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Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular 
remodeling with high pulmonary pressure, which ultimately leads to right heart 
failure and premature death. Emerging evidence suggests that both hypoxia and 
epigenetics play a pivotal role in the pathogenesis of PAH development. In this 
review article, we summarize the current developments in regulation of hypoxia 
inducible factor (HIF) isoforms in PAH vascular remodeling and the development 
of suitable animal models for discovery and testing of HIF pathway-targeting 
PAH therapeutics. In addition, we also discuss the epigenetic regulation of HIF-
dependent isoforms in PAH and its therapeutic potential from a new perspective 
which highlights the importance of HIF isoform-specific targeting as a novel 
salutary strategy for PAH treatment.
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1 Introduction

Pulmonary arterial hypertension (PAH) is a rare, life-threatening disorder associated with 
progressive elevation in pulmonary arterial pressure due to increased pulmonary vasculature 
resistance that leads to right heart failure and death (1–3). Pulmonary vascular remodeling is 
the key hallmark of PAH, which is driven by a combination of vasoconstriction, proliferation, 
inflammation, vascular stiffness, and thrombosis resulting in pulmonary vascular resistance 
(3). Despite extensive research in this area, the underlying mechanisms of PAH progression 
are incompletely understood. Current therapies are limited to the targeted pathways that only 
control vasocontraction, i.e., nitric oxide, prostacyclin and endothelin signaling (4). However, 
even a combination of therapies only improves symptoms and hemodynamics but fails to 
alleviate eventual right heart failure. Further understanding of vascular remodeling pathways 
can facilitate the development of appropriate vascular animal models for drug testing and 
accelerate the search for novel therapeutics against PAH.

PAH development can be linked to a multitude of pulmonary vascular insults such as 
hypoxia, genetic factors, environmental factors, drugs and toxins, etc. (4, 5). In addition, 
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several molecular pathways have been reported to be associated with 
PAH development (5). It is, therefore, essential to identify specific 
‘master’ pathways that are key triggers for PAH. Among all, Hypoxia 
inducible factor (HIF) signaling has been shown to be  a crucial 
pathway in PAH pathogenesis (6, 7). Since the HIF pathway contains 
an abundance of key signaling molecules, a detailed and systematic 
analysis of the molecules and regulatory mechanisms involved is vital 
to facilitate identification of specific therapeutic targets (8). In 
addition, apart from critical molecular targets it is also necessary to 
identify cellular phenotypes that contribute to PAH pathogenesis and 
understand their association with the HIF pathway.

In this review, we  will further our understanding of the HIF 
pathway and its epigenetic regulation while discussing the 
development of suitable animal models for discovery and testing of 
HIF pathway-targeting PAH therapeutics.

2 HIF in PAH

2.1 Biology of HIF signaling; role of hypoxia 
and inflammation in triggering HIF 
signaling

HIF is one of the major transcription factors and a master 
regulator for detecting and adapting to cellular oxygen levels, thereby 
transcriptionally activating the genes that modulate oxygen 
homeostasis and metabolic activation. It acts as a heterodimeric 
complex, composed of the oxygen-sensitive HIF-α subunit which 
includes HIF-1α, HIF-2α (EPAS1) and HIF-3α, and oxygen-insensitive 
HIF-β subunits including HIF-1β [aryl hydrocarbon receptor nuclear 
translocator (ARNT1, ARNT2, and ARNT3)] (9). Under normoxia, 
E3 ligase VHL protein binds to the HIF-α subunits upon hydroxylation 
by Prolyl Hydroxylase Domain proteins (PHDs) and Factor Inhibiting 
HIF (FIH), thus activating the ubiquitin ligase system, and leading to 
proteasomal degradation of HIF-α. However, under hypoxia, the 
PHDs are inactivated, leading to the attenuation of HIF-a stabilization 
and dimerization of HIF-1b, which forms an active HIF complex. 
Upon complex formation, HIF translocate to the nucleus and binds to 
the E-box-like hypoxia response elements (HREs) to induce gene 
expression which are involved in various cellular processes such as 
angiogenesis, erythropoiesis, regulation of vascular tone, cellular 
metabolism, proliferation, cell survival (9–11) (Figure  1). In 
pulmonary vasculature, angiogenesis is a repair program where 
endothelial cells (ECs) form new vessels by angiogenic sprouting 
which usually occurs after primary vascular plexus formation (9). 
VEGF is known as a master regulator of angiogenesis and under 
hypoxia, both VEGF and HIF-1α/HIF-2α are transcriptionally 
upregulated, promoting angiogenesis (12–14).

Besides oxygen-dependent HIF activity, HIF is also activated by 
inflammatory cytokines, bacterial products, and growth factors under 
normoxia conditions (15). To date, among all HIF-α, HIF-1α is 
predominantly expressed in both innate and adaptive immune 
populations including neutrophils, macrophages, dendritic cells, and 
lymphocytes (15, 16). In addition, HIF-2α expression is limited to 
certain range of endothelial cells and tumor associated macrophages 
including CD8+ T cells under hypoxia conditions (17). The 
orchestrated processes of HIF regulation modulate inflammation and 
govern the plethora of signaling pathways and gene expression in 

numerous physiological responses to hypoxia and the pathogenesis of 
various lung vascular diseases, including lung cancer, chronic 
obstructive pulmonary disease (COPD), pulmonary fibrosis, and 
pulmonary arterial hypertension (PAH).

2.2 HIF contribution to PAH: clinical 
evidence, role in metabolic 
reprogramming, inflammation, vascular 
cell senescence, vascular biology, 
remodeling

Chronic hypoxia is one of the major contributing factors to the 
development of pathological condition in PAH. It encompasses 
inflammation, metabolic reprogramming and vascular cell senescence 
which are governed by gene expression and has an adverse impact on 
pulmonary vascular remodeling. Several studies support the crucial 
role of HIFs in chronic hypoxia-induced PAH (7, 18). In PAH, HIFs 
are involved in the regulation of cell proliferation, migration, and 
pulmonary vascular remodeling. Activation of HIFs is evident in 
different categories of PH, including group I PH and PH-associated 
chronic lung diseases (such as COPD, pulmonary fibrosis, and chronic 
high-altitude exposure) (19–24). Studies reported that compared to 
HIF-1α, HIF-2α significantly impacts pulmonary arterial remodeling 
and the development of PAH (8, 25, 26). Preclinical studies on HIF-2α; 
inhibitors PT7567 and C76 showed that they reduced the severity of 
PH in Sugen/hypoxia rats via reducing hemodynamic parameters (8, 
27, 28). Recently, overexpression of HIF-2α was reported in lung 
pericytes of PAH patients (29), highlighting the importance of HIF-2α 
in pulmonary vasculature remodeling.

