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Background: Endoplasmic reticulum stress (ERS) is a crucial factor in the

progression of chronic obstructive pulmonary disease (COPD). However, the

key genes associated with COPD and immune cell infiltration remain to be

elucidated. Therefore, this study aimed to identify biomarkers pertinent to the

diagnosis of ERS in COPD and delve deeper into the association between pivotal

genes and their possible interactions with immune cells.

Methods: We selected the genetic data of 189 samples from the Gene

Expression Omnibus database, including 91 control and 98 COPD samples. First,

we identified the differentially expressed genes between patients with COPD and

controls and then screened the ERS genes associated with COPD. Second, 22

core ERS genes associated with COPD were screened using the Least Absolute

Shrinkage and Selection Operator (LASSO) regression model and Support Vector

Machine Recursive Feature Elimination (SVM-RFE), and the predictive effects of

the screened core genes in COPD were evaluated. Third, we explored immune

cell infiltration associated with COPD and conducted an in-depth analysis to

explore the possible connections between the identified key genes and their

related immune cells.

Results: A total of 66 differentially expressed endoplasmic reticulum stress–

related genes (DE-ERGs) were identified in this study, among which 12 were

upregulated and 54 were downregulated. The 22 key genes screened were

as follows: AGR3, BCHE, CBY1, CHRM3, CYP1B1, DCSTAMP, DDHD1, DMPK,

EDEM3, EDN1, FKBP10, HSPA2, KPNA2, LGALS3, MAOB, MMP9, MPO, MTTP,

PIK3CA, PTGIS, PURA, and TMCC1. Their expression was significantly different

between COPD and healthy samples, and the difference between the groups

was significant. Receiver operating characteristic curve analysis revealed that

CBY1 (area under the curve [AUC] = 0.800), BCHE (AUC = 0.773), EDEM3

(AUC = 0.768), FKBP10 (AUC = 0.760), MAOB (AUC = 0.736), and MMP9

(AUC = 0.729) showed a strong ability to distinguish COPD samples from normal

samples. Immune cell infiltration results associated with the three key genes

were also obtained.
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Conclusion: The insights of our study have the potential to present new

evidence for exploring emerging diagnostic signs of COPD while also

contributing to a better understanding of its developmental mechanisms.

KEYWORDS
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learning, immune cell infiltration, BCHE, CBY1, EDEM3

1 Introduction

Among the myriad of chronic lung afflictions, chronic
obstructive pulmonary disease (COPD) is highly prevalent in
the modern era; it is typically characterized by irreversible
airflow limitations due to airway narrowing and is usually
diagnosed in patients with chronic bronchitis and emphysema
when they develop persistent airflow limitation on pulmonary
function testing (1, 2). Reportedly, the prevalence of COPD
among people over 40 years of age is 13.6% in China
and up to 15–20% in Europe (3, 4). As one of the three
most common causes of death, COPD is often difficult to
cure, and its clinical symptoms are often characterized by
nocturnal exacerbation of cough, sputum production, dyspnea, and
wheezing, which greatly affect patients’ quality of life (5). Each
acute exacerbation substantially increases the cost of treatment,
creating a huge financial burden for individuals, families, and
the country as well as implying a high mortality risk (6).
Notably, COPD often comorbidly occurs with other diseases
such as osteoporosis, anemia, malnutrition, peripheral vascular
disease, and coronary artery disease (7, 8). The pathogenesis of
COPD is associated with many factors, such as inflammatory
cell activation, protease/antiprotease imbalance, oxidative stress,
genetic/epigenetic modifications, and endoplasmic reticulum stress
(ERS) (9–12). Therefore, early identification of biomarkers for
COPD is necessary.

The endoplasmic reticulum (ER) is an important intracellular
structure that plays a key role in protein synthesis, folding,
clearance, assembly, translation, and modification (13). ERS is
triggered by changes in the environment, such as temperature
and nutrient conditions, leading to an imbalance in ionic and
protein homeostasis within the cell and resulting in massive
aggregation of misfolded or unfolded proteins (14). To restore
the ER and protein homeostasis, cells activate the unfolded
protein response (UPR), an adaptive signaling pathway activated by
inositol-requiring protein-1, protein kinase RNA-like endoplasmic
reticulum kinase, and activating transcription factor-6 (15). If
homeostasis cannot be restored, excessive ERS leads to ER damage
and the activation of pro-apoptotic systems, which are increasingly
evidenced as potentially important mechanisms in the development
of various diseases (16). Further, excessive ERS leads to apoptosis
of lung endothelial cells, which is closely related to COPD
development (17).

