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Immune cell effector therapies, including chimeric antigen receptor (CAR)-T cells, 
T-cell receptor (TCR) T cells, natural killer (NK) cells, and macrophage-based 
therapies, represent a transformative approach to cancer treatment, harnessing 
the immune system to target and eradicate malignant cells. CAR-T cell therapy, the 
most established among these, involves engineering T cells to express CARs specific 
to cancer cell antigens, showing remarkable efficacy in hematologic malignancies 
like leukemias, B-cell lymphomas, and multiple myeloma. Similarly, TCR-modified 
therapies, which reprogram T cells to recognize intracellular tumor antigens presented 
by major histocompatibility complex (MHC) molecules, offer promise for a range 
of solid tumors. NK-cell therapies leverage NK cells’ innate cytotoxicity, providing 
an allogeneic approach that avoids some of the immune-related complications 
associated with T-cell-based therapies. Macrophage-based therapies, still in early 
stages of the development, focus on reprogramming macrophages to stimulate 
an immune response against cancer cells in the tumor microenvironment. Despite 
their promise, socioeconomic and regulatory challenges hinder the accessibility 
and scalability of immune cell effector therapies. These treatments are costly, with 
CAR-T therapies currently exceeding $400,000 per patient, creating significant 
disparities in access based on socioeconomic status and geographic location. The 
high manufacturing costs stem from the personalized, labor-intensive processes of 
harvesting, modifying, and expanding patients’ cells. Moreover, complex logistics 
for manufacturing and delivering these therapies limit their reach, particularly in 
low-resource settings. Regulatory pathways further complicate the landscape. In 
the United States., the Food and Drug Administrations’ (FDA) accelerated approval 
processes for cell-based therapies facilitate innovation but do not address cost-
related barriers. In Europe, the European Medicines Agency (EMA) offers adaptive 
pathways, yet decentralized reimbursement systems create uneven access across 
member states. Additionally, differing regulatory standards for manufacturing and 
quality control worldwide pose hurdles for global harmonization and access. To 
expand the reach of immune effector cell therapies, a multipronged approach is 
needed—streamlined regulatory frameworks, policies to reduce treatment costs, 
and international collaborations to standardize manufacturing. Addressing these 
socioeconomic and regulatory obstacles is essential to make these life-saving 
therapies accessible to a broader patient population worldwide. We present a 
literature review on the current landscape of immune effector cell therapies and 
barriers of access to currently approved standard of care therapy at various levels.
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Introduction

Cancer stands as a formidable global public health challenge, 
ranking as the second leading cause of mortality in the United States. 
As projected by the American Cancer Society for 2023, an alarming 
1,958,310 new cancer cases and 609,820 cancer-related deaths are 
anticipated in the United  States alone (1). As a result of intrinsic 
genomic instability in cancer cells, this situation becomes even more 
severe, leading to an increased mutational burden, as well as the 
emergence of diverse subclonal lines with distinct characteristics, 
including invasion, proliferation, drug resistance, and the presentation 
of oncoantigens and neoantigens creating dire challenges for treatment 
options (2). Even though conventional cancer therapies, such as 
chemotherapy, radiation therapy, and hormone therapy, demonstrate 
efficacy, their impact is limited by side effects and the emergence of 
resistance during treatment (3). This amplifies the need for alternative 
approaches, prompting a search for innovative strategies to 
complement existing therapies. During the nineteenth century, 
Wilhelm Busch and Friedrich Fehleisen reported spontaneous tumor 
regressions following Streptococcus pyogenes-induced erysipelas, an 
infection that stimulates the immune system. This incident led to the 
idea of using the immune system for cancer treatment. In furthering 
this concept, William Coley is often referred to as the “Father of 
Cancer Immunotherapy” (4). The advent of cell therapies, particularly 
immune cell therapies, has ushered in a paradigm shift in drug 
development. Cancer immunotherapy has been designated 
“breakthrough of the year” by science in 2013 for its ability to target 

and eradicate malignant cells by exploiting the specificity and killing 
mechanisms of the immune system. There has been a notable 
advancement in immune cell therapies, which have shown clinically 
significant benefits in the treatment of cancer. By targeting cytokines, 
chemokines, and immune cells, immunotherapy makes a significant 
difference from traditional approaches, reshaping the tumor 
microenvironment (TME) and preventing cancer recurrence (5). 
Several studies have demonstrated a significant improvement in 
overall survival and a reduction in cancer recurrence with 
combinatorial approaches when immunotherapy is coupled with 
conventional chemoradiotherapy. This combined approach not only 
holds promise for enhanced treatment outcomes but also presents 
opportunities to elevate the quality of life for patients. While targeted 
and immune therapies continue to evolve, adoptive cell therapies 
(ACTs) have gained considerable attention in oncology. As a means of 
combating disease, these strategies involve infusion of lymphocytes, 
primarily autologous T-cells (6). A pinnacle in this arena is chimeric 
antigen receptor (CAR)-T cell therapy, marking a major breakthrough 
in cancer care with the approval of tisagenlecleucel by the Food and 
Drug Administration (FDA) in 2017 (7). Using autologous T-cells that 
have been extracted from the patient’s peripheral blood and given 
increased specificity and killing effectiveness against the patient’s 
malignant cells via a viral vector, CAR-T cell therapy helps remove 
tumors by reintroducing the modified immune cells into the patient 
(8). By April 2023, six CAR T cell therapies had received FDA 
approval, demonstrating unprecedented efficacy, particularly in 
patients with B-cell malignancies and multiple myeloma (9). Other 
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forms of immune effector therapies that are currently approved and 
with further clinical trials underway are bispecific T-cell engagers 
(BiTEs), and tumor infiltrating lymphocytes (TILs) among others. To 
better understand the current use and potential future use of immune 
effector cell (IEC) therapy, we present a review of socio-economical, 
logistical, and pertinent factors influencing access and use of these 
therapies in the United States and around the world.

Clinical applications

Success stories and breakthrough in 
hematological malignancies

CAR-T cell therapy has transformed the treatment landscape for 
several hematologic malignancies that previously lacked suitable 
therapeutic options. Since 2017, FDA has approved six CAR-T 
therapies, including axicabtagene ciloleucel (axi-cel) for relapsed or 
refractory (r/r) Diffuse Large B-cell Lymphoma (DLBCL) and (r/r) 
follicular lymphoma (FL); tisagenlecleucel (tisa-cel) for (r/r) Acute 
Lymphoblastic Leukemia (ALL) in those under age 25 years, follicular 
lymphoma (FL), and DLBCL; lisocabtagene maraleucel (liso-cel) for 
(r/r) DLBCL, high grade FL, mantle cell lymphoma (MCL), and 
chronic lymphocytic leukemia (CLL); brexucabtagene autoleucal 
(brex-cel) for (r/r) mantle cell lymphoma (MCL) and ALL; 
idecabtagene vicleucel (ide-cel), and cilatacabtagene autoleucel (cila-
cel) for (r/r) multiple myeloma (MM). Notably, four of these CAR-T 
cell products target anti-cluster of Differentiation (CD)19, while the 
two most recent ones focus on B-cell maturation antigen (BCMA) and 
have achieved rapid and durable responses in patients with R/R- ALL, 
FL, MCL, DLBCL, CLL, and MM (10–18).

In spite of the notable success achieved in treating B-cell 
malignancies with anti-CD19 CAR-T therapy, the challenge of relapse 
in patients who attain complete remission persists. This issue is 
particularly pronounced, with observed relapse rates ranging from 40 
to 60%, notably in DLBCL (14, 17, 19, 20). The development of 
second-generation CAR-T featuring costimulatory domains (CD28, 
4-1BB, and OX40) has resulted in substantial cell expansion and 
heightened tumor activity (21). Recent studies indicate the promising 
impact of second-generation anti-CD20 CAR-T cells with 4-1BB in 
individuals with relapsed/refractory CD20+ DLBCL (22). 
Furthermore, emerging therapeutic avenues, such as IgG-like 
bispecific antibodies, have garnered attention and gained approval for 
treating DLBCL (23). Similarly, with FDA approval and adoption of 
anti-BCMA CAR-T cell therapy for r/r MM, concern of antigen escape 
has prompted the exploration of various other tumor-specific antigens 
(TSAs) like CD138 (12–16). Presently, multiple clinical trials utilizing 
the second generation of anti-CD138 CAR-T cell therapy are in 
progress, revealing favorable tolerability and efficacy in this 
setting (24).

Further investigations have been done to broaden the application 
of CAR-T to other hematological malignancies. Acute Myeloid 
Leukemia (AML), the most prevalent acute adult leukemia, 
unfortunately, has not achieved comparable success with CAR-T cell 
therapy as observed in ALL, primarily due to antigenic heterogeneity 
and leukemic stem cells. Recently identified TSAs, such as CD123, 
CD33, and CD38 expressed on leukemic stem cells, present a challenge 
given their expression on hematopoietic stem cells as well. 

Unfortunately, targeting these TSAs has been associated with 
prolonged myelosuppression and a risk of toxicity (25–27). To address 
this, innovative strategies have been implemented within the CAR 
structure, including the development of rapidly switchable universal 
(uni) anti-CD123 CAR-Ts. UniCAR-T maintains complete anti-
leukemic efficacy while ensuring prompt controllability, thereby 
improving the safety and adaptability of CD123-directed 
immunotherapy. The safety and efficacy of UniCAR-T, in conjunction 
with CD123, are presently undergoing evaluation in a phase I clinical 
trial (28). Additionally, the expression CD70 on AML blasts, coupled 
with its absence in normal myeloid cells, positions it as a promising 
target for AML treatment. The safety and efficacy of anti-CD70 
CAR-T cell therapy are currently under study (29, 30).