Studies show that in PAH, HIF orchestrates the immune/
inflammatory dysregulation in response to hypoxia condition which 
profoundly changes pulmonary arterial endothelial cells (PAECs) and 
pulmonary arterial smooth muscle cells (PASMCs) phenotype in 
vascular remodeling (25, 30). The release of inflammatory mediators 
and inflammatory cells are accelerated by HIF (17). For example, in 
hypoxia-induced PAH, upon invasion of macrophages and 
neutrophils, HIF-1α is known to promote macrophage proliferation, 
chemotaxis and infiltration and induces the release of cytokines (17). 
In addition, studies reported that HIF and nuclear factor-κB (NF-κB) 
are the key transcriptional regulator which are jointly involved in the 
initiation of inflammation of PAH vasculopathy under hypoxia (30, 
31). HIF-1α expression is upregulated by the p65 and p50 subunits of 
NF-κB which bind to the HIF-1α promoter (26). In hypoxia-induced 
PAH, studies show that inhibition of the TNF-α/NF-κB/HIF signaling 
pathway inhibits angiogenesis via decreasing the HIF-dependent 
activation (32). Studies also show that increased CD146 expression 
through NF-κB/HIF mediated cascades promotes synthetic changes 
in PASMCs which are associated with PAH (27). Taken together, HIF 
signaling plays crucial roles in regulation of inflammation, metabolic 
reprogramming, and vascular remodeling in PAH.

Metabolic aberrations have also been identified as a crucial 
component involved in the disease progression of PAH (28, 29, 33). 
HIF is the master regulator that controls the metabolic reprogramming 
in response to hypoxia (33). Studies show that in PAH PAECs, both 
HIF-1α and HIF-2α contribute to modify the metabolic phenotypes 
by regulating the expression of mitochondrial enzymes such as 
pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A 
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(LDHA), Hexokinase 1,2 (HK1,2) and Glucose transporter 1,3 
(GLUT1,3) to regulate Warburg effect (aerobic glycolysis) and 
anerobic glycolysis (33, 34). A study reported that increased expression 
HIF-1α modulates the metabolic shift in the endothelial cells (ECs) of 
IPAH patients due to decreased nitric oxide (NO) levels with reduced 
superoxide dismutase activity (SOD) (35). In addition, various studies 
identified that in PAH, HIF-1α has a close association with 
mitochondria. It is reported that activation of HIF-1α by cobalt 
chloride or deferoxamine can lead to mitochondrial fission and 
subsequent modulation of mitochondrial plasticity in PAH SMCs (36).

In addition, iron deficiency is also one of the metabolic factors 
reported in PAH population (37). A transcriptional target of HIF, 
microRNA-210 (miR-210) was found to cause iron deficiency in PAH 
PAEC via hypoxic repression of iron–sulfur (Fe-S) cluster assembly 
protein 1 and 2 (ISCU) (33, 38). In contrast, upregulation of miR-210 
by HIF-1α increases survival of PASMCs via targeting of the E2F3 
transcription factor (39). With regards to HIF-2α, it was observed that 
patients with Chuvash polycythemia showed HIF-2α gain-of-function 
mutations associated with PAH development and symptoms such as 
elevated heart rate and pulmonary ventilation related to metabolic 
aberrations (40–42). In addition, studies show that octamer-binding 
transcription factor (OCT4) expression is driven by HIF-2α through 
miR-130/131-mediated downregulation of peroxisome proliferator-
activated receptor-γ (PPARγ), resulting in increased proliferation of 
PAECs and PASMCs in PAH (43).

Another factor which also involved significantly in vascular 
remodeling in PAH is cellular senescence. Cellular senescence is 
having a crucial contribution in several vascular diseases, such as 
coronary artery disease, stroke, myocardial infraction and PAH (44, 
45). Mostly the senescent vascular endothelial cells are not identified 
in the normal lesions; they are predominantly present in the plaque of 
human atherosclerosis which also leads to the endothelial dysfunction 
and resulting PAH (46). It has been established that vascular cell 

senescence plays a major role in the contribution of vascular 
remodeling and PAH development (47–49). So far, the primarily 
senescence marker in PAH mainly focuses on p21, p16, p53 and BCl2 
and their expression is well studied in animal models as well as in PAH 
patients (45). However, only few studies reported that HIF signaling 
also contributes to the vascular senescence in PAH (50). Among HIFs, 
the crucial role of HIF-1α is primarily observed in endothelial cell 
(EC) senescence phenotype development and the progression of 
atherosclerosis (51–54). Emerging evidence reported that HIF-1α and 
mir-126 plays critical role in EC senescence and it has been proposed 
that they are new markers of EC senescence progression (55). In 
addition, other studies revealed that differential expression of HIF-1α/
HIF-2α and P53 was identified in PAEC and PASMC in hypoxia-
induced PAH animal models, which demonstrated the HIF pathway 
and P53 crosstalk in the vascular cell senescence and PAH 
development (50). Hence, based on the above evidence we  can 
demonstrate how HIF pathway is crucial for vascular remodeling and 
can be used for developing a new drug for the treatment of PAH by 
targeting HIF pathway and specific HIF animal and cell specific 
animal models.

2.3 HIF-1α vs. HIF-2α: common vs. 
antagonistic roles in PAH, evidence from 
animal and cell-specific models

Considering the multitude of cellular and mechanistic roles of 
HIF contribution in PAH, it is evident that the use of HIF knockout 
mouse models is a practical approach to gain valuable insights on 
the HIF pathway involved in hypoxic adaptation of the pulmonary 
vasculature and PAH development (Table  1). Previously, studies 
reported that the HIF pathway genes are playing a critical role in 
embryonic development; however, biallelic deletion in these genes 

FIGURE 1

A schematic representation of HIF regulation in pulmonary arterial hypertension [adapted from Wan et al. (133) and Pullamsetti et al. (7)].
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TABLE 1 A summary table for HIF signaling related animal model in PH.

