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Purpose: This study aims to evaluate the diagnostic performance of a machine 
learning model (ML model) to train junior ophthalmologists in detecting 
preclinical keratoconus (PKC).

Methods: A total of 1,334 corneal topography images (The Pentacam HR system) 
from 413 keratoconus eyes, 32 PKC eyes and 222 normal eyes were collected. 
Five junior ophthalmologists were trained and annotated the images with or 
without the suggestions proposed by the ML model. The diagnostic performance 
of PKC was evaluated among three groups: junior ophthalmologist group 
(control group), ML model group and ML model-training junior ophthalmologist 
group (test group).

Results: The accuracy of the ML model between the eyes of patients with KC 
and NEs in all three clinics (99% accuracy, area under the receiver operating 
characteristic (ROC) curve AUC of 1.00, 99% sensitivity, 99% specificity) was higher 
than that for Belin-Ambrósio enhanced ectasia display total deviation (BAD-D) (86% 
accuracy, AUC of 0.97, 97% sensitivity, 69% specificity). The accuracy of the ML 
model between eyes with PKC and NEs in all three clinics (98% accuracy, AUC of 
0.96, 98% sensitivity, 98% specificity) was higher than that of BAD-D (69% accuracy, 
AUC of 0.73, 67% sensitivity, 69% specificity). The diagnostic accuracy of PKC was 
47.5% (95%CI, 0.5–71.6%), 100% (95%CI, 100–100%) and 94.4% (95%CI, 14.7–
94.7%) in the control group, ML model group and test group. With the assistance 
of the proposed ML model, the diagnostic accuracy of junior ophthalmologists 
improved with statistical significance (p  <  0.05). According to the questionnaire of 
all the junior ophthalmologists, the average score was 4 (total 5) regarding to the 
comprehensiveness that the AI model has been in their keratoconus diagnosis 
learning; the average score was 4.4 (total 5) regarding to the convenience that the 
AI model has been in their keratoconus diagnosis learning.

Conclusion: The proposed ML model provided a novel approach for the 
detection of PKC with high diagnostic accuracy and assisted to improve the 
performance of junior ophthalmologists, resulting especially in reducing the risk 
of missed diagnoses.
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Introduction

Keratoconus (KC) is a noninflammatory condition. This resulted 
in irregular astigmatism and reduced vision (1). A recent 
epidemiological study demonstrated that KC is not a rare disease, with 
a prevalence of 1.2% (2). However, early detection of KC is challenging. 
In the earliest stages, preclinical keratoconus (PKC) does not show 
classical keratometric or biomicroscopic features. Misdiagnosis of 
PKC leads to an increased risk of iatrogenic ectasia after refractive 
surgery (3), which is the most severe and irreversible complication 
after corneal refractive surgery (4). It has been estimated that 50% of 
patients with PKC progress to KC within 16 years (5). In addition, with 
the availability of corneal cross-linking, early detection can also 
contribute to the delay or cessation of KC progression (6).

However, the detection of early stage of keratoconus is a 
challenging task, especially for the junior ophthalmologists. 
We develop a machine learning system using corneal topography 
images obtained from three clinics to detect PKC and use it to train 
the junior ophthalmologists, helping them improve their accuracy of 
PKC detection.

Methods

Study design and population

The study followed the tenets of the Declaration of Helsinki. The 
study protocol was approved by the Review Board and Human Ethics 
Committee of Peking Union Medical College Hospital, Chinese 
Academy of Medical Sciences. The Pentacam HR system (Oculus, 
Wetzlar, Germany) is a Scheimpflug priciple-based tomography 
system with a rotating camera that can record 25,000 corneal points. 
Five images obtained by the Pentacam HR system were analyzed using 
for analyses by an artificial intelligence (AI) model: anterior and 
posterior corneal curvatures, anterior and posterior elevations, and 
entire pachymetry distribution.

Both eyes of all patients were evaluated using the Pentacam HR 
system. Patients were classified into KC, PKC, or NE groups. KC eyes 
were diagnosed using the following criteria established by the 
Collaborative Longitudinal Evaluation of Keratoconus (CLEK) study 
(7): (1) at least one of the following slit-lamp signs: focal stromal 
thinning, Vogt’s strias, Fleischer’s ring >2-mm arc, or corneal scarring 
consistent with KC; (2) irregular cornea with focal steeping 
determined via distorted keratometry test, and distortion of the 
retinoscopic or ophthalmoscopic red reflex and (3) no history of 
contact lens wear, ocular surgery or extensive scarring.