Similarly, the influence of antigenic heterogeneity has been 
evident in other hematological malignancies, particularly highlighted 
by the absence of CD19 expression in Hodgkin Lymphoma (HL) and 
T-cell malignancies (11). This has prompted an exploration aimed at 
identifying various potential TSAs, including CD7, CD20, CD22, 
CD30, CD38, and CD138 (24, 31–33). CD30, universally expressed in 
classical HL, has recently been the focus of several clinical trials 
assessing the safety and efficacy of anti-CD30 CAR-T cell therapy in 
relapsed/refractory HL (31).

Success stories and breakthrough in solid 
tumors

The notable successes of CAR-T therapy treatment in 
hematological malignancies strongly support the application of 
CAR-T therapy for treating solid tumors. However, the efficacy of 
CAR-T therapy in the context of solid tumors remains inconclusive 
and is hindered by various challenges such as the identification of 
TSAs, addressing the escape of tumor antigens, limited tumor cell 
trafficking and infiltration and the existence of an immunosuppressive 
tumor microenvironment. Despite the lack of antigen specificity and 
heterogeneity, recent research has achieved noteworthy breakthroughs 
in treating certain solid tumors (34). Subsequent research has 
identified several potential TSAs associated with solid tumor 
malignancies. Examples include human epidermal growth factor 
receptor-2 (HER2) expressed in certain sarcomas, IL-13Rα2 
expression in glioblastoma multiforme (GBM), GD2 expression in 
neuroblastoma, epidermal growth factor receptor (EGFR) expression 
in non-small-cell lung carcinoma (NSCLC), breast, gastroesophageal 
colorectal cancers, and recurrent GBM, as well as Carcinoembryonic 
antigen (CEA) expression in colorectal cancer (CRC), lung, breast, 
and pancreatic cancers and claudin18.2, expression is noted in 70% of 
primary gastric cancers (35–44).

Claudin18.2, a TSA and a stomach-specific isoform of Claudin-
18, is detected in 70% of primary gastric adenocarcinomas and their 
metastases (44). Recognized as a potential target for treating these 
malignancies, CT041, an anti-CLDN18.2 CAR-T cell product, has 
obtained Investigational New Drug (IND) clearance from the FDA for 
use in patients with CLDN18.2-expressing stomach, pancreatic, and 
gastroesophageal junction adenocarcinoma (42). The IND clearance 
was supported by findings from a phase-I trial (NCT03874897), where 
Claudin18.2 CAR-T cell therapy demonstrated an overall response 
rate (ORR) and disease control rate of 57.1 and 75.0%, respectively, in 
gastric cancer patients. The 6-month overall survival rate was reported 
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at 81.2%, with no serious adverse events documented. This CAR-T cell 
therapy study yielded an ORR of 33%, a median progression-free 
survival (PFS) of 130 days, and a well-tolerated safety profile, devoid 
of serious adverse events (43). Similarly, positive outcomes were 
observed in a phase I/II clinical study (NCT00902044) involving the 
use of HER2 CAR-T cells for the treatment of 19 patients with HER2-
positive sarcomas, including 16 osteosarcomas, 1 primitive 
neuroectodermal tumor, 1 Ewing sarcoma, and 1 protofibroblastic 
small round cell tumor. Notably, the 19 treated patients achieved a 
median overall survival of 10.3 months, ranging from 5.1 to 
29.1 months, and there were no major adverse events reported (36).

Similarly, EGFR, a TSA, plays a crucial role in the development 
and progression of solid tumors and has emerged as a significant 
therapeutic target in various cancers such as NSCLC, breast, 
gastroesophageal, colorectal cancers, and GBM. In a phase-I clinical 
trial (NCT02209376), 10 patients with Recurrent EGFRvIII+ GBM 
were treated with EGFRvIII-engineered CAR-T cells, showing an anti-
tumor effect with a median overall survival of approximately 8 months 
in all patients. Another phase-I clinical trial (NCT01869166) of EGFR 
CAR-T cell therapy in 11 patients with EGFR+ refractory/relapsed 
non-small cell lung cancer (NSCLC) demonstrated that 2 patients 
achieved a partial response, and 5 had stable disease for 2 to 8 months 
without severe toxicity (39). Furthermore, IL-13Rα2, a TSA, is highly 
expressed in GBM tumor cells but is seldom found in normal brain 
cells, making it a compelling target for CAR-T cell therapy in GBM. In 
a study conducted by Brown and colleagues (NCT02208362), the 
multi-dose treatment with IL-13Rα2 CAR-T cells led to complete 
tumor regression for almost 8 months in a patient with GBM (33). 
Additionally, GD2, a disialoganglioside, is highly expressed in 
neuroblastoma cells, serving as another intriguing target for CAR-T 
cells in GBM (38). In a phase-I clinical trial (NCT00085930) assessing 
the impact of GD2 CAR-T cells on 11 patients with neuroblastoma, 
complete remission was observed in three patients.

Similarly, CEA, a TSA, stands out as a promising target for CRC 
(44). A phase-I, escalating-dose trial of CAR-T cell therapy 
(NCT02349724) directed against CEA expressed in metastatic CRC 
revealed that 7 out of 10 patients maintained stable disease for up to 
30 weeks, and 2 patients experienced tumor reduction with no 
reported adverse events (45). Furthermore, CD133, another TSA, is 
among the well-characterized markers of cancer stem cells (CSCs) in 
various tumor types, including hepatocellular carcinoma (HCC) (46). 
In a phase I/II clinical trial (NCT02541370), CD133 CAR-T cells were 
administered to 21 patients with advanced HCC, demonstrating 
antitumor efficacy with low treatment-related toxicity (40).

Ongoing research and prospects of CAR 
cell therapy

Current research endeavors are focused on developing therapeutic 
strategies to address challenges such as antigen escape, enhance the 
regulation of CAR-T cell persistence, and improve the overall anti-
tumor efficacy of CAR-T cell therapy. These efforts involve exploring 
combinatorial approaches, including the incorporation of immune-
stimulatory molecules, to overcome obstacles presented by the 
immunosuppressive microenvironment. Additionally, considering the 
socioeconomic factors associated with CAR-T therapy, ongoing 

investigations are exploring alternative approaches such as UniCAR-T, 
CAR-NK, and CAR-M therapies (47).

Targeting distinct antigens stands out as a highly effective 
approach to counteract antigen-negative relapse. Demonstrating 
efficacy in reducing the risk of such relapse, dual-targeting CAR-T 
cells, designed to recognize two distinct target antigens, have been 
employed. Examples include bispecific CAR-T cells designed for B cell 
lymphoma/leukemia and A proliferation-inducing ligand (APRIL)-
based CAR-T cells simultaneously targeting both BCMA and 
transmembrane activator and calcium modulator and cyclophilin 
ligand interactor (TACI) in multiple myeloma (48, 49). Moreover, the 
exploration of multi-targeted CAR-T cells has been undertaken, with 
preclinical studies showcasing the swift elimination of B cell 
lymphoma using tri-specific CD19-CD20-CD22-targeting CAR-T 
cells (50). In addition, the short duration of CAR-T cell persistence 
hinders their effectiveness against tumors and increases the risk of 
antigen-positive relapse. Various strategies are being explored to 
enhance CAR-T cell persistence, including optimizing the CAR-T cell 
construct, utilizing memory T-cells, and carefully determining the 
ratio of CD4 to CD8 CAR-T cells (51). Presently, CD28 and 4-1BB are 
the most prevalent costimulatory molecules in CAR-T cell products. 
Notably, research has demonstrated that 4-1BB co-stimulation can 
mitigate CAR-T cell exhaustion in comparison to CD28 co-stimulation 
(52–54). Interestingly, the combination of CD28 and 4-1BB has shown 
the potential to simultaneously amplify anti-tumor effects and prolong 
the persistence of CAR-T cells (52–54). Furthermore, various 
immune-stimulatory molecules, including specific cytokines or 
co-stimulatory molecules, have been shown to be pivotal in regulating 
the development and functionality of T cells. Examples include IL-7, 
IL-12, IL-15, IL-18, IL-21, and CD40L (55–58). Moreover, refining the 
CAR-T cell structure is possible through the adoption of fully 
humanized CARs. Humanized CAR-T cells offer the advantage of 
evading rejection by the host immune system, and they maintain 
effectiveness even in patients with R/R disease who have previously 
experienced failure with prior CAR-T therapy (59). In addition, the 
programmed cell death (PD)-1/PD ligand (PDL)-1 pathway plays a 
crucial role in inducing T-cell exhaustion, serving as a key mechanism 
for tumors to evade the immune response. Consequently, disrupting 
the interaction between PD-1 and PD-L1 can enhance the immune 
system’s ability to combat cancer cells. Significantly, PD-1 blockade 
has demonstrated substantial success across various tumor types, 
particularly in lymphoma. In a clinical trial involving 11 NHL patients, 
45.5% of individuals achieved complete responses (CRs) with this 
combined therapy, and the associated toxicities were well-tolerated 
(60, 61).

Manufacturing CAR-T cells is labor-intensive and costly, which 
hinders their widespread adoption (62). Due to the current production 
cycle, which takes 2 weeks or more, highly proliferative malignancies 
may progress rapidly in this period (63). In light of this, a new type of 
CAR-T cell therapy has gained attention: uniCAR-T. CAR-T cells 
derived from healthy donors are allogeneic instead of autologous 
CAR-T cells, which are derived from the same patient’s T-lymphocytes. 
In spite of their similar killing mechanism, uniCAR-T cells differ in 
their manufacturing processes, costs, safety considerations, and 
potential applications (64). A significant challenge to the realization 
of this therapy is graft-versus-host disease (GVHD), and potential 
toxicities like increased cytokine release syndrome (CRS) cannot 

https://doi.org/10.3389/fmed.2024.1462307
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Sainatham et al. 10.3389/fmed.2024.1462307

Frontiers in Medicine 05 frontiersin.org

be ruled out (65). A clinical trial (NCT01864889) reported grade 2–3 
GVHD in two patients 4 weeks after donor-derived CAR-T cell 
infusions (66).