Machine learning, differentiated from traditional statistical
methods that process complicated data and complex problems,
has gradually gained favor in various fields (18). Currently,

in the field of medicine, machine learning is widely used
in healthcare, diagnosis, predictive model construction,
image processing, bioinformatic analysis, and many other
aspects (19). Machine learning can organize redundant and
numerous medical data quickly and with minimal cost to
analyze the relationships between various variables and
factors and help us more clearly understand the underlying
mechanisms of disease development (20). Therefore, the
use of machine learning algorithms to explore disease
biomarkers is important for identifying new targets for
treating diseases.

In this study, we identified 66 ER stress–related genes (ERGs)
by analyzing the association between the extracted genes related
to ERS and the differentially expressed genes between individuals
with COPD. To better predict the occurrence of COPD, we
identified the major genes associated with COPD and immune
cell infiltration using machine learning algorithms. This study
has the potential to shed more light on the role of ERS in the
pathogenesis of COPD, concurrently suggesting novel strategies for
its clinical management.

2 Materials and methods

2.1 Data collection

We downloaded public microarray data, GSE76925 and
GSE38974, containing clinical information on COPD and normal
lung tissues, from the Gene Expression Omnibus database.1 They
are well annotated for genetic data. The GSE38974 dataset, derived
from the GPL4133 platform, included 23 COPD lung tissue
samples and 9 normal samples. The GSE76925 dataset, derived
from the GPL10558 platform, included 111 COPD lung tissue
samples and 40 normal samples. Empirical Bayes methods can
eliminate batch effects in the analysis of microarray expression
data by adjusting the standard error of the estimated multiplicative
changes (21). This study used empirical Bayes methods to eliminate
group effects and ultimately merged and normalized the data
sets into 98 COPD samples and 91 normal tissue samples. We
screened 1,350 ERGs with relevance scores >5 from the GeneCards
database.

1 https://www.ncbi.nlm.nih.gov/geo/
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2.2 Screening and functional enrichment
analysis of ERGs

This study used the merge function to combine the two datasets
into a single metadata cohort and employed the combat function
to eliminate batch effects. Differentially expressed endoplasmic
reticulum stress–related genes (DE-ERGs) between COPD and
healthy samples were determined using the Limma package in R.
The screening thresholds for differentially expressed genes (DEGs)
were set as |Log2FC| > 1, p < 0.05, and a false discovery rate
(FDR) < 0.05. FDR measures the proportion of false discoveries
among a set of hypothesis tests that are deemed significant.
Subsequently, DE-ERGs were identified by intersecting the DEG
list. To determine the biological significance of DE-ERGs in COPD,
we conducted enrichment analyses in Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) using the
ClusterProfiler package (22). The adjusted significance level was
set at p < 0.05. Additionally, we conducted Disease Ontology
(DO) enrichment analysis of DE-ERGs using the “clusterProfiler”
and DOSE packages.

2.3 Selection of feature genes

The selection of feature genes was performed using two
machine learning algorithms: Least Absolute Shrinkage and
Selection Operator (LASSO) regression model and Support Vector
Machine Recursive Feature Elimination (SVM-RFE). During the
fitting of the generalized linear model, LASSO was used for
dimensionality reduction to accomplish variable selection (23).
LASSO evaluation was performed using the “glmnet” software, with
the penalty parameter set to 10-fold cross-validation. SVM-RFE,
on the other hand, implemented small-scale learning and sample
prediction through “conductive inference,” effectively reducing
common regression and classification issues.

2.4 CIBERSORT analysis

The CIBERSORT computational method2 is a deconvolution
algorithm that analyzes complex gene expression profiles to infer
the composition of immune cells (24). Using the CIBERSORT
algorithm, we identified the immune responses of 22 types
of immune cells and evaluated the relationship between these
immune cells and the expression of key genes in normal and
COPD samples. This approach helped clarify correlations between
various immune cells.