According to the Global consensus on keratoconus and ectatic 
diseases (8), true unilateral keratoconus does not exist. Therefore, PKC 
eyes were the unaffected eyes of the keratoconus patients whose the 
other eye were diagnosed with KC. An explicit definition of subclinical 
keratoconus (SKC) is lacking. The most common definition of SKC 
used to be patients with a tomographic pattern of localized steepening 
in the posterior or anterior corneal surface or paracentral corneal 
thinning, but no clinical signs of KC. However, PKC refers to 
unaffected eye of keratoconus patient with no sign of keratoconus by 
tomography. PKC eyes were diagnosed using the following criteria 
established by the Keratoconus Severity Score (KSS) study (9): (1) No 
corneal scarring consistent with KC; (2) No slit-lamp signs for 

keratoconus; (3) Inferior or superior steepening no more than 3D 
steeper than average corneal power (ACP); (4) ACP no more 
than 48D.

The eyes of normal individuals undergoing routine 
ophthalmological examination met the following screening criteria 
(10): (1) normal clinical evaluations (defined as no clinical signs or 
suggestive topographic patterns for suspicious KC, KC, or pellucid 
marginal degeneration), (2) no family history of KC, (3) no history of 
ocular surgery or trauma. and (4) stopped contact lens wear for 
≥3 weeks for rigid gas permeable, and ≥ 1 week for soft contact lenses.

We included 272 NEs, 413 KC eyes and 72 PKC eyes from the 
Ming Vision Clinic (Clinic 1). We included 100 NEs, 87 KC eyes and 
15 PKC eyes from the Fenglian JiaYue LeGe Clinic (Clinic 2). 
We included 72 NEs, 51 KC eyes and 14 PKC eyes from the Peking 
Union Medical College Hospital (Clinic 3). The patient data obtained 
from the clinics were used for the training model where input into a 
private model and not a public model.

Datasets and pre-processing

Patients were divided into three datasets. The training set 
consisted of three groups. The NE group comprised 35 eyes from 
Clinic 1, 25 eyes from clinic 2, and 4 eyes from clinic 3. The KC group 
comprised 25 eyes from Clinic 2. The PKC group comprised 30 eyes 
from Clinic 1, five eyes from Clinic 2, and four eyes from clinic 3. The 
validation set comprised of three groups. The NE group comprised 15 
eyes from Clinic 1, 15 from Clinic 2, and 4 from Clinic 3. The KC 
group comprised 15 eyes from Clinic 2. The PKC group comprised 10 
eyes from Clinic 1, 5 eyes from Clinic 2, and 4 eyes from Clinic 3. The 
independent test group consisted of three groups. The NE group 
comprised 222 eyes from Clinic 1, 60 from Clinic 2, and 64 from 
Clinic 3. The KC group comprised 413 eyes from Clinic 1, 47 eyes 
from Clinic 2, and 51 eyes from Clinic 3. The PKC group comprised 
32 eyes from Clinic 1, 5 eyes from Clinic 2, and 6 eyes from Clinic 3.

Pre-processing of input images

Five standard topographical refractive maps (maps showing 
central corneal thickness, anterior (posterior) surface elevation, and 
anterior (posterior) surface curvature) were selected as the original 
data for our study. These maps were obtained from the Pentacam HR 
system and exported with a diameter of 8 mm. Each original image 
was then cropped to 540 × 540 × 3 pixels. We  filtered out textual 
information and retained only color-gradient data from the exported 
images. The cropped images were then “stitched together” into a single 
row with dimensions of 2,700 × 540 × 3 pixels, following the order of 
maps of central corneal thickness, anterior (posterior) surface 
elevation, and anterior (posterior) surface curvature. This 
concatenation of five medical images allowed for joint learning, 
enabling the model to analyze related (but distinct) images 
simultaneously in one pass (11). This approach facilitated the 
identification of common features, alignments, correlations, and 
invariance across datasets.