Gene Genotype Disease 
model

Time 
period of 
survival

Tissue/cell 
deletion

RVSP 
(mm 
Hg)

RV 
remodeling

PA 
remodeling

References

Hif-1α Hif1α−/+ Hypoxia 3 weeks Global/constitutive (59)

Hif-1α EC Alkcre-Hif1αfl/fl Hypoxia 3 weeks EC/constitutive — — — (68)

Hif-1α EC Tie2CreERT-Hif1-αfl/fl Hypoxia 3 weeks EC/inducible 

(Tam)

— — — (63)

Hif-1α SMC SM22αCre-Hif1αfl/fl Hypoxia 3 weeks SMC/constitutive — NA (64)

Hif-1α EC Cdh5CreERT-Hif1αfl/fl Hypoxia 3 weeks EC/inducible 

(Tam)

NA (134)

Hif-1α PdgfrβCreERT2-Hif1αfl/fl Hypoxia 3 weeks MC/inducible 

(Tam)

NA (134)

Hif-1α Cx3cr1Cre-Hif1αfl/fl Hypoxia 3 weeks Mono/constitutive (135)

Hif-1α LyzMCre-Hif1αfl/fl Hypoxia 3 weeks Myeloid cells (136)

Hif-1α SMC SmmCreERT2-Hif1αfl/fl Hypoxia 4 weeks SMC/inducible 

(Tam)

— (66)

Hif-1α UbcCreERT-Hif1αfl/fl Hypoxia 5 weeks Global/inducible 

(Tam)

— NA — (60)

Hif-2α EC AlkCre-Hif2αfl/fl Hypoxia 3 weeks EC/constitutive (68)

Hif-2α ECTie2CreERT-Hif2αfl/fl Hypoxia 3 weeks EC/inducible 

(Tam)

(64)

Hif-2α SMC SMCre- Hif2αfl/fl Hypoxia 3 weeks SMC/inducible 

(Tam)

— NA — (63)

Hif-2α EC Cdh5Cre- Hif2αfl/fl Hypoxia 4 weeks EC/constitutive (60, 62)

Hif-2α Hif2α −/+ Hypoxia 4 weeks Global/constitutive (58)

Hif-2α Hif2α −/+ Hypoxia 4 weeks Global/constitutive NA (8, 137)

Hif-2α Hif2α −/+ Hypoxia 4 weeks Global/constitutive NA NA (138)

Hif-2α Global UbcCreERT-

Hif2αWT/fl

Hypoxia 5 weeks Global/inducible 

(Tam)

— — (60)

Hif-2α EC Cdh5Cre-Hif2αfl/fl Normoxia 3, 6, and 

9 months old

EC/constitutive NA (66)

Hif-2α Hif2αG536w/G536w Normoxia 4–6 months 

old

Global (67)

Hif-2α ThCreERT2-Hif2αfl/fl Hypoxia 3 weeks CAC/constitutive — (139)

Hif-1α/

Hif-2α

EC Cdh5Cre- 

Hif1α/Hif2αfl/fl

Hypoxia 4 weeks EC/constitutive (22)

Hif-1α/

Hif-2α

Hif1α/Hif2αMyh6Cre Hypoxia 4 weeks Cardiomyocyte/

constitutive

— — (140)

Hif-1α/

Hif-2α

EC Cdh5Cre- 

Hif1α/Hif2αfl/fl

Bleomycin 4 weeks EC/constitutive (16)

Egln1 Egln1Tie2Cre Normoxia 3 months EC/constitutive 72 0.85/RV failure (61)

(Continued)
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is embryonically lethal (14, 56, 57). For example, double deletion of 
Egln1−/−, Hif2a−/−, and Vhl−/− mice are all embryonically lethal. 
In contrast, adult mice with heterogenous deletion of Hif1α and 
Hif2α are protected from hypoxia-induced PH development (58, 59). 
One study from Hu et al. reported that the mice with global deletion 
of Hif1α and Hif2α failed to survive under hypoxia-induced PH (60).

To further dissect the cell-specific role of HIF pathway components 
in PAH pathogenesis, numerous studies have used cell-specific 
knockout mouse models to study vascular remodeling. For instance, 
the PHD2, encoded by EGLN1, is a crucial isoenzyme in normoxia 
conditions and is a participant in hypoxia related processes such as 
angiogenesis and cardiac function. Dai et al. and others reported that 
Egln1 endothelial conditional knockout mice (Egln1EC−/−) can 
spontaneously develop PAH with severe pulmonary vascular 
remodeling and occlusive pulmonary vascular lesions even in normoxia 
conditions (61–63), whereas heterogenous Egln1EC+/− mice shows mild 
PAH symptoms (63). With regards to Hif-1α, a study from Kim et al. 
shows that mice with constitutive smooth muscle cell (SMC) Hif-1α 
deletion aggravated hypoxia-induced PH (64). Interestingly, another 
study reported that in mice with SMC-specific Hif-1α (inducible) 
deletion attenuated PH but did not show RV hypertrophy (65).

There is significant progress in the understanding of the role of 
HIF-2α in the pathogenesis of PAH vascular remodeling (8, 61, 62, 
66). Studies report that mice with HIF2α G536W (gain-of-functions 
mutations) develop spontaneous PAH with right ventricle systolic 
pressure of 66 mm Hg (67). In addition, recent studies reported that 
endothelial Hif2α plays a more significant role in regulating vascular 
remodeling and PH caused by Vhl or Egln1 deficiency compared to 
Hif-1α (68, 69). The impact of endothelial Hif-2α deletion has also 
been observed on mice with chronic hypoxia-induced PH or Vhl or 
Egln1 deficiency-induced PH (61, 68, 69). Mice models with VhlR200W 
loss of function mutations showed increased susceptibility to PH (40). 
Similarly, Egln1Tie2Cre mice progressively develop severe PH at the age 
of 3.5 months and show 80% mortality by the age of 6 months with 
increased RV hypertrophy, RV fibrosis, and RV failure (69, 70). In 
comparison, other studies show that Egln1Cdh5Cre mice display weaker 
PH pathogenesis (62, 71).