2.5 Statistical analysis

We used t-tests to compare gene expression between COPD
and adjacent healthy samples. To evaluate the classification
performance of key genes in COPD and healthy samples, receiver
operating characteristic (ROC) curves and areas under the curve

2 http://cibersort.stanford.edu/

(AUC) were calculated using the “pROC” package in R. Statistical
analyses were conducted using R version 4.4.0. Differences were
considered statistically significant at ∗p < 0.05, ∗∗p < 0.01, and
∗∗∗p < 0.001.

3 Results

3.1 Screening and functional enrichment
analysis of DE-ERGs

After screening, we identified a total of 66 DE-ERGs. We
performed heatmap analysis of these genes (Figure 1A). Among
these, 12 genes were upregulated and 54 were downregulated
(Figure 1B). Next, we conducted an enrichment analysis of the
biological functions of these genes (GO and KEGG analyses). Our
findings revealed that the 66 DE-ERGs predominantly participated
in biological processes, including the reaction to oxidative stress
and the reaction of cells to reactive oxygen species. Cellular
components were primarily enriched in the ER lumen, coated
vesicles, and blood microparticles. In the molecular function
category, the genes were mainly enriched in amide and heme
binding (Figure 2A). KEGG analysis indicated that DE-ERGs were
significantly enriched in pathways, including the TNF, VEGF, and
relaxin signaling pathways (Figure 2B).

3.2 Selection of feature genes

In this study, we used the LASSO regression and SVM-RFE
algorithms to screen for potential biomarkers. The LASSO
regression algorithm identified DEGs and determined 25 variables
as diagnostic markers for COPD. The SVM-RFE algorithm
further screened 40 features of these DEGs (Figure 3). Finally,
22 features identified by both algorithms were selected: AGR3,
butyrylcholinesterase (BCHE), Chibby1 (CBY1), CHRM3,
CYP1B1, DCSTAMP, DDHD1, DMPK, ER-degradation alpha-
mannosidase–like protein 3 (EDEM3), EDN1, FKBP10, HSPA2,
KPNA2, LGALS3, MAOB, MMP9, MPO, MTTP, PIK3CA, PTGIS,
PURA, and TMCC1. These 22 genes might play significant roles in
the occurrence and development of COPD.

3.3 Expression and diagnostic
significance of feature genes in COPD

This study compared the expression levels of AGR3, BCHE,
CBY1, CHRM3, DDHD1, DMPK, EDEM3, EDN1, HSPA2,
KPNA2, LGALS3, MAOB, PIK3CA, PURA, and TMCC1 between
COPD and control groups and evaluated their predictive abilities.
As shown in Figure 4, the AUC values for CBY1 (AUC = 0.800),
BCHE (AUC = 0.773), EDEM3 (AUC = 0.768), and FKBP10
(AUC = 0.760) exceeded 0.75, indicating a good predictive ability
for COPD. As shown in Figure 5, the expression levels of CBY1,
BCHE, EDEM3, and FKBP10 differed significantly between the
COPD and control groups. Specifically, FKBP10 expression was
significantly elevated in the COPD samples, whereas the expression
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FIGURE 1

(A) Heatmap of expression patterns of ERGs showing differential expression in COPD; (B) volcano plot of expression patterns of ERGs showing
differential expression in COPD.

FIGURE 2

GO analysis (A) and KEGG analysis (B) for the 66 DE-ERGs.

levels of CBY1, BCHE, and EDEM3 were significantly reduced in
COPD samples.

3.4 Immune infiltration analysis

Immune cell infiltration is an important predictor of COPD
prognosis. We compared 22 immune cell subpopulations in the
patient population with COPD (Figure 6). Correlation heat maps
and violin plots were created to visualize the data. The heatmaps
showed the proportional distribution of 22 different immune
cell types in COPD, revealing significant patterns. The results
indicated a strong positive correlation between naïve B cells

and regulatory T cells, a strong negative correlation between
activated dendritic cells and M1 macrophages, a significant negative
correlation between activated mast cells and resting mast cells, and
a significant positive correlation between activated mast cells and
neutrophils (Figure 7A). The Wilcoxon test was used to evaluate
significant differences in immune cell infiltration between COPD
and control samples. The results showed that compared with
non-COPD individuals, COPD patients had significantly higher
levels of resting CD4 memory T cells, T follicular helper cells,
activated NK cells, and M0 macrophages (Figure 7B). We further
explored the associations between three important biomarkers
(BCHE, CBY1, and EDEM3) and various immune cells (Figure 8).
Correlation analysis showed that BCHE significantly negatively
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FIGURE 3