The ANTLER clinical trial recently published results on the use of 
readily available, off-the-shelf anti-CD19 CAR T-cell therapy with 
PD-1 knockout. Their partial HLA matching strategy yielded 
remarkable outcomes, with zero cases of GVHD in a test 
population of 46.

In contrast to CAR-T cells, chimeric antigen receptor NK 
(CAR-NK) cells target NK cells, another key component of the 
immune system that plays both an innate and adaptive role. NK cells 
function independently of major histocompatibility complex (MHC) 
and do not cause GVHD (47). In a clinical trial (NCT03056339) 
targeting CD19-positive lymphoid tumors, NK cells were transduced 
to express genes encoding anti-CD19 CAR, IL-15, and inducible 
caspase 9 as a safety switch. Out of the 11 treated patients, 8 (73%) 
responded, and 7 (64%) achieved complete remission. Importantly, 
there were no cases of CRS or neurotoxicity, and no apparent increase 
in inflammatory cytokines or GVHD was observed with this 
HLA-mismatched CAR-NK product (67). This initial study 
underscores the safety advantages of CAR-NK cells in universal 
cell therapy.

Furthermore, induced pluripotent stem cells (iPSCs) are currently 
a subject of intensive research, given their capacity for boundless self-
renewal and differentiation into terminal cells. This includes T and NK 
cells, showcasing antitumor activity. Recent investigations have 
highlighted that CAR-NK cells generated from iPSCs not only 
significantly inhibited tumor growth but also extended survival in an 
ovarian cancer xenograft model (62, 68). Additionally, gene 
engineering has endowed macrophages with sustained 
proinflammatory phenotype (M1) and antigen-specific phagocytosis 
(38, 69). In two xenograft mouse models, CAR macrophages (CAR-M) 
targeting solid tumor antigens mesothelin or HER2 reduced tumor 
burden and prolonged overall survival, preliminarily proving its 
feasibility in solid tumors (69, 70).

Additionally, genetic engineering using CARs has conferred a 
persistent proinflammatory phenotype (M1) and antigen-specific 
phagocytosis to macrophages (69). In recent experiments involving 
two xenograft mouse models, CAR-M designed to target solid tumor 
antigens, specifically mesothelin or HER2, resulted in reduced tumor 
burden and extended overall survival. This provides initial evidence 
supporting the feasibility of utilizing CAR-M in the context of solid 
tumors (70).

Other emerging cellular therapies

BITEs
Bispecific T-cell engagers (BiTEs) are a class of immunotherapy 

drugs that uses the antibodies to help the immune system fight cancer 
cells. BiTEs are made of two antibody arms that bring T cells and 
cancer cells together by binding to targeted antigens on these cells. The 
CD19-targeting BiTE (blinatumomab) was the first to be approved for 
cancer therapy after showing remarkable response rates of almost 70% 
in CD19-positive, relapsed/refractory (R/R) hematological 
malignancies. So far, there are 12 FDA-approved BiTEs since 
blinatumomab’s approval in 2014 with over 50 products in 
clinical trials.

Compared to CAR-T, BiTEs are easily manufactured. It has 
advantages, such as BiTE-mediated T-cell activation being 
independent of the TCR-MHC interaction, as most immune cell-
engaging bispecific antibodies act by binding the CD3ε subunit on 
T-cells and a TAA on the tumor cell to form a cytolytic synapse. This 
bypasses the need for MHC presentation, directly triggering activation 
signaling leading to the release of the pore-forming perforin and 
cytotoxic granzyme-B (GzmB) and, ultimately, apoptosis of the target 
cell (71). In addition, BiTEs initiate bystander tumor cell killing and 
overcome immunosuppression by redirecting regulatory T-cells 
(Tregs). However, for BiTEs to be effective, having a target antigen is 
essential, or cell lysis was observed when treating cells or tumors 
lacking the target antigen (72).

Apart from hematological malignancies, Tebentefusp is a 
bispecific protein targeting gp100, which recently obtained FDA 
approval in January 2022 after a phase III trial showed a survival 
benefit for HLA-A*02:01–positive patients with metastatic uveal 
melanoma, increasing 1-year survival from 59 to 73% (73). Various 
clinical trials are being undertaken in solid tumors, such as 
Glioblastoma via EGFRvIII targeting BiTE (NCT04903795) and 
T-cell-bispecific antibody (TCB) targeting EGFRvIII (74). Although 
BiTEs appears promising, adverse effects persist and are either related 
to T-cell activation and cytokine secretion, culminating in CRS with 
or without neurotoxicity, or on-target off-tumor toxicity when the 
target antigen is expressed in normal tissues (75). Furthermore, 
challenges, such as antigen loss in T-cell engaging therapy, occur in 
about 30% of patients in studies of blinatumomab and account for one 
mechanism of treatment failure (76). The method of delivery of 
bispecific antibodies influences pharmacokinetics, the ability to 
penetrate tumor tissue fully, and the risk of systemic toxicity to which 
various strategies are being experimented such as DNA launched 
bispecific T-cell engagers (dBiTE), bispecific antibody armed activated 
T-cells (BATs), BiTE-secreting genetically engineered macrophages 
(GEMs), oncolytic viruses expressing bispecific antibodies. Pascual-
Pasto et  al. showcased an in vitro model where T-cells could 
be engineered to express a GPC2 CAR using a lentiviral vector and 
secrete a bispecific innate immune cell engager (or BiCE) that targets 
GD2 and FcγRIIIa (or CD16a) to activate bystander NK-cells and 
macrophages in the TME to facilitate antitumor innate immunity in 
neuroblastoma (77).

Tumor infiltrating lymphocytes

TILs are polyclonal and are not genetically modified, as they are 
cultured directly from the TME, in contrast to CAR-T, which is 
specific to an antigen and genetically engineered. TILs are an adoptive 
cell therapy with infusion of these massively expanded, unmodified 
autologous T-cells as a personalized immunotherapy. This process is 
combined with non-myeloablative chemotherapy for preconditioning 
and high-dose interleukin-2 (IL-2) post-infusion to support the 
expansion and activation of TILs. This strategy has shown success in 
advanced melanoma, leading to FDA approval of lifileucel (Amtagvi) 
in 2024 (78). Despite the successes at individual centers, the relatively 
complex and prolonged manufacturing process and quality of the 
tumor specimen procured limited the widespread implementation of 
the TILs. Even with an optimized TIL product, treatment-associated 
toxicity is a concern of TIL therapy. In a recent randomized control 
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study by Rohaan et  al. it was demonstrated that in patients with 
advanced melanoma, PFS was significantly longer among those who 
received TIL therapy than among those who received ipilimumab 
although chemotherapy-related myelosuppression was noted among 
all TIL patients compared to 57% of patients on ipilimumab (79). A 
significant portion of the toxicity is due to high dose IL-2 infusio 
which can lead to hemodynamic instability and other high grade 
toxicities. An ongoing clinical trial to evaluate TILs modified with an 
inducible, membrane-bound IL-15 gene will explore whether IL-2 can 
be  eliminated from the ACT protocol (NCT06060613 and 
NCT05470283), which, as stated above, could potentially significantly 
reduce the toxicity of the overall regimen. While TIL therapy is 
effective for treatment-refractory advanced melanoma, more work is 
required to improve efficacy, expand access to more patients, and 
apply TIL therapy to other solid tumors.

Cytokine-induced killer cells

Cytokine-induced killer (CIK) cells are a unique polyclonal 
CD3 + CD56+ T-cell population with NK-like functional 
characteristics (80). Their MHC-unrestricted lytic ability allows them 
to target a broad range of tumors without prior antigen exposure, 
potentially making them more straightforward and more cost-
effective than other therapies like CAR-T cells. CIK cells also have a 
reduced risk of GVHD. Clinical trials have shown the safety and 
efficacy of CIK cells in solid tumors, including lung cancer, 
hepatocellular carcinoma (HCC), renal cell carcinoma (RCC), and 
lymphoma (81). A phase III trial in HCC patients demonstrated a 
14-month improvement in disease-free survival with mild to moderate 
adverse effects (82). Their low toxicity and feasibility have encouraged 
research into combination therapies, including anti-PD-1 
immunotherapy, particularly for PD-1-resistant cancers. CIK cells can 
infiltrate tumors and secrete INF-γ, enhancing anti-PD-1 effectiveness, 
as seen in metastatic RCC (83) and non-small cell lung cancer 
(NSCLC) (84). Moreover, CIK cells have emerged as a platform for 
genetic modification with chimeric antigen receptors (CARs), 
enhancing their cytotoxicity in cancers like AML, ALL, and sarcomas. 
Clinical trials have shown that CAR-CIK cells maintain safety, with no 
GVHD or severe toxicities, even at higher doses, offering an advantage 
over CAR-T cells (85). The versatility of CIK cells makes them 
promising for combination therapies with chemotherapy, monoclonal 
antibodies, and bispecific antibodies, particularly in the treatment of 
solid tumors. While CIK cell immunotherapy has shown great 
potential, challenges remain in refining its precision and optimizing 
its clinical application.