Interestingly, it is observed that the heterozygous deletion of Hif-
2α, but not Hif-1α, in mice with VhlR200W (loss of function) mutation 
rescued them from PH development (40). However, other authors show 
that endothelial deletion of only Hif-2α and not Hif1α can alleviate PH 
development in Egln1Tie2Cre or Egln1Cdh5Cre mice (61, 62). Although these 
studies revealed the association of HIF-2α with PH development, the 
mechanism by which HIF-2α exerts its effect is unclear. Moreover, it is 
also reported that partial deletion of both HIF-1α and HIF-2α show 
similar protection from PH development (59). In contrast, Skuti et al. 
showed that EC Hif2a−/− using Cdh5Cre in mice at 6–9 months ago 
developed PH (66). One possible reason for this contradictory result 
May be the upregulation of HIF-1α activating factors in smooth muscle 
by endothelial HIF-2α (59). Another contributing factor could be the 
differences in the roles of HIF-1α and HIF-2α over a period, evidenced 
by the reduction of PH rescue in partial HIF-1α deletion mice from 
3 months to 6 months (61, 62). However, the lack of supporting 
mechanistic evidence for these observations indicates that there May 
be  additional co-modifiers involved in regulating the activities of 
HIF-1α and HIF-2α independently, such as epigenetic factors. However, 
development of mouse models which incorporate other factors for 
generating long-lasting and/or irreversible PAH pathology in mice (72). 
Improved animal models, which well recapitulate irreversible clinical 
pathology in patients and facilitate development of better therapeutic 
development and approaches.

3 Overview of epigenetic mechanisms 
and their relevance to PAH

Epigenetic mechanisms play a critical role in PAH, influencing 
gene expression and phenotype without altering the DNA sequence. 
Various epigenetic alterations, including DNA methylation, histone 
modifications, and non-coding RNA dysregulation, contribute to the 
onset and progression of PAH (73, 74).

One key epigenetic modification observed in PAH is the 
dysregulation of DNA methylation, which is a process where a methyl 
group is added to the cytosine residues of DNA, often resulting in gene 

TABLE 1 (Continued)

Gene Genotype Disease 
model

Time 
period of 
survival

Tissue/cell 
deletion

RVSP 
(mm 
Hg)

RV 
remodeling

PA 
remodeling

References

Egln1 Egln1Cdh5Cre Normoxia 3 months EC/constitutive 50 0.5 (62)

Egln1 Egln1Cdh5Cre Normoxia 15 months EC/constitutive (71)

Egln1/

Hif-2α

Egln1/Hif2αCdh5Cre Normoxia 3 months EC/constitutive (62)

Egln1/

Hif-2α

Egln1/Hif2αTieCre Normoxia 3 months EC/constitutive (61)

Vhl Vhl200W Normoxia 7 months Global 37 (40)

Vhl Vhl200W/Hif2α+/− Normoxia 7 months Global (40)

EC, endothelial cell; SMC, Smooth muscle cell; Tam, Tamoxifen; ( ) significantly higher compared with control; ( ) lower than compared with control; (—) no change compared with 

control; RVSP, right ventricular systolic pressure; PA, pulmonary artery; RV, Right ventricular.
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silencing. In PAH, dysregulation of DNA methylation can lead to the 
aberrant expression of genes involved in crucial cellular processes. 
One significant example is the decreased expression of superoxide 
dismutase 2 (SOD2) due to CpG island methylation. This epigenetic 
change disrupts redox signaling, leading to the activation of HIF-1α 
even under normoxic conditions. This inappropriate activation of 
HIF-1α promotes excessive cell proliferation, which is a hallmark of 
PAH (75). The chronic proliferation of PASMCs and PAECs 
contributes to vascular remodeling and the narrowing of the 
pulmonary arteries, increasing vascular resistance and pressure.

Histone modifications, such as acetylation and methylation, play 
a significant role in the regulation of chromatin structure and PAH 
pathogenesis. Histone acetylation and methylation alter the 
accessibility of the DNA to transcriptional machinery. Changes in 
histone levels and the expression of histone-modifying enzymes, such 
as histone deacetylases (HDACs) and bromodomain-containing 
protein 4 (BRD4), contribute to the abnormal proliferation and 
resistance to apoptosis in vascular cells. HDACs, for instance, remove 
acetyl groups from histones, leading to a more condensed chromatin 
structure and reduced gene expression. In PAH, increased HDAC 
activity has been linked to the repression of genes that inhibit cell 
proliferation and promote apoptosis. Abnormal histone modifications 
can lead to the persistent activation of proliferative pathways and the 
suppression of apoptotic signals (76). This imbalance contributes to 
the pathologic remodeling of pulmonary arteries, which is 
characteristic of PAH progression. Histone modifications can also 
affect the expression of genes involved in inflammation, fibrosis, and 
vascular tone, further exacerbating the disease.

Non-coding RNAs, including microRNAs (miRNAs) and long 
non-coding RNAs (lncRNAs), are crucial regulators of gene expression 
in PAH. miRNAs are small RNA molecules that can inhibit the 
translation of target mRNAs or lead to their degradation. Dysregulated 
miRNAs in PAH can affect pathways related to inflammation, fibrosis, 
and vascular remodeling. For example, certain miRNAs are known to 
target and regulate genes involved in SMC proliferation and migration, 
EC function, and extracellular matrix production. lncRNAs can 
modulate gene expression at various levels, including chromatin 
remodeling, transcription, and post-transcriptional processing. In PAH, 
lncRNAs influence the abnormal proliferation, migration, and survival 
of pulmonary vascular cells. Some lncRNAs have been found to interact 
with chromatin-modifying complexes, affecting the expression of genes 
involved in cell cycle regulation, apoptosis, and inflammation (77). 
Dysregulation of these lncRNAs contributes to abnormal proliferation, 
migration, and survival of pulmonary vascular cells. So, targeting 
epigenetic modifiers holds promise as a therapeutic strategy for PAH.