Selection of COPD-related signature genes: (A) graph of signature tuning screening in the LASSO model; (B) path diagram of the LASSO model; (C)
graph of biomarker screening by the SVM-RFE algorithm; and (D) venn diagram showing the 22 diagnostic biomarkers jointly identified by LASSO
and SVM-RFE.

correlated with T cells CD8, macrophage M1 (MM1), macrophage
M0 (MM0), FKBP10, and dendritic cell resting (DCR), whereas it
significantly positively correlated with resting CD4 memory resting
(CD4MR), mast cell resting (MCR), and dendritic cell activation
(DCA) T cells. CBY1 significantly negatively correlated with T cells
CD8, plasma cells (PC), activated mast cells (MCA), MM1, MM0,
FKBP10, and DCR, whereas it significantly positively correlated
with CD4MR, MCR, and DCA. EDEM3 significantly negatively
correlated with T cells CD8, PC, macrophages (M2), FKBP10, and

DCR, whereas it significantly positively correlated with CD4MR,
activated NK cells, neutrophils, monocytes, eosinophils, and DCA.
Our findings suggest that these key genes influence the occurrence
and development of COPD by regulating immune cell infiltration.

We further explored the association between three important
biomarkers, BCHE, CBY1, and EDEM3, and various immune cells
(Figure 8). The results of the correlation analysis showed that there
were significant negative correlations between BCHE and T cells
CD8, MM1, MM0, FKBP10, and DCR and a significant negative
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FIGURE 4

Diagnostic significance of characterized genes in COPD: (A) CBY1; (B) BCHE; (C) EDEM3; (D) FKBP10.

correlation with dormant CD4MR, MCR, and DCA. There was
a significant negative correlation between CBY1 and CD8, PC,
MCA, MM1, MM0, FKBP10, and DCR and a significant positive
correlation between CBY1 and CD4MR, MCR, and DCA. EDEM3
expression significantly correlated with CD8, MM2, FKBP10, and
DCR T cells. There was a significant negative correlation between
EDEM3 and CD8, PC, MM2, FKBP10, and DCR T cells and a
significant positive correlation with CD4MR, activated NK cells,
neutrophils, monocytes, eosinophils, DCA. Our results suggest
that these key genes influence COPD development by regulating
immune cell infiltration.

4 Discussion

The typical pathological changes in COPD mainly include
airway pathological changes (such as degenerative necrosis of
airway epithelial cells, increased airway mucus secretion, squamous
epithelial cell hyperplasia, airway remodeling, thickening of small
airway walls), inflammatory responses (such as inflammatory cell
infiltration and septic inflammation), and lung structural changes
(such as emphysema and destruction of lung tissue structures),
all of which accelerate lung aging, often resulting in lung failure,
dyspnea, and death (25, 26). However, the pathogenesis of
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FIGURE 5

Expression of characterized genes in COPD: (A) CBY1; (B) BCHE; (C) EDEM3; (D) FKBP10.

COPD requires further investigation. Currently, studies analyzing
a correlation between ERS and COPD are underway. One study
found that cigarette smoke extract exposure caused mouse lung
endothelial cells to activate the UPR, leading to enhanced eIF2α

phosphorylation, which in turn enhanced susceptibility to lung
endothelial cell apoptosis and emphysema (27). Tao et al. screened
six potential ERGs in COPD by analyzing databases and blood
samples from the COPD patient group and normal blood samples
from the COPD patient and control groups. They found that the
expression of key ERS genes (APAF1, BAX, PPP1R3C, PTPN1, and
STC2) was significantly elevated in COPD patients, accompanied
by a significant decrease in lung function–related indices, verifying
the reliability of the results (28). The aim of this study was to
compare the differences in the expression of ERGs between COPD
patients and healthy controls and investigate the potential role of
these ERGs in COPD development and immune cell infiltration.

