
fmed-11-1458025 September 19, 2024 Time: 11:45 # 1

TYPE Review
PUBLISHED 23 September 2024
DOI 10.3389/fmed.2024.1458025

OPEN ACCESS

EDITED BY

Amani Kallel,
Ministry of Public Health, Tunisia

REVIEWED BY

Melika Chihaoui,
Tunis El Manar University, Tunisia
Tadashi Ikegami,
Tokyo Medical University, Japan

*CORRESPONDENCE

Tatjana Ábel
abel.tatjana@semmelweis.hu

RECEIVED 01 July 2024
ACCEPTED 26 August 2024
PUBLISHED 23 September 2024

CITATION

Ábel T, Benczúr B and Csobod EC (2024) Sex
differences in pathogenesis and treatment
of dyslipidemia in patients with type 2
diabetes and steatotic liver disease.
Front. Med. 11:1458025.
doi: 10.3389/fmed.2024.1458025

COPYRIGHT

© 2024 Ábel, Benczúr and Csobod. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Sex differences in pathogenesis
and treatment of dyslipidemia in
patients with type 2 diabetes and
steatotic liver disease
Tatjana Ábel1*, Béla Benczúr1,2 and Éva Csajbókné Csobod1

1Department of Dietetics and Nutritional Sciences, Faculty of Health Sciences, Semmelweis University,
Budapest, Hungary, 2János Balassa County Hospital, Ist Department of Internal medicine
(Cardiology/Nephrology), Szekszárd, Hungary

Previously published studies have shown that women with type 2 diabetes have

a higher risk of atherosclerotic cardiovascular disease than men with type 2

diabetes. The exact reason for this is not yet known. The association between

metabolic dysfunction-associated steatotic liver disease and type 2 diabetes

appears to be bidirectional, meaning that the onset of one may increase the

risk of the onset and progression of the other. Dyslipidemia is common in

both diseases. Our aim was therefore to investigate whether there is a sex

difference in the pathogenesis and management of dyslipidemia in patients with

type 2 diabetes and steatotic liver disease with metabolic dysfunction. While the

majority of published studies to date have found no difference between men

and women in statin treatment, some studies have shown reduced effectiveness

in women compared to men. Statin treatment is under-prescribed for both type

2 diabetics and patients with dysfunction-associated steatotic liver disease. No

sex differences were found for ezetimibe treatment. However, to the best of our

knowledge, no such study was found for fibrate treatment. Conflicting results on

the efficacy of newer cholesterol-lowering PCSK9 inhibitors have been reported

in women and men. Results from two real-world studies suggest that up-

titration of statin dose improves the efficacy of PCSK9 inhibitors in women.

Bempedoic acid treatment has been shown to be effective and safe in patients

with type 2 diabetes and more effective in lipid lowering in women compared to

men, based on phase 3 results published to date. Further research is needed to

clarify whether the sex difference in dyslipidemia management shown in some

studies plays a role in the risk of ASCVD in patients with type 2 diabetes and

steatotic liver disease with metabolic dysfunction.
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1 Introduction

Diabetes affects approximately 537 million people worldwide, which is involving one in
11 adults (1, 2). Type 2 diabetes mellitus (T2DM) is the most common form, representing
90–95% of all cases. Based on previously published studies T2DM is associated with
premature atherosclerotic cardiovascular disease (ASCVD), which is the most common

Frontiers in Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1458025
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1458025&domain=pdf&date_stamp=2024-09-23
https://doi.org/10.3389/fmed.2024.1458025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2024.1458025/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1458025 September 19, 2024 Time: 11:45 # 2

Ábel et al. 10.3389/fmed.2024.1458025

cause of mortality in these patients (3–5). A contributing factor
is that the majority of patients with T2DM develop atherogenic
dyslipidemia. Elevated triglycerides (TG) and (small dense) low-
density lipoprotein cholesterol (LDL-C) levels and reduced high-
density lipoprotein cholesterol (HDL-C) levels are common in
patients with T2DM, even when these patients are under good
glycaemic control (3–5).