Understanding the complex interplay of epigenetic mechanisms 
in PAH provides insights into disease pathogenesis and offers potential 
avenues for developing novel diagnostic and therapeutic approaches. 
By elucidating the epigenetic landscape of PAH, it is possible to 
uncover new treatment strategies that could improve outcomes for 
patients with this life-threatening condition.

3.1 Epigenetic regulation of HIF-dependent 
genes in PAH

HIF serves as a central regulator in the metabolic reprogramming 
and mitochondrial dynamics observed in PAH. It exerts control over 

metabolic enzymes such as pyruvate kinase (PK), pyruvate 
dehydrogenase kinase (PDK), and pyruvate dehydrogenase (PDH), 
orchestrating shifts in cellular energy metabolism (78). This metabolic 
rewiring plays a pivotal role in PAH pathogenesis, influencing cell 
proliferation and survival. Notably, studies indicate a bidirectional 
relationship between metabolism and epigenetics in PAH. Epigenetic 
modifications, including alterations in DNA methylation and histone 
modifications, can precede changes in metabolism by modulating 
gene expression, including genes involved in the HIF pathway (79). 
The stability and transactivity of HIF-α are further modulated by its 
acetylation and methylation. Under hypoxic conditions, histone-
modifying enzymes dynamically change the chromatin structure. 
Some Histone Methyltransferases (HMT) and histone deacetylases 
(HDACs) induce repressive histone marks. Histone demethylases 
(HDT), and Histone acetyltransferase (HATs) induce activating 
marks in chromatin leading to the activation of hypoxia-related 
genes, including those associated with glycolysis, angiogenesis (80). 
In the context of PAH, there have been a few studies identified 
miRNA regulate HIF-1α and HIF-1β, PHD2 leads to dysregulation of 
HIF signaling (81–83). IRP1, an iron response protein, specifically 
inhibits HIF-2α via repressing HIF-2α mRNA translation (84). 
Glycolysis related metabolite and gene, Acetyl-CoA, and PKM2 
promote p300, meditate histone acetylation, and promote HIF 
signaling (85).

In PAH, DNA methylation, particularly hypermethylation, plays 
a crucial role in vascular pathology. Studies have linked DNA 
hypermethylation to abnormal cell proliferation and resistance to cell 
death in the small pulmonary arteries. For instance, Hypermethylation 
in specific regions of the SOD2 gene was identified, which encodes an 
enzyme critical for neutralizing harmful superoxide radicals in cells 
(86). Decreased SOD2 levels are observed in PH, leading to increased 
oxidative stress and activation of HIF-1α signaling, which promotes 
abnormal vascular responses such as angiogenesis and inflammation 
(87). Recent studies have extended this understanding to include 
epigenetic metabolic changes in right ventricular fibroblasts in 
PAH. These studies reveal that epigenetic alterations impair 
mitochondrial function, leading to a pseudo-hypoxic state and 
activation of HIF-1α, even in normoxic conditions. This dysregulation 
is associated with abnormal levels of pyruvate dehydrogenase kinase 
(PDK) isoforms, which promote a metabolic shift known as the 
Warburg effect. Additionally, upregulation of DNMT1 suppresses 
SOD2 expression, exacerbating mitochondrial dysfunction and 
HIF-1α activation. Ultimately, this cascade contributes to increased 
inflammation and fibrosis in the right ventricle (74).

Hypermethylation of promoters or enhancers of genes encoding 
key regulators of HIF activity, such as prolyl hydroxylase domain 
enzymes (PHDs) or von Hippel–Lindau (VHL) tumor suppressor, can 
impair their expression, leading to sustained HIF activation even 
under normoxic conditions. Conversely, hypomethylation of 
HIF-dependent genes May enhance their expression, contributing to 
pathological processes in PAH. In PAH, pyruvate dehydrogenase 
kinase 1 (PDK1) inhibits the activity of pyruvate dehydrogenase 
(PDH), driving a metabolic shift known as the Warburg effect (88). 
This shift involves a preference for glycolysis over oxidative 
phosphorylation, leading to increased lactate production even in the 
presence of oxygen. Additionally, HIF-1α promotes this Warburg shift, 
further enhancing glycolysis. As a result, there is an increase in the 
production of inflammatory cytokines like connective tissue growth 
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factor (CTGF) (89) and transforming growth factor beta (TGF-β1) 
(71, 90) contributing to PAH pathology.

3.2 Role of HIF in triggering miRNA and 
lncRNA

HIF plays a pivotal role in orchestrating the expression of various 
non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and 
long non-coding RNAs (lncRNAs), in the context of PAH (91) and 
other hypoxia-related conditions (92). These ncRNAs, in turn, regulate 
critical pathways involved in cellular responses to hypoxia, 
contributing to the progression of PAH and other diseases. One such 
example is the lncRNA STEAP3-AS1, whose transcription is induced 
by HIF-1α under hypoxic conditions. STEAP3-AS1, acting as a 
positive regulator, enhances the expression of STEAP3, thereby 
promoting colorectal cancer progression (93, 94). This regulatory axis 
highlights the role of HIF-mediated lncRNA regulation in cancer 
pathogenesis (93). Furthermore, HIF-1α has been associated with the 
modulation of exosomal cargo, including miRNAs, which can serve 
as biomarkers for endothelial senescence progression (95). 
Dysregulated miRNAs like miR-125a-5p and miR-139-5p have been 
implicated in EC senescence under hypoxia, suggesting their 
involvement in PAH pathogenesis (96, 97). Additionally, HIF-1α 
serves as a target for certain miRNAs, such as miR-155, which 
regulates fibroblast behavior, impacting apoptosis, migration, and 
proliferation (98). Moreover, intricate networks involving miRNAs, 
lncRNAs, and core genes like PDGFRB and HIF-1α have been 
identified, shedding light on their roles in the development of 
CTEPH (24).