In this study, three characterized genes (BCHE, CBY1, and
EDEM3) were identified using machine learning algorithms

combined with ROC analysis. BCHE is a serine hydrolase widely
found in various organs and tissues of the human body, such as
the viscera, blood, skin, muscle, and brain. It is most abundant in
the blood and liver and promotes the hydrolysis of acetylcholine
to restore resting cholinergic neurons. As early as 60 years ago,
researchers used extracted and purified BCHE in the clinic, and
its effects included detoxification, hydrolysis of acetylcholine,
promotion of fat metabolism, and removal of polyproline-rich
peptides (29). A study by Anes et al. found that in patients with
COPD, BCHE activity significantly increased in the lungs, did
not significantly correlate with smoking, and was accompanied
by a high expression of markers of oxidative damage to proteins,
such as total protein carbonyls and advanced oxidized protein
products (30). However, the results of the study by Sicinska et al.
were different, as they analyzed blood samples from 30 patients
with COPD and 18 healthy subjects in a controlled manner and
found that BCHE activity was significantly reduced in the blood
of patients with COPD, which was accompanied by an increase
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FIGURE 6

Percentage of 22 immune cells identified by the CIBERSORT algorithm.

FIGURE 7

Immune cell infiltration analysis: (A) association between the immune system and COPD. Red color indicates a positive association while blue color
indicates a negative association. Darker colors indicate a stronger relationship; (B) graph of the difference in immune cell infiltration between the
COPD group and the healthy control group.
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FIGURE 8

Association analysis between important characterized genes and immune infiltrating cells: (A) BCHE; (B) CBY1; (C) EDEM3.

in lipid peroxidation and a decrease in total antioxidant capacity
(31). Gu et al. explored BCHE activity through an in vitro analysis
of prostate cancer–associated cell cultures to investigate the effect
of BCHE in prostate cancer, which showed biphasic alterations,
that is, downregulation in the early stage and upregulation in
the later stage (32). Zengin et al. found that BCHE expression
levels were reduced in lung cancer patients (33). Therefore, BCHE
could potentially serve as a diagnostic or prognostic biomarker in
ERS-associated COPD.

CBY1, also known as β-cyclin antagonist, is a protein-coding
gene that competes with transcription factors for binding to
β-cyclin, a transcriptional activator and oncoprotein involved
in the development of several cancers, to inhibit its mediated
transcriptional activation. Reportedly, CBY1 is significantly
downregulated in patients with chronic granulocytic leukemia,
which can be upregulated by relevant inhibitors to induce ERS-
associated UPR, which promotes β-cyclin inactivation, leading to

apoptosis and cell death to eradicate BCR-ABL1 + hematopoiesis
for therapeutic purposes (34). In addition, mutations and the
downregulation of CBY1 have been associated with a variety of
diseases such as ciliopathy characterized by Joubert syndrome
(35), pancreatitis (36), and colon cancer (37). However, there
are fewer relevant studies on the relationship between CBY1 and
COPD, and the role of CBY1 in the inflammatory response,
alteration of airway endothelial cells, apoptosis, oxidative
stress, and other processes in the pathogenesis of COPD
needs to be further explored. EDEM3 is a soluble homolog of
ER degradation–enhancing alpha-mannosidase–like proteins
that promote ER degradation of misfolded glycoproteins and
participate in mannose pruning (38). Reportedly, the inhibition
of EDEM3 expression can reduce triglyceride levels in vivo
(39) and the radioresistance of prostate cancer cells (40).
Extensive research on the relationship between EDEM3 and
COPD is warranted.
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Previous studies on identifying ERS-related COPD diagnostic
markers and analyzing related immune infiltration have been
insufficient. This study is thus relevant because it extracted and
analyzed data from publicly available databases, delineated relevant
markers, and provided directions for further in-depth studies. This
study has some limitations. First, owing to limited funding, we are
unable to validate the accuracy of these key genes as biomarkers at
this time, and we will later conduct immunoinfiltration and other
relevant clinical trials to validate the results and conclusions of the
present experiments. Second, the performance of LASSO and SVM-
RFE in large-scale or updated datasets is limited as well as their
validation and generalizability in bioinformatics analysis—these
must be addressed in future research.

In conclusion, using machine learning algorithms combined
with immune infiltration analysis, we screened for ERGs associated
with COPD and analyzed the correlation between key genes and
immune cell infiltration. The findings of this study have important
clinical implications for the diagnosis, treatment, and prognosis of
COPD. However, the complex mechanisms of key genes in COPD
identified in this study need to be explored further.
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