1.20) 0.21

Differentiation 5.82 (0.76–44.47) 0.09

Pathological T stage 4.72 (1.08–20.71) 0.04 2.62 (0.51–13.52) 0.25

Pathological N stage 11.18 (3.24–38.52) <0.01 6.24 (1.67–22.97) <0.01

CT reported N stage 6.03 (2.57–14.17) <0.01 3.19 (1.17–9.98) <0.01

CEA 1.35 (0.42–4.30) 0.61

CA 242 1.43 (0.49–4.14) 0.51

CA 19-9 1.75 (0.71–4.33) 0.23

CA 72-4 1.82 (0.81–4.33) 0.14

Radiomics signature 12.52 (6.53–21.56) <0.01 8.36 (4.31–18.26) <0.01

14vM, No. 14v station lymph node metastasis; CEA, carcinoembryonic antigen; CA, carbohydrate antigen.
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FIGURE 5

(a) Radiomics nomogram based on radiomics signature and CT-reported N stage. ROC curves of the radiomics nomogram for the prediction of 14vM 
in the training (b) and testing (c) sets. Calibration curves of the nomogram in the training (d) and testing (e) sets.
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