In PAH, dysregulated ncRNAs, including lncRNAs like 
LINC00963 (99) and 5031425E22Rik/KMT2E-AS1 (100), contribute 
to disease progression by affecting cellular processes such as 
proliferation, migration, and metabolic reprogramming. These 
ncRNAs interact with HIF-mediated pathways, further emphasizing 
the importance of HIF in regulating ncRNA expression and function 
in PAH. Overall, the intricate interplay between HIF and ncRNAs 
underscores their significance in PAH pathogenesis and highlights 
their potential as therapeutic targets for this debilitating condition.

The dysregulation of HIF signaling is implicated in various 
pathways relevant to PAH pathology, including vasoconstriction, 
vascular cell proliferation, metabolic alterations, and inflammation. 
Among the HIF isoforms, HIF-1α emerges as a key mediator of these 
effects. It modulates the expression of numerous microRNAs 
(miRNAs) and, in turn, is reciprocally regulated by miRNAs. For 
instance, miR-138, whose upregulation is HIF-1α-dependent, is 
implicated in hypoxia-induced EC dysfunction by regulating nitric 
oxide (NO) expression via S100A1 (101). Additionally, miR-138 
inhibits the hypoxia-induced proliferation of endothelial progenitor 
cells. These findings underscore the intricate interplay between 
HIF-1α signaling and miRNA regulation in the context of PAH 
pathogenesis (78). Moreover, HIF-2α facilitates the expression of 
nearby genes, specifically the long noncoding RNA (lncRNA) histone 
lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone 
lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 helps stabilize 
the KMT2E protein, leading to an increase in the epigenetic mark 
histone 3 lysine 4 trimethylation (H3K4me3), which drives HIF-2α-
dependent metabolic and pathological endothelial functions. 

Additionally, this lncRNA pathway boosts HIF-2α expression through 
epigenetic, transcriptional, and posttranscriptional mechanisms, 
establishing a positive feedback loop that further enhances HIF-2α 
activity (102).

3.3 Role of HIF in regulating histone 
modifications and DNA methylation

HIF plays a crucial role in regulating histone modifications and 
DNA methylation, thereby influencing gene expression under hypoxic 
conditions. Specifically, HIFs target the expression of proteins 
associated with modifications of histones, such as histone acetylation, 
and regulate the balance between DNA methylation and 
acetylation (103).

In the nucleus, HIFs regulate the expression of numerous genes 
involved in cellular adaptation to hypoxia, including those encoding 
proteins associated with histone modifications and DNA methylation 
(80). HIFs directly target the expression of enzymes involved in 
histone modifications, such as histone methyltransferases and histone 
demethylases, as well as enzymes involved in DNA methylation, such 
as DNA methyltransferases (DNMTs). HIFs influence the balance 
between histone methylation and acetylation by regulating the 
expression of histone acetyltransferases (HATs) and histone 
deacetylases (HDACs). This dynamic regulation of histone 
modifications by HIFs plays a crucial role in modulating gene 
expression patterns in response to hypoxia (104, 105).

In the context of ECs, epigenetic modifications, including histone 
acetylation, contribute to the regulation of placental growth factor 
(Plgf) expression under hypoxic conditions (106). HIF-1α binds to 
HREs located in the second intron of Plgf. This binding facilitates the 
spatial association between the transcriptional start site and the 
regulatory site within the Plgf gene, potentially enabling efficient gene 
expression (106). Recent research suggests that transcription factors 
like HIF-1α can facilitate the formation of chromatin loops, allowing 
distant regions of DNA to interact effectively (103). This process May 
occur within specialized nuclear structures known as transcription 
factories, where genes are organized and looped out from chromosome 
territories. However, further investigations are needed to fully 
elucidate the mechanisms by which HIF-1α regulates the three-
dimensional chromatin structure of Plgf regulatory regions and how 
this impacts gene expression in response to hypoxia (7).

Understanding the role of HIF in regulating histone modifications 
and DNA methylation provides insights into the epigenetic 
mechanisms underlying cellular responses to hypoxia. By targeting 
these processes, researchers can develop novel therapeutic strategies 
for diseases characterized by aberrant hypoxic signaling, such as 
PAH. Overall, HIFs play a central role in coordinating the cellular 
response to hypoxia by directly and indirectly regulating histone 
modifications and DNA methylation. This regulatory network 
contributes to the adaptation of cells to hypoxic conditions and has 
implications for various pathological processes, including cancer and 
PAH (Table 2).

These epigenetic targets have been implicated in PAH 
pathogenesis and are regulated by HIF-1α and/or HIF-2α signaling. 
They play crucial roles in modulating gene expression, chromatin 
structure, and cellular processes relevant to PAH, such as proliferation, 
apoptosis, and angiogenesis.
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4 Potential therapeutics targeting HIF 
signaling

4.1 Targeting HIF as a therapeutic target in 
PAH

Targeting HIF signaling holds considerable promise as a 
therapeutic strategy for PAH and other hypoxia-related conditions. 
Several potential therapeutics have been proposed, leveraging insights 
from cancer research (107) and focusing on modulating epigenetic 
processes (76), metabolomics (108), and antioxidant systems (109) 
(Table 3). However, controversies surrounding the long-term safety, 
potential adverse effects, and off-target actions of these drugs highlight 

the need for further research to elucidate their therapeutic potential 
and optimize their use in PAH treatment.

Multiple preclinical trials have been conducted using PH mouse 
and rat models (see Table 3). Dai et al. were the first to demonstrate 
that pharmacological inhibition of HIF-2α, using the translational 
inhibitor C76, effectively prevents obliterative pulmonary vascular 
remodeling and right heart failure in three distinct rodent models of 
severe PH: Egln1Tie2Cre mice, monocrotaline (MCT)-rats, and 
sugen5416 plus hypoxia (SuHx)-rats. They also observed clear survival 
benefits in two of these models through HIF-2α inhibition for the first 
time (110). Hu et al. showed that antisense oligonucleotides targeting 
Hif2a reduced pulmonary vascular muscularization and right 
ventricular hypertrophy in hypoxia-exposed mice. The same group 
also demonstrated that a small molecule HIF2 inhibitor, PT2567, 
significantly reduced monocyte recruitment, vascular cell 
proliferation, vessel muscularization, and PH development in 
hypoxia-exposed rats (60). Macias et  al. further supported these 
findings, showing that global inhibition of HIF-2α reduced pulmonary 
vascular hemodynamics and remodeling in both Su5416/hypoxia 
prevention and intervention models, as well as in MCT-exposed 
rodents (111). Additionally, Ghosh et  al. demonstrated that 
inactivating HIF-2α with the second-generation allosteric inhibitor 
MK-6482, a FDA approved drug for renal carcinoma, attenuated 
polycythemia and PH in VhlR200W mice, Irp1-KO mice, and double 
mutant VhlR200W;Irp1-KO mice with PH. Overall, these studies 
suggest that inhibiting HIF-2 signaling is a promising therapeutic 
approach for PAH (112).