Macrophage targeting therapies

Tumor-associated macrophages (TAMs) are abundant in cancer 
lesions and contribute to the TME. They promote cancer cell growth 
by secreting chemokines and cytokines like IL-1α, IL-1β, and TNFα 
and inhibit CD8+ T cells by releasing immunosuppressive factors and 
triggering T cell apoptosis through FAS receptors, tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL). TAMs also 
contribute to cancer treatment resistance through mechanisms like 
epithelial-mesenchymal transition (EMT), tumor angiogenesis, and 

immune suppression. Nanomaterials combined with TAM-targeting 
therapies improve drug delivery and anti-cancer effects by polarizing 
macrophages into an anti-tumoral state (86). TAM-targeting therapies 
face challenges due to macrophage heterogeneity, systemic toxicity, 
and difficulties in the TME. Monotherapies often show limited 
success, but combining TAM-targeting with immune checkpoint 
inhibitors can enhance T cell function, block tumor growth, and 
reduce metastasis (87). CAR-M cells offer a novel therapeutic 
approach for overcoming solid tumor challenges. Studies have shown 
their ability to delay tumor growth and enhance anti-tumor immunity 
in mouse models of lung, ovarian, and pancreatic cancer (88). Ye et al. 
designed lipid nanoparticles (LNPs) that contain CAR mRNA and 
generate anti-CD19 CAR M by transferring LNPs to murine primary 
macrophages, demonstrating notable cytotoxic effects against human 
B-cell lymphoma in-vitro (89). Unlike CAR-T and CAR-NK cells, 
CAR-M cells resist exhaustion in the hostile TME and maintain anti-
tumor function. However, barriers like “on target-off tumor” effects 
and tumor heterogeneity still limit the efficacy of CAR-M cell 
therapies (86). Clinical trials are ongoing (NCT04405778 and 
NCT05164666), which will likely provide more data to confirm 
their effectiveness.

T-cell receptor therapies

TCR-based adaptive therapy involves genetically modified 
lymphocytes targeting specific tumor markers. Unlike CAR 
technology, which uses an artificial receptor to recognize tumor cell 
surface proteins, TCR-engineered cells employ a natural or slightly 
modified TCR to target tumor-specific epitopes presented by MHC 
molecules. This offers broader applicability, as more tumor-specific 
sequences exist within cells than on their surfaces (90). Afamitresgene 
autoleucel (afami-cel) recently received FDA approval for advanced 
synovial sarcoma (91). Several toxicities associated with TCR-T cells 
have been described in the clinic. On-target off-tumor toxicities are 
linked to target antigen expression in normal tissues and are primarily 
associated with TAAs. In clinical trials targeting MART-1 and gp100 
with TCR-T cell therapy, ocular, cutaneous, and auditive toxicities 
were due to TAA expression in melanocytes. Primary resistance 
mechanisms may be mainly represented by a low or heterogeneous 
expression of the target antigen in tumor cells or by the tumor cells’ 
intrinsic resistance to T cell-mediated cytotoxicity (92). Key challenges 
include TCR product manufacturing, patient selection, and 
overcoming the immunosuppressive microenvironment to improve 
therapy efficacy and safety.

Dendritic vaccines

Dendritic cells (DCs), the most potent antigen-presenting cells 
(APCs), play a key role in initiating and regulating both innate and 
adaptive immune responses (93). DC-based vaccines have emerged as 
a promising cancer immunotherapy, aiming to induce antigen-specific 
cellular immunity to eliminate cancer cells as they target a broader range 
of intracellular antigens compared to adoptive cell therapies (ACTs), 
which focus on tumor-specific surface antigens and face challenges like 
antigen escape and off-target toxicity (94, 95). Sipuleucel-T (Provenge) 
is the first FDA-approved therapeutic DC vaccine for metastatic 
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castration-resistant prostate cancer, showing efficacy in phase III trials. 
Its combination with immune checkpoint blockers (ICBs) and IL-7 has 
shown encouraging clinical outcomes (Phase I, NCT01832870; Phase 
II, NCT01804465, NCT01881867) (96). Despite the success of 
sipulleucel-T, conventional DC vaccines have seen limited efficacy, 
benefiting only 5–15% of patients, likely due to immunosuppressive 
factors in the TME. To enhance antitumor responses, next-generation 
DC vaccines are being explored in combination therapies with ICBs to 
overcome TME-related challenges (97).

Induced pluripotent stem cell derived 
immune cells

Induced pluripotent stem cells (iPSCs) are created by 
reprogramming adult cells to regain their pluripotent abilities. These 
cells can be modified to express CARs or TCRs for enhanced tumor 
specificity, offering the potential for more precise and effective cancer 
therapies. iPSCs can also be differentiated into NK cells, which are 
known for their ability to kill cancer cells (98). Genetically engineered 
iPSC-derived NK cells exhibit improved persistence and cytotoxicity, 
making them a promising cancer treatment (99). Additionally, iPSCs 
offer a renewable source for generating tumor-infiltrating lymphocytes 
(TILs) in large quantities, overcoming challenges related to the limited 
supply of TILs (100). iPSC-derived T cells, modified to express tumor-
specific TCRs or CARs, can be expanded and infused into patients to 
mount an effective anti-tumor response (101). Despite their potential, 
challenges remain, including ensuring the safety of iPSC-derived 
immune cells, refining differentiation protocols, and overcoming 
cancer cells’ immune evasion. Overall, iPSC-based immunotherapies 
hold promise for personalized, targeted cancer treatments. Recent 
investigations have highlighted that CAR-NK cells generated from 
iPSCs not only significantly inhibited tumor growth but also extended 
survival in an ovarian cancer xenograft model (68, 102).

Natural killer cells

In contrast to CAR-T cells, CAR-NK cells utilize another key 
component of the immune system that plays both an innate and 
adaptive role. NK cells function independently of the MHC and do 
not cause GVHD if an allogenic construct is used (47). In a clinical 
trial (NCT03056339) targeting CD19-positive lymphoid tumors, NK 
cells were transduced to express genes encoding anti-CD19 CAR, 
IL-15, and inducible caspase 9 as a safety switch. Out of the 11 treated 
patients, 8 (73%) responded, and 7 (64%) achieved complete 
remission. Notably, there were no cases of CRS or neurotoxicity, and 
no apparent increase in inflammatory cytokines or GVHD was 
observed with this HLA-mismatched CAR-NK product (67). This 
initial study underscores the safety advantages of CAR-NK cells in 
universal cell therapy.

Regulatory pathways of immune 
effector cell therapies

The regulation of CAR T-cell therapies in the United States falls 
under the purview of the FDA, specifically overseen by the Office of 

Tissues and Advanced Therapies (OTAT) within the Center for 
Biologics Evaluations and Research (CBER) (103). It is important to 
acknowledge, that CAR-T cell therapy, primarily indicated for cancer 
treatment, undergoes Biologics License Application (BLA) review by 
the Oncologic Drugs Advisory Committee (ODAC). ODAC’s public 
meetings aim to enhance transparency, sharing safety data before 
approval, and it assesses safety and efficacy, voting on product 
approval based on the benefit–risk ratio (104).

The development of CAR T-cell therapy, originating in the 1990s, 
poses challenges in balancing efficacy and patient safety during first-
in-human clinical trials. Recognizing the need for effective clinical 
trial protocols, the FDA introduced the (Initial Targeted Engagement 
for Regulatory Advice on CBER products) INTERACT program, 
offering informal advice on early investigational product development 
(105). A pre-IND (Investigational New Drug) meeting is crucial for 
CAR T-cell therapy development, providing an opportunity to refine 
strategies, identify necessary studies, and gain FDA insights within a 
rapid response timeframe. While CAR-T cells are categorized as 
regenerative medicine products in the United States, on a global scale, 
they are classified under the umbrella term of Advanced Therapy 
Medicinal Products (106, 107). This category encompasses gene 
therapies, as well as human cells, tissues, and products derived from 
them, all of which necessitate licensing. CBER released a series of 
regenerative medicine guidance documents in November 2017 to 
better define the regulatory environment for products related to 
regenerative medicine, including CAR-T cells.

The Regenerative Medicine Advanced Therapy (RMAT) 
designation programme which was established by the 21st Century 
Cures Act, was passed into law in December 2016, to expedite the 
development and approval of regenerative medicines, such as gene 
therapy. According to the Act if the preliminary clinical evidence 
suggests a potential to benefit unmet medical requirements for a 
significant or life-threatening disease or condition, regenerative 
medicine therapy may be eligible for RMAT certification (108). RMAT 
designation request, essential for expedited development, must meet 
specific criteria, and the IND submission involves comprehensive 
documentation, with a mandatory 30-day waiting period before 
clinical trials. A pre-BLA meeting, ideally 6 months before submission, 
addresses formatting, data adequacy, risk management, and safety 
studies. BLA submission undergoes a 10-month review, reduced to six 
for priority applications, and FDA’s response includes potential 
Advisory Committee meetings to address identified deficiencies and 
ensure thorough reviews CAR T-cell therapies, vital for treating life-
threatening conditions with unmet medical needs, necessitate 
expedited regulatory approval, which often takes lengthy time periods 
for approval (109). The FDA has started several expedited programmes 
in recent years to shorten the processing time and facilitate the timely 
release of these rejuvenating therapies onto the market. “Fast Track 
Designation, Breakthrough therapy,” “Accelerated approval,” and 
“Priority review and Regenerative Medicine Advanced Therapy” are a 
few of these initiatives.

Accelerated approval expedites the review process based on 
surrogate endpoints, predictive markers for clinical benefit. 
Understanding the difference between surrogate and clinical 
endpoints is crucial for selecting the appropriate expedited pathway. 
Surrogate endpoints, like decreased tumor size, predict clinical benefit, 
while clinical endpoints, like longer survival, directly measure it 
(110, 111).
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Fast Track expedites drug reviews for conditions currently lacking 
therapies or showing superiority over existing ones. It encourages 
frequent sponsor-FDA communication, fostering an efficient process 
for quicker patient access. Breakthrough Therapy is suitable for drugs 
demonstrating preliminary evidence on clinically significant 
endpoints. Submission deadlines for Fast Track and Breakthrough 
Therapy are pre-BLA, while Priority Review can be requested at BLA 
submission, with FDA responding within 60 days. This timeline does 
not apply to accelerated approval pathways (112).