To optimize training efficiency and minimize graphics processing 
unit (GPU) memory demands, we  resized the input images to 
dimensions of 1,120 × 224 × 3 pixels. This resizing was performed to 

https://doi.org/10.3389/fmed.2024.1458356
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Jiang et al. 10.3389/fmed.2024.1458356

Frontiers in Medicine 03 frontiersin.org

reduce the computational cost per iteration, to enable larger batch 
sizes, and to prevent out-of-memory errors. However, excessive 
downsizing can lead to performance degradation by eliminating 
discriminative details. Therefore, the chosen input dimensions were 
carefully selected to strike a balance between training speed and 
model accuracy.

In contrast to a conventional binary classification task that 
distinguishes between KC and NEs, we combined KC and PKC into 
one category to determine whether the model could identify the 
hidden distinctive features in PKC. To explain the possible impacts of 
interclass mixture and class imbalance in a multicenter study, 
we projected and analyzed corneal topographical images onto the 
feature space using t-distributed stochastic neighbor embedding 
(t-SNE), which helped design a strategy for the selection of training 
datasets that improved the detection accuracy of PKC as a form of KC 
against NE. We  trained and optimized two models using the 
efficientnet-b0 architecture and the Train, Adapt, Optimize (TAO) 
Toolkit (NVIDIA, Santa Clara, CA, United States). The first model 
(referred to as “Model 1”) was trained using data from two centers. 
The second model (“Model 2”) used Model 1 as a pre-trained model 
and incorporated a small amount of additional data during training 
to enhance classification accuracy.

In the present study, t-SNE was employed to analyze clinical data 
collected from multiple centers (12). The objective of this study was to 
project the spatial distributions of high-dimensional features of 
topographical images onto a two-dimensional scatter plot. The ground 
truths of the three class labels (KC, PKC, and NEs) were determined 
by two expert annotator. The results showed that the KC group 
(including the PKC group) was distinguishable from the NE group. 
Notably, the scattered KC points within the normal cluster were 
patients with PKC who shared visual similarity with NEs. 
Furthermore, the distributions of the corresponding classes between 
each center were scattered as separate clusters, indicating a domain 
shift (i.e., a mismatch caused by differences in the picture quality 
between images obtained from different tasks) (Figure 1). In our study, 
this mismatch arose from variations in export settings across multiple 
clinical centers. Consequently, the model training process could 
be confounded by the interclass mixture and the domain shift resulting 
from the acquisition of multicenter data, thereby posing challenges to 
the classification task.

ML model

Our task involved distinguishing between two classes (PKC and 
KC) combined as one from the NE group using a small balanced 
dataset. Hence, we chose the TAO Toolkit (NVIDIA) (13) to train and 
optimize our model for the classification of KC/NEs. The TAO Toolkit 
is a low-code solution that allows non-AI professionals to expedite 
their processes for the training and optimization of a model. For this 
purpose, we  selected efficientnet-b0 from TAO (14). This model 
employs a compound coefficient to scale network dimensions (e.g., 
depth, width, and resolution) uniformly. This balanced scaling 
approach results in improved performance compared with independent 
dimension scaling because it enables consistent growth of a network 
while maintaining a reasonable complexity of the model (15). Efficient 
net architectures achieve competitive accuracy with fewer parameters, 
owing to their sample efficiency resulting from balanced scaling (14). 

Therefore, the efficientnet-b0 model was well suited for our challenging 
binary classification task, which involved distinguishing between NEs 
and KC eyes, with limited subtle and readily confused cases.

Training sets

During the training phase, we conducted a two-step process to 
train the two models based on the efficientnet-b0 model. Model 1 was 
a binary classification model trained on data from Clinics 1 and 2. The 
dataset used for training consisted of 40 PKC samples from Clinic 1, 40 
KC samples, 10 PKC samples from Clinic 2, 50 NE samples from Clinic 
1, and 40 NE samples from Clinic 2. To ensure representative samples, 
we employed a data selection strategy that curated balanced subsets of 
the KC, PKC, and NE subgroups from the collected datasets. The aim 
was to optimize the robustness of the efficientnet-b0 model. Model 2 
was a binary classification model trained on the data from all three 
clinics. To enhance the performance of Model 2, we added 8 PKCs and 
8 NEs from Clinic 3 to the training dataset for Model 1. Model 1 was 
used as a pre-training model, following the concept of transfer learning.