4.1.1 Epigenetic modifiers
Similar to anticancer therapies, modifying epigenetic processes in 

pulmonary vascular cells shows promise for treating PAH (113). This 
approach involves targeting the epigenetic regulation of genes involved 
in HIF signaling and other pathways implicated in PAH pathogenesis 
(74, 114). However, challenges related to targeting specificity and 
managing off-target effects need to be addressed to maximize the 
effectiveness of epigenetic modifiers in PAH treatment.

4.1.2 Metabolomics-based interventions
Metabolomics approaches offer opportunities for early detection, 

personalized dietary interventions, and advanced drug therapies in 
PAH (115). By targeting metabolic pathways regulated by HIF and 
other factors under hypoxic conditions, metabolomics-based 
interventions aim to restore metabolic homeostasis and mitigate 
disease progression in PAH patients (116).

4.1.3 Antioxidant systems modulation
Antioxidant systems play a crucial role in regulating HIF signaling 

by modulating levels of reactive oxygen species (ROS) such as 
hydrogen peroxide (H2O2) (117, 118). Strategies aimed at modulating 
antioxidant systems, such as superoxide dismutase 2 (SOD2), can 
influence HIF-1α activity and downstream signaling pathways. For 
instance, siSOD2 has been shown to activate HIF-1α, highlighting the 
potential of targeting antioxidant systems to modulate HIF signaling 
in PAH (86).

Despite the promising therapeutic prospects, several challenges 
need to be  addressed to translate these approaches into effective 
treatments for PAH. These include ensuring target specificity, 
minimizing off-target effects, understanding cell-specific differences 

TABLE 2 Known epigenetic downstream targets of HIF-1α, HIF-2α: focus 
on lncRNA, miRNAs and histone/DNA modifier enzymes discussed in the 
section.

Epigenetic 
Target

Description Role in PAH Reference(s)

lncRNA 

MALAT1

Metastasis-

Associated Lung 

Adenocarcinoma 

Transcript 1

Regulates 

endothelial cell 

function and 

angiogenesis

(141)

lncRNA H19 Imprinted 

maternally 

expressed 

transcript

Promotes 

pulmonary 

vascular cell 

proliferation

(142)

miRNA-210 microRNA-210 miR-210 has an 

antiapoptotic 

effect in 

pulmonary artery 

smooth muscle 

cells during 

hypoxia

(39)

miRNA-17/92 

cluster

microRNA 

cluster including 

miR-17, miR-18a, 

miR-19a, miR-

20a, miR-19b-1, 

and miR-92a

Regulates 

endothelial cell 

function and 

angiogenesis

(143, 144)

miRNA-21 microRNA-21 Promotes 

pulmonary artery 

smooth muscle 

cell proliferation 

and apoptosis

(145)

EZH2 Enhancer of zeste 

homolog 2

Methyltransferase 

involved in 

histone 

methylation

(102)

HDACs Histone 

deacetylases, 

Epigenetic erasers

Regulate histone 

acetylation and 

gene expression

(146)

TET enzymes Ten-eleven 

translocation 

enzymes

DNA 

demethylases

(147)
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TABLE 3 Summary the detail about the HIF targeted drugs, model and treatment protocol.

Drug Model Treatment Protocol Controversies References

HIF-2α-selective inhibitor, 

compound 76 (C76)

Egln1Tie2Cre mice, Sugen 

5,416/hypoxia-induced PH 

rats, and monocrotaline-

exposed PH rats

Egln1Tie2Cre mice: C76 

(compound 76) (12.5 mg/kg 

body weight, i.p., daily) for 

12 weeks;

Sugen 5,416/hypoxia rats: C76 

(12.5 mg/kg body weight, i.p.) 

daily for the subsequent 

21 days;

MCT rats: C76 (12.5 mg/kg, 

i.p., daily) for 14 days

The controversies surrounding 

C76, a HIF-2α-selective inhibitor, 

include its potential differential 

effects on alveolar development 

compared to previous HIF 

inhibition studies, uncertainty 

regarding its direct action on 

pulmonary fibroblasts and 

smooth muscle cells, and 

questions about its safety despite 

limited adverse effects observed in 

animal models.

(8)

Hif-2a-ASO Hypoxia mice for 5 weeks i.p. injection twice a week 

before hypoxia incubation at 

the dose of 50 mg/kg

(60)

PT2567 (HIF-2α inhibitor) and 

sildenafil (phosphodiesterase-5 

inhibitor)

Sugen5416/hypoxia rat 

model, MCT rat model

Sugen5416/hypoxia rat model 

of PH:

Prevention Protocol: Rats 

received either vehicle, PT2567 

(100 mg·kg−1 or 300 mg·kg−1) 

once daily, or sildenafil 

(30 mg·kg−1) twice daily during 

hypoxic exposure.

Intervention Protocol: Rats 

were treated with either 

vehicle, PT2567 (100 mg·kg−1) 

twice daily, or sildenafil 

(30 mg·kg−1) twice daily for 

3 weeks after acclimation to 

normoxia for 24 h.

MCT rat model of PH:

Animals were allocated to four 

groups: vehicle nondisease 

control, vehicle disease control, 

PT2567 (100 mg·kg−1) 

intervention, and sildenafil 

(30 mg·kg−1) intervention. 

PT2567 and sildenafil were 

administered by oral gavage 

twice daily for 2 weeks post-

MCT injection.