Researchers in the Framingham study were the first to report
in 1974 that the effect of diabetes as a cardiovascular risk factor
differs between men and women (6). Men with diabetes at baseline
or who were diagnosed with diabetes during the first 16 years of
follow-up had a 2 times greater risk of cardiovascular death than
men without diabetes, while women with diabetes had a 4.5 times
greater risk than women without diabetes (6). A meta-analysis by
Peters et al. showed that women with type 2 diabetes have a more
than 40% greater risk of developing coronary heart disease (CHD)
than men with diabetes (7). According to a meta-analysis published
a few years ago, women with diabetes have a 30% higher risk of
ASCVD mortality, a 58% higher risk of CHD mortality, an 8%
higher risk of stroke mortality and a 13% higher risk of all-cause
mortality compared to men with diabetes (8).

Steatotic liver disease (SLD) is a public health problem
worldwide and increases the risk of ASCVD (9–11). Metabolic
dysfunction-associated steatotic liver disease (MASLD) usually
occurs in 25–45% of the general population and up to 70% of people
with T2DM or ASCVD (12). MASLD and T2DM synergistically
increase the risk of adverse hepatic and extrahepatic outcomes
(13, 14). T2DM is an accepted risk factor for faster progression
of MASLD to metabolic dysfunction-associated steatohepatitis
(MASH), cirrhosis or hepatocellular carcinoma (HCC) (15). In
addition, published results to date show that MASLD also increases
the risk of developing and progressing to T2DM (16).

Several possible risk factors have been identified for the
difference in cardiovascular event and mortality rates between
women and men with T2DM, but the exact mechanism is not
yet known (10, 17). Therefore, the aim of this review was to
examine whether there is a sex difference in the pathogenesis and
management of dyslipidemia in patients with T2DM and SLD.

2 Methods

The ClinicalTrials.gov, PubMed and Web of Science electronic
databases were searched for full-text articles published between 1
January 2014 and 20 June 2024. The keywords used for searching
were “bempedoic acid” “ezetimibe”, “fatty liver”, “fibrate”,

Abbreviations: ASCVD, atherosclerotic cardiovascular disease; CHD,
coronary heart disease; CI, confidence interval; CV, cardiovascular; DNL,
de novo lipogenesis; ER, endoplasmic reticulum; F, fibrosis; FAs, Fatty
acids; HCC, hepatocellular carcinoma; HDL-C, high-density lipoprotein
cholesterol; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; HOMA-
IR, Homeostasis model assessment of insulin resistance; IDL, intermediate
density lipoprotein; IR, insulin resistance; LDL-C, low-density lipoprotein
cholesterol; MASH, metabolic dysfunction-associated steatohepatitis;
MASLD, metabolic dysfunction-associated steatotic liver disease; OR,
odds ratio; PPARs, peroxisome proliferator-activated receptors; PPARα,
peroxisome proliferator-activated receptor alpha; PCSK9, Proprotein
convertase subtilisin/kexin type 9; ROS, reactive oxygen species; TG,
triglycerides; T2DM, Type 2 diabetes; SLD, Steatotic liver disease; VLDL, very
low-density lipoprotein.

“MASLD”, “MASH”, “NAFLD”, “NASH”, “PCSK9 inhibitors”,
“Type 2 diabetes”, “sex-differences”, “steatosis”, “steatotic liver
disease”, and “statin”. All results were screened for relevant articles.
Authors contributed additional articles, conference abstract based
on this personal knowledge.

3 Sex-differences in epidemiology
and outcomes of MASLD/MASH

MASLD/MASH are sexually dimorphic diseases that are more
common in men compared to women of reproductive age (18–
20). After the menopause, the incidence of MASLD increases
significantly and reaches the prevalence seen in men (21–23). In
men, the prevalence of MASLD tends to increase during adulthood
from young to middle age, and then decreases after the age of 50–
60 years (23). In women, the prevalence of MASLD occurs about
10 years later than in men, increasing after age 50, peaking at age
60–69 and decreasing after age 70 (23). The exact aetiology of the
increase in MASLD incidence in postmenopausal women is not
yet clear, but age-related hormonal changes (primarily decrease in
oestrogen levels), the development of other risk factors such as
obesity, T2DM, hypertension, and dyslipidemia may certainly play
a role (24–27).