Similar to CART, many other forms of IECs have been approved 
recently by FDA on accelerated means. In oncology, accelerated 
approvals have been extensively researched. Using ratings from 
worldwide health technology assessment reviews, one study 
specifically looked at the therapeutic value of cancer medications that 
were granted fast approval between 2007 and 2021. The study 
indicated that nearly 40% of U.S. fast approvals were classified as 
having high enhanced therapeutic value (113).

Since 2014, the FDA has approved more than 10 marketing 
applications for BiTEs to treat hematological and solid malignancies 
through the accelerated pathways (114). The FDA approves other 
immunotherapies like TILs, macrophage targeting therapies, dendritic 
vaccines, and iPSCs through a structured regulatory process through 
the same pathways discussed above for CAR-T therapy from 
submitting an IND application and being eligible for other accelerated 
programs such as Breakthrough Therapy, which is awarded to 
therapies with strong early clinical potential, and Fast Track, which 
encourages regular contact with the FDA.

Regulatory pathways for immunotherapies 
outside the United States

Because distinct timetables and frameworks apply in the US, 
Europe, and China, there are differences in the regulatory procedures 
for immunotherapy approval. The FDA expedites market authorization 
for oncology therapies in the US by utilizing methods such as 
breakthrough therapy designation and accelerated approval, which 
result in considerably shorter review durations. Comparably, the EMA 
has its PRIME plan; yet, in both regions, the median review periods 
for new oncology medicines have increased, despite efforts to expedite 
processes (115). Additionally, the EMA runs a centralized system for 
Advanced Therapy Medicinal medicines (ATMPs), which include 
CAR-T cell therapies. These medicines are subject to hospital 
exemption restrictions for non-commercial, patient-specific goods 
and are examined by the Committee for Advanced Therapies (CAT). 
One permit is ultimately valid for all member states of the European 
Union (EU) as a result of this centralized review. The average review 
time has gone up, sometimes by 74 days, despite the EMA’s attempts 
to speed up procedures, such as conditional marketing authorizations 
(116, 117).

ATMPs are classified as “innovative biological products” by the 
National Medical Products Administration (NMPA), which is in 
charge of China’s immunological regulatory environment. By using 
tools like the Priority Review Pathway and Breakthrough Therapy 
designation, the NMPA has significantly accelerated the licensing 
process for immunotherapies, including CAR-T cell therapies. 
Consequently, China has decreased the time needed for new drug 
applications (NDAs), cutting the review timeframes to 200 days for 

regular applications and 130 days for those with priority review status 
(118). The NMPA also implemented parallel processing for inspections 
and reviews starting in 2020, which expedites the approval process 
even more. China has instituted an “implied license system,” cutting 
the review period for IND (Investigational New Drug approval) 
clearances from 90 days to 60 days, making it one of the quickest 
processes for advancing novel treatments into clinical trials (119).

Economical aspects of immune 
effector cell therapies

Cost factors associated with CAR-T cell 
therapy

Six CAR-T cell therapies have been approved by FDA since 2017, 
tisagenlecleucel for B-ALL under the age of 25 and LBCL, axicabtagene 
ciloleucel for LBCL, brexucabtagene autoleucel MCL, lisocabtagene 
maraleucel for LBCL, Idecabtagene vicleucel for MM, and 
ciltacabtagene autoleucel for MM.

On average, these therapies are priced at a one-time cost of 
$475,000 for B-ALL and $373,000 for B-NHL (120). The actual price 
can vary based on patient condition, healthcare system, and negotiated 
rates with the insurance companies. These high prices are secondary 
to the complex manufacturing process and administration of infusion 
therapy, but the actual price of the treatment can further increase, 
given the requirement of hospitalization, monitoring, diagnostic tests, 
and follow-up post CAR T-cell therapy. Given these large cumulative 
costs of treatment, nations, especially developing and underdeveloped 
nations, are facing a significant challenge to offer this as a treatment 
option to their patients. Even hospitals within the US healthcare 
system are reluctant to offer this treatment, at least in part due to 
complicated reimbursement policies. Previously, treatments like but 
not limited to gene therapy (e.g., voretigene neparvovec, 
onasemnogene abeparvovec-xioi, biologics/biopharmaceuticals, 
immunotherapies) (e.g., pembrolizumab, ipilimumab, nivolumab), 
and proton beam therapy have complicated the reimbursement 
process given their high costs. CAR T-cell therapy significantly 
compounds these challenges and adds to the difficulty for healthcare 
payers to get access to required treatments. Given the next generation 
CAR-T cell therapies are already in development, it may become 
exceedingly difficult to get them reimbursed, with the potential to 
exceed both the public and private ability to pay for these treatments. 
With 18% of American GDP going into health care, CAR-T will only 
add to that economic burden with its growing indications (121).

Expanding further on the complete financial costs of the CART 
therapy, the average sales price (ASP) of one of the most common 
therapies like tisagenlecleucel is around $529,192 as of October, 2024 
data (122). ASP considers discounts, rebates, and other cost saving 
mechanisms available to healthcare payers. Tisagenlecleucel has a 
retail price of $612,745.39, meaning the retail and the ASP prices are 
comparable (123). This further means Medicare is more likely to cover 
this cost due to the structured ASP system with comparable costs. But 
this does not account for other parameters like inpatient stay costs, 
outpatient costs, costs of salvage therapy (mostly chemotherapy), and 
management of complications like CRS or neurotoxicity secondary to 
CART therapy. Hospitals administering CAR-T cell therapy must also 
account for expenses of training staff, certification and monitoring. 
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Given the mean duration of hospital admission post-CART therapy is 
around 15 days, and the incidence of CRS is shown to be around 57 to 
93%, the healthcare costs are quite high (124, 125). These prices can 
further increase if the patients require ICU stay post-CART therapy 
(125). A study showed that the total all-cause health care costs per 
patient, from 30 days prior to 90 days after infusion can be as high as 
$511,139 (125).

Other therapies

Similarly, BiTE Cell therapies are also known to be expensive. The 
most common BiTE therapy, blinatumomab, given for relapsed or 
refractory B-ALL, has a point estimate ASP of $152.178 (122). The 
retail price of the medication is $5,427 per 35 mcg, and the overall cost 
can be as high as $178,000 to $250,000, depending on the number of 
cycles and dosage (126). As apparent, the current market for 
blinatumomab does not have an adequate structured ASP coverage 
system as per 2024, which can contribute to significant financial 
burden to healthpayers. Secondly, this does not account for the cost of 
inpatient stay/outpatient care and further complications associated 
with blinatumomab therapy. Further, studies have shown that patients 
who received blinatumomab have a probability of 40–83% to undergo 
hematopoietic stem cell transplantation in the future (127–129). This 
can have variable costs, depending on the study population, diagnosis, 
perspectives of the analyses, time horizons, and study methods of 
research (130). One study showed all-cause and HSCT-related costs 
up to $394,069 for patients with ALL in the US (131, 132). Adding the 
costs of subsequent salvage chemotherapy and cost of terminal care, 
the treatment prices can reach up to $700,000 to $1,000,000.

Increasing markup pricing of CAR-T cell 
therapy

Medicare is the largest payer for cancer healthcare in the US and 
has chosen to cover CAR T-cell therapies. Medicare Part A is usually 
used with a payment system known as a Diagnosis Related Group 
(DRG). Given the cost of CAR-T cell therapy exceeds far more than 
what Medicare can pay (~$40,000), hospitals apply for outlier payment 
options through which, hospitals usually get ~$26,000 extra for the 
treatment. Additionally, hospitals apply for new technology add-on 
payments, especially available for new and expensive treatments like 
CAR T-cell therapies but this option only covers up to 50% of the 
market price of the drug (i.e., $186,500 out of $373,000). Hence, to get 
complete reimbursement and full extra payment, hospitals mark up 
the price of the therapy, thus increasing the price they charge for the 
drug. Even though these hospitals work within the framework of the 
Centers for Medicare and Medicaid Services (CMS) that establish 
guidelines and prevent fraud and abuse related to billing practices, the 
real price of providing the treatment is often unclear as it depends on 
many things discussed above. This creates ambiguity in the process, 
and hospitals can pay between less than $150,000 and sometimes 
more than $400,000 based on the marked-up price. The legality of 
marking up the cost of treatment is a complex issue and depends on 
various factors, including healthcare regulations, billing practices, and 
compliance with healthcare reimbursement laws. In the end, hospitals 
have the flexibility to not utilize marked up prices and provide the 

therapy at or near cost. That would increase access to this treatment 
while promoting transparency and cost contamination. Another 
option is opting for a site-neutral reimbursement, which gives 
clinicians more flexibility in choosing the setting in which they want 
to administer treatment. Patients and physicians would have an option 
to choose for the most cost-effective place, while ensuring that they 
get reimbursed equitably for their services. Considerations include 
hospitals that might face financial challenges, especially the ones that 
heavily rely on reimbursement rates for inpatient care, quality and 
continuity of care, and access to specialized care given complications 
post-treatment. Ultimately, this is a form of price discrimination 
which exists throughout the healthcare system and further 
transparency of cost is required to better control costs.