Test sets

We employed two distinct test sets to evaluate the performance of 
the proposed two-step training model. The initial test set, referred to 
as “dataset 1,” comprised data obtained from two medical centers. 
Clinical 1 included 222 NEs, 413 KCs, and 32 PKCs. Clinic 2 included 
60 NEs, 47 KCs, and 5 PKCs. The second test set, Dataset 2, 
encompassed data from three centers. It comprises data from Clinic 1 
and Clinic 2 that were already present in Dataset 1, as well as 64 NEs, 
51 KCs, and 6 PKCs from Clinic 3.

Given the limited availability of labeled data, we employed transfer 
learning to minimize the need for additional data when extending the 
model to adapt to data from new clinics (16). By providing a small 
sample from a new clinic, the pre-trained model can adapt quickly and 
maintain robust performance if deployed on larger, unseen datasets. As 
we repeated this process for additional clinics, the model progressively 
improved its versatility and robustness, despite the scarcity of data.

The Belin-Ambrósio enhanced ectasia 
display total deviation

The Belin-Ambrósio enhanced ectasia display total deviation 
(BAD-D) score was used as a diagnostic index by the Pentacam HR 
system. According to the Pentacam HR system, normal eyes are 
distinguished from the KC or KC suspects when the total D < 1.6, the 
standard have been used in various studies related to keratoconus or 
corneal ectasia (17–20). Ambrósio et al (17) used the index (total 
D > 1.6) as the risk factors for post-LASIK ectasia development. 
Herber et al. (18), Wang et al. (19) and Koc et al. (20) used the index 
(total D < 1.6) to help distinguish normal eyes from keratoconic eyes. 
In our study, cases from test sets with the total D < 1.6 were labelled 
“normal” as the diagnosis results of BAD-D. Finally, we compared the 
classification results of test sets of Model 2 with the BAD-D by the area 
under the receiver operating characteristic (ROC) curve (AUC). The 
sensitivity and specificity were also calculated on the basis of the test 
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results of the Model 2 and the BAD-D to compare the two 
diagnostic tools.

Reading protocol and study groups

Two expert ophthalmologists were invited to make standard 
annotations for the images. Five junior ophthalmologists were 
trained and read the images for assessment in the study. The junior 
ophthalmologists included in the research were ophthalmologists 
who have accepted training of ophthalmology <5 years. Five junior 
ophthalmologists were selected from the Clinic 1. Before the 
formal annotation, they were trained on label principles. The 
diagnostic criteria of the disease and their clinical characteristics 
were not included in the training to maintain the real diagnostic 
capacity of junior ophthalmologists in clinical practice. After the 
training phase, each of the junior ophthalmologists was assigned 
to annotate portions of the datasets independently as the control 
group; specifically, each ophthalmologist annotated images 
obtained from the same test set as the ML model in Clinic 1. Then, 
they annotated the same groups of images, attached with labels 
previously annotated by the ML model, forming the test group. At 
last, all the junior ophthalmologists were request to sign up a 
questionnaire to evaluate the assistance of the ML model.

Statistical analyses

Data distribution was evaluated using the Kolmogorov–Smirnov 
goodness-of-fit test. Comparisons between groups were performed 
using the nonparametric Kruskal–Wallis test, followed by the post-hoc 
Dunn’s test to compare each pair of groups. We  also computed 
confusion matrices and accuracy to objectively compare the 
performance and quality of learning. DeLong’s test was performed to 

pairwise compare different AUCs, and the binomial exact test was 
used to calculate 95% confidence intervals. Statistical analyses were 
performed using SPSS version 20 (IBM, Armonk, NY, United States).

Results

Study population

The mean age was 27.5 ± 7.6 years in the KC group and 
28.1 ± 6.9 years in the NE group (p < 0.05). The mean K1 was 
46.2 ± 6.0 in the KC group and 42.9 ± 1.4 in the NE group (p < 0.05). 
The mean K2 was 49.4 ± 7.0 in the KC group and 44.3 ± 1.6 in the NE 
group (p < 0.05). The mean value for astigmatism was 3.1 ± 2.5 in the 
KC group and 1.4 ± 0.8 in the NE group (p < 0.05). The mean Pachy 
min value was 463.8 ± 53.9 in the KC group and 534.8 ± 29.7 in the NE 
group (p < 0.05). The mean I-S (inferior–superior) was 4.4 ± 3.9 in the 
KC group and 0.3 ± 0.7 in the NE group (p < 0.05). The parameters for 
the different sets are listed in Table 1. In cases of severe KC, the K value 
and Pachy min values were unusual because the cornea was extremely 
distorted (Supplementary Figures S1–S3).