The sex-specific occurrence of liver damage associated with
the transition of MASLD to MASH and fibrosis has been less
studied and showed conflicting results. Shaikh et al. investigated the
risk factors for developing MASH in patients from the European
cohort of the real-world GAIN study (28). Their results showed that
significant covariates were age, years since diagnosis, employment
status, and fibrosis stage at diagnosis, T2DM, hypertension, liver
transplantation and liver biopsy at diagnosis. No significant sex-
differences were found in the European cohort (28). In contrast,
some studies have shown that women have a higher risk of
developing MASH and fibrosis (29–31). Meanwhile, in a recent
study, Tan et al. found that the age-adjusted incidence rate of
MASH cirrhosis was higher in women than in men, while the age-
adjusted mortality rate for women approached that of men (32).

4 Pathogenesis of dyslipidemia in
MASLD/MASH and T2DM

The pathophysiology of MASLD is complex and includes
variety of etiological factors, such as genetics, unhealthy lifestyle
habits, obesity, insulin resistance, gut microbiota dysbiosis
and dyslipidemia (33–39). The development of MASLD
involves multiple pathogenetic molecular pathways, resulting
in heterogeneity in both its pathogenesis and clinical manifestation
(40–42).

About 60–70% of MASLD patients have atherogenic
dyslipidaemia, characterised by high plasma TG levels, low
HDL-C and elevated LDL-C (mainly small, dense LDL particles)
levels (39, 43, 44). In addition, levels of TG-rich lipoproteins, such
as very low-density lipoprotein (VLDL) and intermediate-density
lipoprotein (IDL) are also increased.

The exact mechanism of the development and progression
of MASLD in relation to impaired lipid metabolism remains
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unknown. The development of MASLD is due to imbalances in
the transport of fatty acids (FAs) to the liver (from diet, de novo
lipogenesis (DNL) and adipose tissue lipolysis), lipid synthesis
and oxidation, and the hepatic export of TG as VLDL (34, 45,
46). Increased VLDL secretion and β-oxidation may compensate
for increased FAs influx to the liver early in the development
of MASLD (47, 48). The excessive accumulation of lipids in the
liver subsequently leads to lipotoxicity, inflammation, oxidative
stress and fibrosis (47, 48). The progression of MASLD to MASH
causes further disruption of hepatic lipid metabolism and thus
damage to liver cells.

In T2DM, the main factors underlying the development of
MASLD are insulin resistance, impaired insulin secretion and
abnormalities in glucose and lipid metabolism (49–51). Of these
very diverse processes, differences in lipid metabolism were
highlighted. Insulin resistance reduces the inhibitory effect of
insulin on glucose formation and lipolysis. In adipose tissue, there
is increased FAs release and de novo lipogenesis and decreased
TG degradation, and in the liver decreased insulin clerarance (i.e.,
insulin uptake and degradation), resulting in MASLD (52, 53).
Depletion of adaptive processes (e.g., activation of peroxisome
proliferator-activated receptors (PPARs) further increases FAs
overload, leading to a disconnection between respiration and ATP
production, leading to reactive oxygen species (ROS), increased
oxidative stress and ultimately the development of MASH (47).

In T2DM, persistently high blood glucose levels lead to
glucotoxicity and further worsening of lipotoxicity (47, 54). These
lead to increased insulin resistance, endoplasmic reticulum (ER)
stress and oxidative stress, and increased inflammatory cytokine
production, ultimately creating a vicious cycle (47, 54).