Logistics of immune effector cell 
therapies

Besides economics, the major challenge with access to CAR-T cell 
therapy is the logistics of the cryogenic supply chain. CAR-T cell 
therapy access challenges can be divided by creating sub-sections 
within the vein-to-vein window. The vein-to-vein window is defined 
as the timeline between the T-cell collection from the donor and the 
transfusion of the manufactured product to the recipient. In the case 
of FDA approved CAR-T cell therapy at this time, the donor and 
recipient are the same, which complicates the logistics, unlike 
allogenic transplantations used in stem cells, which gives us the 
flexibility to transfuse stem cell products from one donor to multiple 
recipients. Allogenic CAR-T cell therapy products are currently being 
studied and even though they may increase the incidence of adverse 
events associated with this therapy, namely by the potential for 
GVHD, it would make CAR-T cell therapy more readily available to 
recipients with “off the shelf ” availability. While the current 
infrastructure may be sufficient for the existing demand for CAR-T 
cell therapy, due to public expectations and the expansion of CAR-T 
cell therapy beyond R/R hematologic malignancies, and the recent 
approval of CAR-T cell therapy for highly prevalent neoplasms like 
multiple myeloma, which accounts for 1% of total cancers and is the 
second most common hematologic malignancy after lymphoma, the 
challenge has become to scale up manufacturing while expanding on 
cryogenic logistic networks (133).

Understanding supply chain logistics of 
CAR-T cell therapy

The major challenge with the supply chain of CAR-T cell therapy 
is maintaining the-120 degrees Celsius (C) temperature of the 
biological sample during transportation. This temperature is required 
to safeguard the mobility of the sample, preventing its degradation and 
allowing its preservation for longer durations (134). The cryogenic 
transport can be divided into two parts, from patient to manufacturing 
team (collection sample) and from manufacturing team to patient 
treatment (manufactured sample), requiring adequate cryogenic 
preservation. This cryogenic cold packaging, also called dry shippers, 
requires several layers of packaging as a contingency plan to prevent 
rapid thawing and, thus, degradation of the biological sample. Beyond 
that, each package has a data logger and a smart monitor to measure 
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the real-time temperatures of the package. Given that these dry 
shippers are one time manufactured to hold the sample and cannot 
be refrozen in case the temperature starts going above −120°C, these 
shippers undergo rigorous testing to fulfill the GMP standards and 
GDP requirements (135). These standards ensure that the samples are 
authorized for distribution while being transported under the correct 
conditions and prevent contamination of the samples. Here, the 
concept of hold-time comes in, measured by 24-h evaluation 
validation of the substance used in the dry shippers. As most of these 
dry shippers use liquid nitrogen (LN2) as a substance media for 
transport, a suitable volume of LN2 is used to maintain temperatures 
of −150°C to have a sufficient window for error below the critical 
threshold of −120°C while increasing the hold in time. Even with 
these measures, the variability of evaporation rate between dry 
shippers, difficulty in determining the amount of LN2 stored, inability 
to maintain vacuum seal, zeolite sponge degradation, and even tilting 
of the sample can change the hold time of the dry shippers, potentially 
creating a break in the supply chain logistics (136). There has been the 
recent development of LN2-free systems that use electrically powered 
cryocoolers, bypassing many of these possible errors while 
maintaining temperatures below −190°C (137).

These logistic problems coupled with physical, data integrity, and 
regulatory risks, can be addressed and improved upon in a number of 
ways. Rather than having a physical document trace of the 
manufacturing shipment at every transit location, cloud-connected 
monitoring and real-time alert systems should be in place for easy 
GPS tracking of the system and continuous temperature monitoring 
(138). This would help with the digitalization of the data, maintaining 
the data integrity across transport sites. Every sample should 
be  GDP-certified with personnel trained in handling cryogenic 
logistics. Tilting of the samples can be  minimized by bolting the 
samples to a large shipping pallet. Global standard operating 
procedures regarding sample handling requirements should be  in 
place. At the clinical site on delivery, appropriate infrastructure for 
temporary cryogenic storage should be  in place, and backup dry 
shippers should be put in place as a contingency plan. In the end, 
working with partners experienced in cryogenic transportation is 
necessary to scale up this technology to reach the masses.

Furthermore, a major challenge that promptly prevents access to 
CAR-T therapy are the limited number and location of manufacturing 
facilities and the distribution in inpatient tertiary and quaternary care 
centers (139). Expanding CAR-T cell therapy to community-based 
hospitals and outpatient clinics can increase availability and provide 
easy patient access. When required, the insurance providers’ slow 
prior authorization process for CAR-T cell therapy can be a further 
barrier to care (139). As the patients eligible for CAR-T cell therapy 
are the ones who have failed multiple previous treatments, these 
patients tend to be  more ill and deconditioned than the general 
population having cancer. For these patients, prior authorization can 
take weeks to months for completion, which can either make these 
patients ineligible for CAR-T cell therapy due to worsening organ 
function or even death. Streamlining the prior authorization process 
while involving third-party companies to expedite the prior 
authorization may expedite this process, as saving every day for these 
patients is crucial to ensure they receive therapy in a timely manner 
(140). Moreover, prior authorization often requires a patient to 
undergo a series of diagnostic tests to determine the eligibility of the 
patient thereby often further restricting the access to CAR-T cell 

therapies. These requirements are expensive and require careful 
management of each step of prior authorization by the payer. In 
addition, the CMS recently established that insurers providing plans 
under the Medicare Advantage program can establish a “fail first’ 
therapy that requires Medicare patients with cancer to try less 
expensive therapies before qualifying for CAR-T cell therapy (141).

Other IEC therapies also require colder temperatures for storage 
and transport to prevent the degradation of these therapeutics. BiTEs 
are off-the-shelf biologics manufactured using recombinant DNA 
technology (130). They require refrigeration for storage at 
temperatures of 2–8°C (132). Similarly, antibodies from Macrophage-
Targeting Therapies are usually stored at similar temperatures of 
2–8°C and require a cold chain transport (131). This is because 
temperatures of 2–8°C are enough to maintain structural integrity and 
biological activity of antibodies and recombinant DNA’s. Storing them 
at temperatures of less than −150°C can cause cold denaturation and 
aggregation, compromising their efficacy (142). Whereas other 
immune cell effector therapies like TILs, Natural NK Cells, CIK Cells, 
engineered macrophages, dendritic vaccines, iPSC-derived IECs and 
TCR therapies are all living cells, and thus require storage temperatures 
of-150C and cryogenic rather than cold chain transport (143). They 
require the use of cryoprotective agents like dimethyl sulfoxide 
(DMSO) that prevents ice crystal formation and thus protects cellular 
structures. All of these therapies have similar key logistic challenges, 
namely complex manufacturing processes, regulatory and quality 
control issues, cost and scalability, supply chain infrastructure, 
especially the ones requiring cryogenic storage and transport, need for 
trained personnel and coordination between the centers so that the 
therapies get delivered on time.

Ethical considerations

Given the economic and logistical constraints associated with the 
CAR T-cell therapy, key ethical challengers arise. These ethical 
challenges can be divided into pre-market and post-market, based on 
the patient population recruited in clinical trials, the development of 
medication, and the provision of equitable care.

Patient recruitment

Patient recruitment includes following ethical principles and 
guidelines to recruit patients in clinical trials, developing appropriate 
informed consent strategies and managing adverse events. The key 
reason why an ethical dilemma arises in the pre-market phase is due 
to limited availability of slots in clinical trials as compared to the 
patients enrolled/waitlisted. A study done in Canada emphasized that 
in 2018, only one out of the three hospitals in Canada provided 
CAR-T services in the county, which has a population of 37 million 
(144). Additionally, only one manufacturing slot was allotted per 
month due to manufacturing limitations and there was no commercial 
manufacturing site available in Canada. Even with improved 
manufacturing capacity, there is a wait time of 4–6 weeks for apheresis 
and manufacturing, which is quite long given the patient population 
with R/R hematologic malignancies with an aggressive disease biology. 
Even through conditions have improved in recent years, ongoing 
expanding indications of CAR-T cell therapy with the recent approval 
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of constructs in earlier lines of therapy and for more prevalent 
malignancies, including multiple myeloma, there has been a surge in 
the patients waiting for treatment. There is also a substantial 
expectation associated with CAR-T cell therapy through patients and 
their families, that the stakeholders, clinicians and manufacturers are 
trying to manage by accurately communicating the status of clinical 
research and potential risks associated with the therapy (Gene Cell 
Therapy Insights). Furthermore, there has been a surge in these 
medications for “compassionate use,” where manufacturers are 
requested to provide medications through the clinical trial process but 
not yet approved for general use as a standard of care therapy. There 
have also been many off-label requests submitted by patients and their 
advocates for the patients who do not fulfill the inclusion criteria for 
clinical trials. A recent multi-center study done in the US, which 
included 17 centers in the United States offering CAR-T cell therapy 
showed that since the FDA approval of idecabtagene for multiple 
myeloma, the median number of patients per center on the waitlist 
was 20 (range 5–100) and they remain on the waitlist for a median 
time of 6 months (range 2–8 months). Among these 17 centers, 25% 
patients died while waiting for their turn to receive treatment (80). 
Given the underlying demand not being able to meet the supply for 
the above-mentioned reasons, it is imperative to have ethical 
procedures in place to justify the equitable use of this novel therapy. 
The study done in Canada recruited a multidisciplinary cell therapy 
team including researchers, disease group leaders, and learners, 
patients, and other personnel with an operational or bioethical roles 
in the CAR-T processes (144). Accountability for Reasonableness 
(A4R) was used by this panel to identify the criteria of prioritization 
of patients to receive CAR-T therapy. After detailed discussion, four 
emergent themes were finalized, based on their decreasing level of 
weight. This included if the intent of therapy had curative potential, 
safety/risk of complications, psychosocial factors like non-compliance/
lack of adherence, or medical urgency for treatment. Further, they 
shared the medical benefits assessment tool and safety/risk and 
non-weighted psychosocial assessment tool they used to classify 
patients (144). Similar results were seen in the multi-center study done 
in the US on patients with MM, where the most weight was given to 
the patients who would benefit the most from the CAR-T cell therapy 
(145). The goal is to ultimately make the recruitment process more 
standardized, as before the use of guidelines, the decisions were 
primarily based on perceived medical needs. This complicated the 
patient selection process as prioritization was at times largely 
influenced by the vigor of patient advocacy rather than guidelines. 
Currently, the ethical guidelines vary from institute to institute and 
the eventual goal would be to have a point-based system for CAR-T 
cell therapy, just like we use the United Network for Organ Sharing 
(UNOS) for organ transplantation. The UNOS is a point- based 
system for organ allocation in the USA which allows priority to the 
worst and maximizing total benefit (145). Unfortunately, reaching a 
universally agreed upon consensus across institutions nationwide will 
remain a challenge.