The controversies surrounding 

these treatment protocols may 

include the specificity and 

potential off-target effects of 

HIF-2α inhibition, the 

translational relevance of findings 

from animal models to human 

PAH patients, and the need for 

further clinical studies to validate 

the efficacy and safety of PT2567 

and sildenafil in human PAH 

populations.

(148)

MK-6842 Irp1−/− mice, iron 

deficiency diet; VhlR200w 

mice, Irp1−/−/VhlR200w mice

Oral gavage daily for 5 weeks at 

100 mg·kg−1

(112)

Topotecan (TPT) hypoxia-induced PH-

associated pulmonary 

arteriolar remodeling in PH 

model rats

Rats in the normoxia and the 

hypoxia group received saline; 

the rats in the Hypoxia + TPT 

and Hypoxia + TPT group 

received TPT by intragastric 

administration.

Topotecan prevents hypoxia-

induced pulmonary arterial 

hypertension and inhibits 

hypoxia-inducible factor-1α and 

TRPC channels

(149)

(Continued)
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in metabolic activity, and optimizing the magnitude of therapeutic 
interventions to achieve desired outcomes. Collaborative efforts 
integrating insights from basic research, clinical studies, and 
computational modeling will be  essential for overcoming these 
challenges and developing effective therapeutics targeting HIF 
signaling in PAH (119).

4.2 Future perspectives on therapeutic 
targeting of HIF isoforms in PAH

In PAH, dysregulation of HIF signaling is implicated in vascular 
remodeling and pulmonary vascular dysfunction. Targeting specific 
HIF isoforms to promote a favorable epigenetic landscape in PAH 
represents a promising avenue for research and potential treatment 
development (7). Selective targeting of HIF isoforms could potentially 
modulate the epigenetic landscape in PAH, leading to beneficial 
effects such as improved vascular function and inhibition of 
pathological remodeling. HIF isoforms, particularly HIF-1α and 
HIF-2α, play critical roles in cellular responses to hypoxia by 
regulating genes involved in angiogenesis, metabolism, and cell 
proliferation (7).

Researchers have explored targeting HIF isoforms in cancer 
therapy, aiming to disrupt tumor growth and metastasis (120, 121). 
Strategies include small molecule inhibitors, gene silencing techniques, 
and immunotherapy approaches (122–124). There are several 
examples from other diseases where HIF inhibitors have shown 
promise, suggesting potential applicability in treating PAH (125). In 
certain cancers, aberrant HIF-1α or HIF-2α signaling contributes to 
tumor progression by promoting angiogenesis and metabolic 
reprogramming. For example, HIF-1 inhibitors are extensively studied 
in cancer treatment because of their role in reducing tumor growth, 
metastasis, and hypoxia-induced drug resistance. For example, 
PX-478 was tested in a Phase I dose-escalation study involving cancer 
patients (NCT00522652), demonstrating effective inhibition of 

HIF-1α and a reasonable safety profile (126). These inhibitors could 
be useful in PAH by targeting similar pathways of hypoxia and cellular 
proliferation in pulmonary arteries. In diseases such as idiopathic 
pulmonary fibrosis (IPF) (110), liver fibrosis (111), and renal fibrosis 
(127), HIF-1 inhibitors have demonstrated potential in reducing 
fibrotic tissue formation. Given that PAH involves vascular remodeling 
and fibrosis, HIF-1 inhibitors could help mitigate these processes. 
Additionally, HIF-1 is implicated in chronic kidney disease (CKD) 
progression by promoting inflammation and fibrosis (128, 129). HIF-1 
inhibitors have been explored to reduce these effects, suggesting that 
similar mechanisms might help in PAH, which also involves 
inflammatory and fibrotic processes. In conditions like myocardial 
infarction, stroke (130), and ischemic diseases (131, 132), HIF-1 
inhibitors have been investigated for their ability to modulate hypoxia 
responses, potentially reducing tissue damage and improving 
outcomes. Belzutifan (PT2977), a HIF-2α inhibitor, has been approved 
for advanced renal cell carcinoma and showed promising efficacy in 
preclinical PH models. Taken together, HIF inhibitors might 
be beneficial for patients with PAH.

Given these examples, HIF inhibitors might offer new therapeutic 
avenues for PAH by targeting hypoxia, inflammation, and fibrosis—
key aspects of PAH pathology. However, rigorous preclinical and 
clinical studies are necessary to confirm their efficacy and safety in 
PAH. Translating these strategies to PAH would involve understanding 
the specific roles of HIF isoforms in pulmonary vascular cells and 
identifying interventions that can selectively target these isoforms 
without causing adverse effects. Additionally, considering the complex 
interplay between HIF signaling and other pathways implicated in 
PAH pathogenesis could provide further insights into potential 
therapeutic targets and combination therapies. Overall, while there 
May not yet be direct examples of targeting specific HIF isoforms in 
PAH, insights from other diseases and ongoing research into HIF 
signaling hold promise for developing novel therapeutic approaches. 
These approaches could modulate the epigenetic landscape and 
improve outcomes in PAH.

TABLE 3 (Continued)

Drug Model Treatment Protocol Controversies References

Prostaglandin E1 (PGE1) MCT rat model CM-Dil-labeled MSCs (108/

mL × 0.2 mL) were transplanted 

by injection through the tail 

vein.

The controversies surrounding the 

study include the efficacy and 

safety of combined 

preconditioning with PGE1 and 

YC-1 on MSCs, the optimal 

dosage of these agents for 

preconditioning, and the long-

term outcomes of MSC 

transplantation in the context of 

PAH therapy.

(150)

Rosuvastatin monocrotaline (MCT)-

induced PH Rats

Prevention Protocol: Rats 

received different doses of 

rosuvastatin (2 and 10 mg/kg/

day) for 4 weeks starting from 

the time of MCT injection.

Treatment Protocol: Rats 

received different doses of 

rosuvastatin 4 weeks after MCT 

injection for 4 weeks.

The promising effects of 

rosuvastatin on monocrotaline-

induced pulmonary arterial 

hypertension in rats raise 

questions about its translation to 

humans, optimal dosing, 

mechanistic understanding, 

clinical relevance, safety profile, 

and potential publication bias.

(151)
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