5 Sex differences in epidemiology
and pathogenesis of MASLD/MASH
among patients with T2DM

Obesity is often found in patients with 2TDM. Obesity increases
blood levels of FFAs in both women and men. (55). However, the
results so far are conflicting as to whether the two sexes are the
same or whether women have higher levels of FFAs in obesity
(56, 57). Although obese women have higher production of TG
rich VLDL, they also have a faster rate of VLDL-TG clearance
rates compared to obese men, which may contribute to the lower
MASLD rate in women and lower plasma VLDL-TG levels (57, 58).
Although obese women have lower TG levels compared to obese
men, high TG levels in women are more closely correlated with
ASCVD risk compared to men (55, 59). The exact reason for this
is not known, but estrogen signaling pathways seem to play a role.
(55). The hepatic estrogen signaling pathways may increase hepatic
reverse cholesterol transport steps in women, thereby promoting
cholesterol removal from peripherial tissues (55, 60). However,
there have also been published results that found no difference
between the two sexes in this regard (61).

The impact of sex-differences on the association between
MASLD/MASH and T2DM incidence remains unknown. While de
Ritter et al. did not show a sex-difference between the percentage of
liver fat in patients with T2DM, whereas the other studies found

a difference between the risk of developing MASLD/MASH in
women and men with prediabetes and T2DM (25, 62–65).

Kim et al. examined the effect of sex and menopausal status
on the association between MASLD and development of T2DM
(62). Their results showed that the presence of MASLD, including
more severe MASLD, is a stronger risk factor for T2DM in
premenopausal women compared to postmenopausal women or
men. It is assumed that premenopausal women with MASLD lose
biological protection against risk of T2DM (62). Previous results
also showed the reverse of this association, ie. younger women
(< 50 years) with dysglycemia had the same risk of developing
MASLD as men, compared to younger women (< 50 years) without
dysglycemia, who had a lower risk (64).

In another recently published study, Succurro et al. found
that women with prediabetes and T2DM have a higher OR (odds
ratio) of having MASLD compared to men (25). This may explain
the stronger effect of prediabetes and T2DM on MASLD in
women (25). In addition, prediabetic women and women with
T2DM showed significantly greater relative differences in visceral
adiposity, lipid levels, homeostasis model of insulin resistance
(HOMA-IR) index, and high sensitivity C-reactive protein (hsCRP)
compared to prediabetic and T2DM men (25).

A recent study on the prevalence of MASH and liver fibrosis
[fibrosis (F) > 2] in both men and women with T2DM has
been published (65). Their results showed a significant difference
between premenopausal (15.4% and 15.5%) and postmenopausal
(29.5% and 30.3%) women with T2DM in terms of both MASH
(p = 0.002) and F > 2 (p < 0.01). In contrast, no significant
differences were found for MASH (p = 0.75) and F > 2 (p = 0.48)
when comparing men with T2DM under 50 years (17.9% and
18.5%) and men with T2DM 50 years or older (21% and 27%).

These results support the need to detect changes in glucose
homeostasis and other cardiovascular risk factors such as
dyslipidemia as early as possible, especially in women.

6 Sex differences in the treatment of
dyslipidemia in patients with T2DM
and MASLD/MASH

MASLD and T2DM independently inrease the risk of
ASCVD, therefore treatment of dyslipidemia in these patients
is an important concern. The latest treatment guidelines for
dyslipidemia recommend a more aggressive treatment for these
patients to target LDL-C (66, 67).

6.1 Statin therapy

As reductase inhibitors of 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA), statin therapy is a cornerstone in
reducing the risk of ASCVD in people with T2DM. Statins can be
given safely in individuals with MASLD without increased risk of
hepatotoxicity (68, 69). This was confirmed in a recently published
meta-analysis, Dai et al. found that the use of statins in the
treatment of MASLD and MASH showed significant histological
and biochemical improvements, particularly in hyperlipidemic
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patients (70). The latest clinical practice guidelines recommend
statins for the treatment of dyslipidemic patients with MASLD and
MASH with compensated cirrhosis (67).