ML model characteristics

The accuracy of the ML model between the eyes of patients with 
KC and NEs in all three clinics (99% accuracy, area under the receiver 
operating characteristic (ROC) curve AUC of 1.00, 99% sensitivity, 99% 
specificity). The accuracy of the ML model between eyes with PKC and 
NEs in all three clinics (98% accuracy, AUC of 0.96, 98% sensitivity, 
98% specificity). The sensitivity and specificity of ML model is higher 
than that of the previous studies (21–30) shown in Table 2.

The BAD-D is a widely used reference for assessing the KC (31). It 
calculates a total deviation value (known as a global “D”) by analyzing 

FIGURE 1

Illustrative diagram of domain differences due to multicenter data acquisitions.
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TABLE 1 Descriptive statistics of train and test sets.

NE 
train 
set

PKC 
train 
set

KC 
train 
set

Mean SD Min Max Mean SD Min Max Mean SD Min Max

Age 26.8980 6.94082 10.00 38.00 26.1724 6.45942 13.00 42.00 27.3750 5.64182 18.00 42.00

K1 43.0316 1.28589 40.40 45.70 43.2828 2.31381 38.60 56.80 47.1725 5.83086 38.20 70.40

K2 44.3592 1.46919 40.80 48.10 44.7103 2.44868 39.60 57.80 49.8425 6.85116 38.80 76.90

Astig F 1.3255 0.63996 0.10 2.70 1.4276 0.79423 0.20 4.70 2.6675 1.89323 0.00 6.50

Num. 

Ecc. F

0.5621 0.13168 0.04 0.90 0.5971 0.18599 −0.07 1.38 0.7830 0.49776 −0.82 1.52

Asph. Q 

F

−0.3528 0.14856 −0.82 −0.02 −0.4041 0.25318 −1.89 0.10 −0.8353 0.66461 −2.33 0.69

Num. 

Ecc. B

0.4931 0.15344 0.04 0.77 0.5790 0.17064 0.19 1.41 0.8650 0.38945 −0.07 1.45

Asph. Q 

B

−0.3323 0.13314 −0.68 −0.05 −0.4074 0.25162 −2.00 −0.15 −0.9435 0.59889 −2.10 −0.01

Pachy 

Apex

542.3673 29.92444 477.00 615.00 506.2241 32.90925 409.00 602.00 460.7500 49.05870 328.00 561.00

Pachy 

Min

539.3367 29.73108 475.00 614.00 502.2414 32.78977 408.00 598.00 454.7500 48.32622 325.00 554.00

ISV 18.4082 5.44672 7.00 37.00 24.0172 15.68941 11.00 131.00 88.9500 48.60619 19.00 195.00

IHD 0.0122 0.00628 0.00 0.03 0.0210 0.01868 0.00 0.14 0.1250 0.08153 0.02 0.33

KMax 44.9480 1.50937 41.10 48.40 45.8707 4.12230 40.00 72.80 57.3425 9.99230 42.40 83.20

IS-value 0.3980 0.66631 −0.98 1.82 0.8638 0.97522 −1.44 4.89 5.5620 3.96846 0.37 19.62

NE test 
set

PKC 
test set

KC test 
set

Mean SD Min Max Mean SD Min Max Mean SD Min Max

Age 28.5029 6.87581 9.00 46.00 27.0233 6.93675 13.00 46.00 27.7319 7.94938 9.00 63.00

K1 42.9390 1.47774 39.10 47.20 42.4605 1.24750 39.30 45.10 46.8722 6.37117 24.70 75.60

K2 44.4000 1.62393 40.00 49.50 44.1651 1.31219 39.80 48.10 50.4299 7.26668 36.70 84.60

Astig F 1.4558 0.84913 0.00 5.30 1.7047 0.98970 0.20 5.90 3.5579 2.65677 0.00 19.00

Num. 

Ecc. F

0.5526 0.11157 0.18 0.92 0.5644 0.21396 −0.51 0.85 0.8020 0.47790 −1.08 1.71

Asph. Q 

F

−0.3353 0.11875 −0.87 −0.07 −0.3707 0.18409 −0.80 0.32 −0.8682 0.69719 −4.47 2.25

Num. 