Provision of equitable care

Given its high cost and geographical constraints and limited 
availability throughout the US, CAR-T cell therapy poses significant 
challenges in terms of healthcare disparities. Even though the average 

one-time cost of CAR-T cell therapy ($373,000–$475,000) has been 
considered reasonable by health economy assessments as per 
Incremental Cost-Effectiveness Ratio (ICER) and National Institute 
for Health and Care Excellence (NICE), this cost does not include 
handling toxicities post-treatment, inpatient stay, and regular 
follow-up investigation (146, 147). In the registrational trials for 
tisagenlecleucel, all patients experienced at least one adverse effect, 
with 84% (57/64) experiencing grade 3 (severe) or above adverse 
effects due to CAR-T therapy (7). The registrational trials for 
axicabtagene ciloleucel showed similar results with all patients having 
at least one adverse effect, and 94% (102/108) patients having grade 3 
or above adverse effects (185). The most common of these adverse 
effects was CRS, happening in 79 and 94% patients, respectively, for 
tisagenlecleucel and axicabtagene ciloleucel. Managing these 
complications often warrants further in-hospital admission for the 
administration of CAR-T cell therapy, further adding to the cost (148). 
As a result, the estimated total cost of CAR-T cell therapy is $1.2 
million (149). The limited number of sites offering CAR-T cell therapy 
also significantly adds to the economic burden, with out-of-pocket 
expenditure on transportation and prolonged lodging (as patients 
usually need to stay close to the site for at least 2–4 weeks post-
administration) (150). These high costs primarily ensure access to 
CAR-T cell therapy solely for the wealthy and well-insured. Inadequate 
insurance coverage limiting the ability to pursue CAR-T cell therapy 
is a pivotal example of therapy unfairly stratified on socioeconomic 
terms. Given the high resource requirements of this therapy, its access 
is even further limited in developing/under-developed nations. 
Manufacturers should ensure that need/potential benefit should come 
first rather than the ability to pay. While many private health insurance 
plans will cover part of the cost for CAR-T cell therapy, the plan may 
not include deductibles and other expenses to be paid out-of-pocket 
expenses. The situation for public funded insurers is similar. Medicare 
will cover the cost CAR T-cell therapy based on the standard of care 
indication, while in contrast Medicaid covers it in only few states (141).

Disparities in patient’s access

The widespread availability of CAR T cell therapy, despite recent 
advancements, is hindered by various challenges, notably impacting 
minority groups and those from lower economic backgrounds.

Disparities in patient’s access are evident across different cancer 
types. Multiple studies and recent analysis of 126 clinical trials on 
DBCL with CAR-T and BiTE therapies revealed that only 8% of the 
participants were African American (AA) and 92% white predominant 
(151–153). Similar underrepresentation was shown among patients 
with MM. A study by Ahmed et al. evaluating disparities in CAR-T 
cell therapy recipients revealed significant underrepresentation of AA, 
Hispanic, and Asian patients in clinical trials. For instance, in trials for 
MM treated with CAR-T cell therapy, only 1% of participants were 
AA, despite representing 20% of myeloma cases. Hispanic 
representation was similarly low at 5.4%, while white individuals were 
overrepresented, comprising 65% of the MM patient cohort (153). 
Karmali et al. had similar findings on patients with aggressive B-cell 
lymphomas. They revealed great underrepresentation of AA and 
Hispanics in this patient cohort as well (152). Additionally, Hadidi 
et al.’s observations indicated stark disparities affecting Black patients, 
with AAs constituting only 4% of DLBCL patients and 6% of MM 
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patients (154). This underrepresentation is particularly concerning 
given the higher prevalence and earlier onset of certain cancers like 
MM in AAs and Hispanic populations, coupled with delayed access 
to innovative treatments (155, 156).

Consequently, these patients, already disadvantaged in terms of 
cancer incidence and mortality, face additional challenges in accessing 
advanced treatments. One explanation for this is that geographic 
distribution of clinical trials for CAR T-cell therapy, which did not 
include 60% of the states with the highest proportion of AA residents 
(157). Recently approved therapy of the TIL, lifileucel, is only available 
in 30 centers in the US. Some of the therapies such as CIK or NK cell 
therapies are mostly limited to early-stage clinical trials or available 
outside of the US (158). Other barriers include research mistrust, 
elevated trial participation costs, and restrictive enrollment criteria 
(159, 160). These findings underscore the need for more efforts to 
understand and address the lower rates of CAR-T cell therapy among 
minority groups.

Moreover, socioeconomic factors play a pivotal role in 
determining access to CAR T-cell therapy. Key elements include 
insurance coverage and the associated out-of-pocket costs, which can 
be prohibitively high. The expense of CAR T-cell therapy, ranging 
between $373,000 and $475,000, can be  unaffordable for many, 
particularly those lacking adequate financial support or comprehensive 
insurance coverage (161). The mentioned above, lifileucel, will cost 
$515,000 according to manufacturer. Other expenses related to 
effector cell therapies were ranging between $373,000 to $475,000 and 
$72,000 for CAR T-cell and BiTEs therapies, respectively. Even 
though, the latter may seem to be more affordable option, it can be as 
costly as CAR T-cell therapy over time, especially for patients in long-
term remission. The need for transplant consolidation, often excluded 
from short-term cost analyses, further adds to the expense (162, 163). 
The extent of insurance coverage, especially the distinction between 
private and public coverage, remains in need of increased transparency. 
Furthermore, there is a notable lag in insurers and governments 
covering new, cost prohibitive therapies like CAR T-cell therapy. For 
instance, although tisagenlecleucel was approved in the United States 
in August 2017, Medicare did not issue a national coverage 
determination until August 2019 (161). A major burden arises from 
out-of-pocket expenses, with distance and time to the nearest 
administering facility being a significant cost for transportation (164). 
CAR T-cell and BiTEs therapies are available in less than 4% of 
U.S. healthcare facilities, predominantly large academic centers and 
with less than 11% in non-urban environment (165). It was also 
shown that only 10 out of 31 states in the US had open CAR-T or BiTE 
trials (151, 166). Snyder et al. discovered that out of 3922 patients 
qualified for CAR T-cell therapy, over 37% had to travel for more than 
an hour to reach the closest academic hospital. These centers must 
undergo a rigorous onboarding process, including staff and patient 
education about the therapy’s significant toxicities, as part of a risk 
evaluation and mitigation strategy enrollment (167). These safety 
monitoring processes, while essential, can lead to substantial out-of-
pocket expenses. For example, one study showed an average cost of 
$5,368 for both caregiver and patient, with higher costs ($7,191) for 
those in rural areas (164). This financial burden significantly limits 
access to CAR T-cell therapy. Ahmed et al.’s study revealed that only 
7.3% of CAR-T cell therapy-related admissions were from patients in 
neighborhoods with an average income below $40,000 (153). Nearly 

one-third of CAR-T cell recipients lived more than 2 h away from the 
treatment center, primarily from higher socioeconomic backgrounds. 
The study also found fewer Medicare and uninsured patients in the 
CAR-T therapy group, highlighting insurance coverage as a significant 
determinant of therapy access (153). To overcome these obstacles, 
multiple strategies, such as increasing the number of sites offering 
CAR-T cell therapy and expanding local lodging, food, and 
transportation provisions for minorities are necessary.

A 24-question survey done in 2023 (TACTUM-23) which 
involved referring-center oncologists and treating-center oncologists 
for CAR-T therapy and BiTEs for the treatment of multiple myeloma 
(168). This survey showed that the top barriers to CAR-T cell therapy 
were the number of production slots (69%), followed by insurance/
financial toxicity (15%), hospitalization requirements (8%), and 
manufacture time (8%). Similar responses for the top barrier to BiTE’s 
was hospitalization requirements (63%), toxicity monitoring 
requirements (13%) and, weekly dosing at specialized centers (17%). 
Proposed solutions include allogenic products, decentralization and 
point-of-care production of these therapies, developing all outpatient 
regimens, and rapid manufacturing platforms. Regardless, the 
American Society for Transplantation and Cellular Therapy 
recommends a referral to these centers for patients with cancer 
recurrence (169).

Nonetheless, many therapies have shown economic promise 
compared to other standard therapies currently in the market. Cost-
utility analysis in an open-label, randomized phase 3 clinical trial 
comparing TILs and ipilimumab for unresectable melanoma showed 
total lifetime undiscounted costs of €347,168 for TIL therapy 
(including the production costs) and 3.52 quality-adjusted life years 
as compared to €433,634 and 2.46 QALYs for ipilimumab (79). 
Another study showed a dominant incremental cost-effectiveness 
ratio favoring TILs as compared to ipilimumab, adding to the previous 
literature (79). Similarly, studies have shown that the median cost for 
patients receiving induction and consolidation therapy for AML was 
€ 32,648 (range: € 4,759–€ 140,383). These costs go up to € 88,635 
(range: € 23,392–€ 215,119) when standard therapy is followed by 
immunotherapy using dendritic cells engineered to express the Wilm’s 
tumor protein is added to the regimen (170). DC vaccines are more 
complicated to manufacture secondary to the requirement of antigen 
loading, which is unlike that of CIK cells, iPSC cells, and NK cells 
(171). Regardless, limitations like ex vivo generation, quality control, 
transportation, storage, culture systems, regulatory compliance, and 
scalability continue to be  significant logistical limitations to all 
immune cell effector therapies (Table 1).