According to the results of a review article and a meta-
analysis including 8 randomised controlled trials have found that
cholesterol-lowering statin treatment was equally effective in both
sexes (71, 72). In contrast, a study by Mombelli et al. found that
statin treatment improved the plasma lipid profile of dyslipidemic
women with reduced efficacy compared with men (73) (Table 1).
This may be partly explained by the fact that atorvastatin and
simvastatin, which are predominantly metabolised by CYP3A4,
that are expressed at twice the level in women than in men, leading
to faster and more extensive statin metabolism and consequently
lower activity compared to men (73, 74). However, the study by
Mombelli et al. was retrospective and not randomized.

For patients with MASLD, statins appear to be under-
prescribed, as studies show that up to 50% of MASLD patients
with an indication and 33% of MASLD patients with clinical
atherosclerotic disease remain untreated (75, 76). In addition a
recent study found that men with T2DM received statin therapy at
a higher rate than women with T2DM, regardless of the duration of
diabetes (77). Consequently, women were less likely to achieve the
total cholesterol target compared to men (77). Although Stedman
et al. only included patients from one region of the UK, but
Salford is considered to have had a well-run diabetes service (77).
Ambrož et al. investigated whether there is a sex difference in statin
starting, i.e., initiation of therapy and prescribing of statins in
patients with T2DM (78). Their results showed that both initiation
of statin therapy [19.7% vs. 24.7%; odd ratio (OR) 0.75; 95%
confidence interval (CI) 0.58–0.96] and statin prescription (58.7%
vs. 63.9%; OR 0.80, 95% CI 0.73–0.89) were lower in women with
T2DM compared to men. The study examined T2DM patients
treated in primary care, so their results cannot be completely
generalized to T2DM patients treated in other settings. Gamboa
et al. investigated whether there are race or sex differences in statin
use and LDL-C control in T2DM patients (79). They found that
66% of white men, 57.8% of black men, 55% of white women and
53.6% of black women used statin therapy, respectively, p < 0.001.
These findings may also explain the sex differences in ASCVD risk
in T2DM patients.

6.2 Ezetimibe therapy

Ezetimibe has lipid-lowering effects through its inhibition of
Neimann-Pick C1-like 1, thereby reducing intestinal cholesterol
absorption. However, according to the latest therapeutic guideline,
the effects of ezetimibe have not yet been clearly elucidated in
human large RCTs with histological endpoints for the treatment of
MASLD/MASH (67).

Results from some studies have shown that women were
more likely to be non-compliant with statins than men, which
may have been associated with a higher rate of adverse events
(80, 81). Combination therapy with statins and ezetimibe, rather
than increasing the dose or intensity of statins, may be an
alternative strategy for women who do not tolerate statins (82,
83). The study by Ran et al. included 93 men and 32 women
with non-ST-elevation acute coronary syndrome (82). Although

women and men were not tested separately in the small, short-
term (3-month) study, the rosuvastatin-ezimibe combination was
significantly more effective in reducing LDL-C compared with
those receiving 10 mg rosuvastatin or 20 mg rosuvastatin daily. In
a study by Kim et al. they observed whether there was a difference
between moderate-intensity statin and ezetimibe combination or
high-intensity statin monotherapy between men and women with
atherosclerosis over 3 years (83) (Table 2). Their study found no sex
differences in either discontinuation or dose reduction rates due to
intolerance to study drugs or in the achievement of LDL-C targets
in the two treatment groups.

6.3 Fibrate therapy

Fibrates are peroxisome proliferator-activated receptor alpha
(PPARα) agonists, which have primarily TG-lowering and HDL-
C-raising effects. In animal studies, fibrates have been effective
in improving steatohepatitis and liver fibrosis, but these results
have not been clearly demonstrated in human studies (84–86).
The current therapeutic recommendation is that the results of
studies to date are insufficient to support the use of fibrates in
MASLD/MASH therapy (67). To the best of our knowledge, no
study has been published that has investigated the sex-difference
of fibrate treatment in patients with MASLD or MASH.