Ecc. B

0.5201 0.14955 0.04 0.91 0.5200 0.17829 0.02 0.86 0.8966 0.37724 −0.76 4.35

Asph. Q 

B

−0.3595 0.14315 −0.90 −0.06 −0.3498 0.17185 −0.79 −0.03 −1.0209 1.58432 −34.34 1.37

Pachy 

Apex

537.7457 27.91497 479.00 613.00 514.7209 26.32881 426.00 559.00 466.0078 54.04653 177.00 718.00

Pachy 

Min

534.4364 27.77274 471.00 611.00 509.1628 26.51408 423.00 556.00 456.2896 54.22577 64.00 654.00

ISV 18.7890 6.09433 6.00 45.00 25.0465 10.01892 13.00 63.00 86.4070 48.01600 14.00 352.00

IHD 0.0116 0.00633 0.00 0.04 0.0230 0.01809 0.01 0.08 0.1177 0.07753 0.00 0.45

KMax 44.9780 1.64484 40.70 50.20 45.4326 1.76578 41.40 52.10 57.0724 10.77521 41.50 100.80

IS-value 0.3267 0.67708 −1.72 2.41 1.1947 1.07782 −0.57 4.39 5.0416 3.90189 −8.97 23.29
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FIGURE 2

ROC curve of the model 2 (Left) and ROC curve of the BAD-D (Right) for KCN diagnosis.

specific parameters and comparing them with a normative database. Our 
dataset was classified into NE and KC groups based on the BAD-D 
criteria, with a cut-off threshold of 1.6 (26). The BAD-D achieved an 
accuracy of 0.86, a sensitivity of 0.97, and a specificity of 0.69. The AUC of 
the BAD-D was 0.97, which was lower than that of model 2 (Figure 2). In 
comparison, Model 2 demonstrated significantly improved classification 
metrics compared to BAD-D. It achieved a 13% higher accuracy, 2% 
higher sensitivity, and a substantial 30% improvement in specificity. The 
higher specificity of model 2 indicated a lower false-positive rate. These 
results highlight the superior discriminative capability of Model 2 relative 
to the BAD-D, particularly for challenging borderline cases.

To assess the effectiveness of our model in identifying cases of PKC 
accurately, we further divided the results into two classes (PKC and KC) 
and demonstrated the classification results of PKC and NE using Models 
2 and BAD-D. Model 2 accurately categorized 42 of the 43 PKCs in 
Dataset 2. In contrast, BAD-D correctly identified only 29 of 43 PKC 
cases, indicating its limited ability to discriminate early-stage disease. In 
addition, Model 2 achieved high accuracy in classifying the NE cases. In 
comparison, the BAD-D misclassified 106 NE cases. The AUC of the 
BAD-D was 0.73, which was significantly lower than that of Model 2 
(Figure 3). Model 2 demonstrated superior discriminative ability over 
the BAD-D in distinguishing challenging borderline PKC and NE cases.

Post-hoc analysis

The accuracy of the ML model between the eyes of patients with KC 
and NEs in clinic 1 was 98.74 (97.86% sensitivity, 100% specificity). The 
accuracy of the ML model between the eyes of patients with PKC and NEs 

in clinic 1 was 96.85 (72.72% sensitivity, 100% specificity). The diagnostic 
accuracy for junior ophthalmologists to detect PKC was 47.5% (95%CI, 
0.5–71.6%), 100% (95%CI, 100–100%) and 94.4% (95%CI, 14.7–94.7%) 
in the control group, ML model group and test group. With the ML model 
training, the diagnostic accuracy of junior ophthalmologists improved 
with statistical significance (p < 0.05) as shown in Figure 4. According to 
the questionnaire, the average score (total 5) of the questionnaire was: 1. 
How do you think AI models help you understand the complexity of 
image judgment in PKC? (3.8) 2. How do you think AI models help 
you understand the complexity of image judgment in severe keratoconus? 
(4) 3. How comprehensive do you think the AI model has been in learning 
your keratoconus diagnosis? (4) 4. How convenient do you think the AI 
model is for you to learn the diagnosis of keratoconus? (4.4) 5. How do 
you think AI models help you learn to judge keratoconus as a whole? (3.6).

Typical PKC cases

The Pentacam HR images of five typical patients with PKC are 
shown in Figure 5. These cases were difficult to detect as PKC, and 
they were misdiagnosed as NEs by BAD-D. However, they were 
correctly identified using ML model.