Global disparities in access to immune 
effector therapies

CAR T cell therapy remains to be  the most common IEC; 
however, its global availability remains significantly constrained, 
despite its initial FDA approval for specific malignancies in 2017. 
While the adoption of CAR T-cell therapies has risen in the US, 
Europe, and China, global access remains scarce. This limitation is 
likely influenced by various factors, some intrinsic to the therapy 
itself and others specific to individual regions or countries (166). 
Previous investigations have identified critical barriers to the 
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TABLE 1 Summary of FDA approved immune effector cell therapies.

ICE Product Year approved Target Clinical trial Efficacy Safety 
profile

Overall survival Progression free 

survival

Grade 3 or 

higher CRS

Grade 3 or higher 

neurologic events

CAR-T Cell Axicabtagene ciloleucel (axi-cel) LBCL-2022 Relapsed  

LBCL- 2017 Relapsed  

FL- 2021

CD19 ZUMA-1 (185) 52% 5.8 months 13% 28%

ZUMA-5 (186) NR 40.2 months 7% 19%

ZUMA-7 (187) 61% 14.7 months 6% 21%

Tisagenlecleucel (tisa-cel) LBCL- 2018 FL- 2022  

R/R B-ALL- 2021

CD19 BELINDA (188) NR 3 months 5.2% 1.9%

ELARA (13) NR NR 48.5% 37.1%

JULIET (17) 49% 65% 22% 12%

ELIANA (15) 76% 50% 77% 40%

Lisocabtagene maraleucel (lisa-cel) Relapsed LBCL- 2021  

Refractory LBCL-2022

CD19 TRANSCEND (19) 18.8 months NR 2% 10%

TRANSFORM (189) NR 10.1 months 1% 4%

PILOT (190) NR NR 1.65% 4.89%

Brexucabtagene autoleucal (brex-cel) R/R Mantle Cell  

Lymphoma- 2020  

R/R B-ALL- 2021

CD19 ZUMA-2 (191) 46.6 Months 25.8 Months 12% 20%

ZUMA-3 (192) 12.1 months NR 33% 11%

Idecabtagene vicleucel (ide-cel) RRMM-2021 BCMA KarMMa (16) 19.4 Months 8.8 months 5% 3%

KarMMA-3 (12) 12.4 Months 13.3 Months 5% 3%

Cilatacabtagene autoleucel (cilta-cel) RRMM-2022 BCMA CARTITUDE-4 (193) 75.9% 1.1% 2.8%

CARTITUDE-1 (194) 89% 77% 4% 9%

BiTEs Blinatumomab Refractory B ALL- 2014 CD3 and CD19 TOWER (195) 7.7 months 31% 4.9% 9.4%

Emicizumab-kxwh Hemophilia A with factor VIII 

inhibitors- 2017

Factor IX and X HAVEN 1, 2, 3 87% difference in 

bleeding events

NR NR NR

Amivantamab-vmjw Metastatic small cell lung cancer- 2021 MARIPOSA (196) NR 23.7 months NR NR

Tebentafusp-tebn Metastatic uveal melanoma- 2022 anti-CD3 effector, 

glycoprotein 100–positive cells

NCT03070392 (73) 73% 31% 1% NR

Faricimab-svoa Age related macular degeneration- 2022 VEGF-A and angiopoetin-2 TRUCKEE (197) BCVA +1.1 Mean 

CST reduction 

−31.3uM

NR NR NR

Teclistamab-cqyv RRMM- 2022 CD3 MajesTEC-1 (198) 18.3 months 11.3 Months 0.6% 0.6%

Mosunetuzumab-axgb RRMM- 2022 CD3 and CD20 NCT02500407 (199) 11.8 months 1% 4.1%

Epcoritamab-bysp RR DLBCL, 2023 CD3 and CD20 NCT03625037 (200) 4.4 months 2.5% 0.6%

Glofitamab-gxbm RR DLBCL 2023 NCT03075696 (201) 4.9 months 4% 3%

Tarlatamab Small cell lung cancer- delta-like ligand 3 and CD3 DeLLphi-301 (114) 14.3 months NR 97–100% 58–65%

Elranatamab B-cell maturation antigen 

(BCMA)-CD3 bispecific 

antibody

Magnetis MM-3 (202) 12.4 months 4.6 months 0 0

TIL Lifileucel Advanced melanoma- 2024 C-144-01study (203) 13.9 months 4.1 months 0.6% 0.6%
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global adoption of CAR T-cell therapies, including patient 
eligibility, the scarcity of treatment centers, economic 
considerations, logistical challenges, manufacturing constraints, 
regulatory hurdles, and a lack of expertise in managing therapy-
related toxicities (166).

The current available CAR-T cell therapies have usually been 
limited to large academic centers, thus this creates a lack of access due 
to geographical barriers, that vary widely among countries, as patients 
need to reside close to the respective academic center to get an 
effective treatment (139). An example of the wide variation of 
geographical constraints among countries can be  elucidated by 
contrasting, a prior study in Peru, that described higher mortality 
rates in provinces with prolonged travel time to a healthcare facility 
among pediatric patients with leukemia (172). Whereas, in the US, it 
is estimated that 46.7% of the population resides within 30 min of a 
transplant center and 93.9% of the population can reach a transplant 
center within 180 min, bearing in mind that most of the CAR-T cell 
therapies are available in those facilities (173). An interesting approach 
to improve the geographical barriers is the implementation of CAR-T-
capable outpatient centers, given the growing evidence that supports 
its safety when administrated in the ambulatory setting (174).

Furthermore, clinicians’ perceptions regarding CAR-T cell 
therapy’s availability must be  considered. For instance, a recent 
survey conducted by Atallah et al. revealed that, in the context of 
CAR T-cell therapy for refractory MM, physicians in France, 
Morocco, and Saudi Arabia reported easy access to novel CAR T-cell 
therapies (175). Additionally, The Asia-Pacific Blood and Marrow 
Transplantation Group reported that CAR-T cell therapy was 
accessible in only 9 out of 19 countries/regions represented by their 
participants, with nearly half of them available solely through clinical 
trials (161, 176).

An additional significant impediment to the widespread adoption 
of CAR-T cell therapy is the overall dearth of decentralized research. 
Most clinical trials are conducted between the US, Europe, and 
China, with minimal activity in India, Mexico, Brazil, and Argentina, 
and none in Africa (1, 8). Kumar Suvvari et al., reported that the 
CAR-T cell therapy trials are already limited due to factors, namely 
high cost, and technical requirements (177). Notably, it is not 
surprising that these limitations are more pronounced in other 
countries, especially middle and low-income ones, where the 
available research funds are reserved for other country-specific 
priorities, and CAR-T cell therapy is not classified as essential or cost-
effective at this time (164, 166). Therefore, it is expected that initially 
the availability of CAR-T cell therapy will be restricted to the private 
sector in many countries, worsening the economic disparities 
(166, 178).

Remarkably, a recent study by Elsallab et al. demonstrated that the 
current demand for autologous CAR-T cell products has surpassed 
the production capacity of centralized manufacturing sites, further 
limiting global access (166, 179). Improvement in access is expected 
in the near future as India is currently undergoing a phase III clinical 
trial with a strategy to manufacture CAR-T cells and reduce the cost 
of the therapy while increasing the availability to those in need 
worldwide (180).

It is imperative to undertake worldwide efforts aimed at enhancing 
research, accessibility, and manufacturing of CAR T-cell therapy to 
address global disparities, enhance patient outcomes, and advance the 
development of superior immune effector therapies. A good example 

of this is the creation of interest groups that advocate for access to 
CAR-T cell therapies, like the Global Gene Therapy Initiative (GGTI) 
or the Latin American Consortium collaboration with Caring 
Cross (181).

Regarding, other IEC therapies, like CAR-NK, TCR or TIL 
therapy. It has been proposed that the CAR-NK therapy could be more 
adaptable to different contexts, given its off-the-shelf availability, safety 
and manufacturing cost (182). However, more research is needed to 
evaluate its adaptability, and cost-effectiveness outside the 
US. Specially as most of the current global clinical trials, and 
governmental efforts are focused only on CAR-T cell therapy, and/or 
exclude other IEC therapies (183, 184).

Conclusion

We conclude with summary of the complex social, economic, 
logistical, and regulatory challenges restricting access to IEC therapies. 
Despite expedited FDA programs, regulatory processes often cause 
harmful delays for urgent treatments. Economically, the high costs of 
manufacturing and infrastructure create significant barriers, with 
treatment prices posing severe financial challenges. Inconsistent 
insurance coverage, a lack of pricing transparency, and high out-of-
pocket expenses further limit access.

Logistically, maintaining ultra-low temperatures during 
transportation is crucial but challenging. Limited manufacturing 
facilities and treatment centers, primarily in large academic 
institutions, restrict access for rural and underdeveloped regions. 
Expanding therapy to community hospitals and outpatient settings 
and streamlining prior authorization processes could 
improve accessibility.

Socially, minority groups and lower socioeconomic 
backgrounds face pronounced disparities. Studies highlight the 
underrepresentation of AA, Hispanic, and Asian patients in clinical 
trials. Efforts to improve access must include increasing treatment 
centers, enhancing patient and caregiver support, and ensuring 
transparent insurance policies.

The field is rapidly evolving, with ongoing research and expanding 
indications promising improved outcomes and broader access. 
Furthering global collaborative efforts between healthcare institutions 
and IEC manufacturers are crucial to addressing these barriers and 
ensuring cellular therapy reaches all eligible patients.
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