6.4 Proprotein convertase subtilisin/kexin
type 9 (PCSK9) inhibitor therapy

Proprotein convertase subtilisin/kexin type 9 (PCSK9)
inhibitors are now important lipid-lowering drugs (87–90).
Alirocumab and evolocumab are fully humanised antibodies that
increase the availability of LDL receptors (LDLR) on the surface
of hepatocytes, leading to a reduction in LDL-C levels. Inclisiran
is a small interfering ribonucleic acid (siRNA) that reduces LDL-C
levels by inhibition of PCSK9 hepatic synthesis.

The results of human studies on the effect of PCSK9 inhibitors
on MASLD are contradictory (91–95). Some studies have found
no association, while other studies have found a beneficial effect of
PCSK9 inhibitor treatment on the development and progression of
MASLD (91–95).

In contrast to the results found in MASLD, a recent meta-
analysis demonstrated that PCSK9 inhibitor therapy is effective
and safe in patients with diabetes (96). The European Society
of Cardiology in its 2023 recommendation for the treatment
of dyslipidaemia in patients with diabetes recommended PCSK9
inhibitors in two groups of patients (96). Members of the first group
are at very high cardiovascular (CV) risk and have persistently high
LDL-C levels above target despite treatment with the maximum
tolerated dose of statin in combination with ezetimibe or in patients
with statin intolerance. The second group includes those who
cannot tolerate statin-based treatment at any dose (even after
repeated treatment) a PCSK9 inhibitor added to ezetimibe should
be considered (97).

The results of sex-specific clinical trials of PCSK9 inhibitor
treatment are inconclusive (98–103) (Table 3). The FOURIER
(Further cardiovascular OUtcomes Research with PCSK9
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TABLE 1 Sex differences in statin therapy.

Study Patients Intervention Duration Findings

Mombelli et al. (73) 337 dyslipidemic patients (166
women; 171 men)

Different statins (atorvastatin,
fluvastatin, pravastatin,
rosuvastatin, simvastatin)

1 year Statin treatment was less effective in reducing
LDL-C in women
(−22.7++11.8%) vs. men (−28.5+11.8%);
p < 0.001.

Stedman et al. (77) 11.806 patients with T2DM (5184
women; 6622 men)

Different statins 10 years Men were prescribed statins at a higher rate
than women. A higher proportion of women
did not reach the total cholesterol target value
( < 5 mmol/L).

Ambrož et al. (78) 10.456 patients with T2DM (47%
women)

Different statins 1 year Statin therapy was started at a lower rate
among women than among men (19.7% vs.
24.7%) and prescribed less often than among
men (58.7% vs. 63.9%).

Gamboa et al. (79) 4.288 patients with T2DM (55%
women)

Different statins 3 years 66% of white men, 57.8% of black men, 55% of
white women and 53.6% of black women
treated with statin, respectively, p < 0.001.

TABLE 2 Sex differences in ezetimibe therapy.

Study Patients Intervention Duration Findings

Kim et al. (83) 3.780 Patients with
atherosclerosis
(25.2% women)

• Moderate-intensity rosuvastatin (10 mg) and
ezetimibe combination or

• High-intensity rosuvastatin monotherapy
(20 mg)

3 years In both sexes, significantly more patients in
the combination therapy group achieved the
target LDL-C level compared with the
monotherapy group (p < 0.001). There was no
difference between sexes.

TABLE 3 Sex differences in PCSK9 inhibitor therapy.

Study Patients Intervention Duration Findings

Sever et al. (98) FOURIER
Trial

27.564 patients with
atherosclerotic cardiovascular
disease

Statin and
• Evolocumab or
• Placebo

Median follow-up was
2.2 years

There was no difference between sexes
in primary endpoints*

Bittner et al. (99)
ODYSSEY Outcomes
Trial

4.762 women and 14.162 men
after acute coronary syndrome

Statin and
• Alirocumab or
• Placebo

Median follow-up was
2.8 years

Cardiovascular outcomes** were
improved irrespective of sex

Cordero et al. (100) 652 patients with atherosclerotic
cardiovascular disease (24.69%
women)