Discussion

Detection of PKC is a difficult clinical problem. Researchers have 
developed various models based on ML to aid the diagnosis of PKC, 
but the results have been unsatisfactory (21–27, 29).

TABLE 2 The sensitivity and specificity of the previous PKC studies.

Bühren et al. (21) Chan et al. (22) Kovács et al. (23) Saad et al. (24) Hidalgo et al. (25)

Sensitivity 78.10% 70.80% 90% 63% 79.10%

Specificity 83.30% 98.10% 90% 82% 97.90%

Hidalgo et al. (26) Xu et al. (27) Ambrósio et al. (28) Steinberg et al. (29) Shi et al. (30)

Sensitivity 61% 83.70% 90.40% 63% 98.50%

Specificity 75% 84.50% 96% 83% 94.70%
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In some studies, sensitivity and specificity were relatively high. 
However, this study had several limitations. In a study by Ambrósio 
et al. (28), although the test results were high, they used Pentacam 
combined with Corvis®, which is not commonly used worldwide, 
thereby limiting the application of the model. The study by Shi et al. 
(30), they had the same limitations. They used a prototype of ultra-
high-resolution optical coherence tomography, which has not been 
used in clinical practice, thereby endowing their model with limited 
practical value.

The model was trained by the Efficientnet-b0 net, which 
architectures have been confirmed to achieve competitive 
accuracy with fewer parameters, owing to their sample efficiency 
resulting from balanced scaling. From the review of the previous 
study, we  can see that the sensitivity of the machine learning 
model to detect PKC is relatively higher. Also, rather than using 
multiple diagnosis devices, the model only utilized pentacam HR 
system to screen PKC, making the model with more practicability. 
We  aimed to make the model more applicable because the 

Pentacam HR is commonly used to detect PKC by refractive 
surgeons globally.

By combining KC and PKC cases from three clinics, we included 
551 KC eyes and 101 PKC eyes. Hence, this is one of the largest ML 
studies on KC and PKC. Depending only on Pentacam HR images, 
the model of our study could reach 99% accuracy, 99% sensitivity, 
99% specificity, and an AUC of 1.00 to distinguish KC and NEs, much 
higher than those for BAD-D (86% accuracy, 97% sensitivity, 69% 
specificity, AUC of 0.97). The advantage of our model is the more 
prominent distinction between PKC and NEs. In this regard, the 
model could reach 98% accuracy, 98% sensitivity, and 98% specificity, 
with an AUC of 0.96, which was remarkably higher than those 
achieved using the BAD-D (69% accuracy, 67% sensitivity, 69% 
specificity, AUC of 0.73), making it one of the best ML models to 
distinguish PKC from NEs.

In contrast to a conventional training strategy (32, 33), we used 
a pre-trained model optimized using the TAO Toolkit. Our model 
was trained on a small (yet evenly balanced) training set to achieve 
the highest accuracy for the classification of PKC and NEs. The model 
was trained with only 25 KCs, 64 NEs, and 39 PKCs, modified in the 
validation set of 15 KCs, 34 NEs, and 19 PKCs, but obtained 99% 
accuracy and an AUC of 1.00 in a much larger test set (511 KCs, 346 
NEs, 43 PKCs). The traditional training pattern usually uses 80% of 
the cases to train the model and tests only 20% of the cases. The 
pre-trained model that we describe can test much larger datasets by 
only training very small data, making the model more widely 
applicable in clinical practice.

In the research, with the help of the proposed ML model, the 
diagnostic accuracy of junior ophthalmologists to detect PKC 
improved significantly, indicating that the model may be potential 
tool for diagnosing PKC in clinic. Compared with the traditional 
training model, the model can achieve high accuracy with 
minimum training data. In addition, the model relies only on 
Pentacam HR images, making it very valuable for 
practical applications.

The machine learning model can provide high-level detection of 
PKC, making it potential assistant of refractive surgeons to screen 
qualified candidates for corneal refractive surgery. The model is of 

FIGURE 3

ROC curve of the model 2 (Left). ROC curve of the BAD-D for the classification of PKC and NE (Right).

FIGURE 4

The diagnostic accuracy of the five junior ophthalmologists (1–5) of 
PKC before and after the training of ML model.
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FIGURE 5 (Continued)

favourable practicability, since it can provide screening results only by 
using single diagnosis device pentacam HR system. However, more 
independent data from different clinics should be test to confirm the 
stability of the machine learning model.
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