LLT*** and
• Alirocumab or
• Evolocumab

2 months The mean LDL-C reduction was
47.4% in women vs. 56.9% in men
(p = 0.0002)

Galema-Boers et al. (101) 436 patients (209 women) LLT *** and
• Alirocumab or
• Evolocumab

6 months Relative LDL-C reduction in women
compared to men was 50% vs. 61%
(p < 0.01)

Paquette et al. (102) 259 patients (160 men, 99
women)

LLT *** and
• Alirocumab or
• Evolocumab

5 years Significantly greater LDL-C response
to alirocumab or evolocumab
treatment in men than women
(p < 0.0001)

*Primary endpoints were cardiovascular death, myocardial infarction, stroke, hospitalisation for unstable angina or coronary revascularisation. **Cardiovascular outcomes were (MACE): death
from coronary heart disease, nonfatal myocardial infaction, ischemic stroke or unstable angina requiring hospitalization. ***LLT, lipid-lowering therapy.

Inhibition in subjects with Elevated Risk) and ODYSSEY
OUTCOMES (Evaluation of Cardiovascular Outcomes After an
Acute Coronary Syndrome During Treatment With Alirocumab)
studies found no sex-difference in cardiovascular endpoints
during treatment with the PCSK9 inhibitors (98, 99). Some results
from recently published real-world studies have shown that
women receiving PCSK9 inhibitor treatment had significantly
lower LDL-C reduction and lower rates of LDL-C target
attainment compared with men (100–103). This may be
partly explained by the fact that women had higher baseline
LDL-C levels than men. Paquette et al. found no difference

between pre-menopausal (−58%) and post-menopausal women
(−58%) in the LDL-C lowering efficacy of PCSK9 inhibitor
treatment (102). It should be noted, however, that in two
real-world studies, the efficacy of PCSK9-inhibitor treatment
was also increased in women who received high-intensity
statin combination therapy. This raises the possibility that
it may be important to up titrate the dose of statins before
starting PCSK9 inhibitor treatment, particularly in women
(101, 102). These real-world studies, however, have various
limitations, such as the Cordaro et al. study was a retrospective
and observational study, the Galema-Boers et al. study was a
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single-centre study, and the Paquette et al. study was relatively
short (100–102).

7 Discussion

Previous studies have shown that women with T2DM may have
an excess risk of ASCVD and death compared to men with T2DM
(104, 105). However, this association was confirmed not only in
postmenopausal women with T2DM but also in premenopausal
women (106).

The association between MASLD and T2DM is stronger than
that explained by common ASCVD risk factors alone, and the
relationship appears to be bidirectional (15). The association
between MASLD and T2DM may also be explained by dyslipidemia
(17). Most of the evidence to date suggests that postmenopausal
women with T2DM have a higher risk of developing and
progressing to MASLD compared to men with T2DM (65).

Therapy for MASLD is partly non-pharmacological, i.e., a
lifestyle change involving the introduction of a diet and an increase
in physical activity, with the main aim of weight reduction (67,
107). Therapy for MASLD may include pharmacological treatment,
which also involves the management of dyslipidemia in these
patients (67).

Statins are the first line treatment of dyslipidemia in T2DM
and MASLD at risk of ASCVD (67, 97). A higher proportion of
studies have shown that statin treatment is equally effective in
both sexes, but there have also been conflicting results (71–73). It
should be noted, however, that a smaller proportion of women (15–
30%) participated in the larger statin trials (69). Kim et al. found
no difference in the LDL-C lowering effect of ezetimibe treatment
between women and men with dyslipidemia (83). With respect to
fibrate therapy, to the best of our knowledge, no human studies
have been found that have examined possible sex differences in
dyslipidemia (83).

There are mixed results on sex-differences in recent cholesterol-
lowering PCSK9 inhibitor therapy, and perhaps the dose of statin
at initiation of treatment in women may be important in the
effectiveness of PCSK9 treatment (98–103, 108).

It is certainly noteworthy that the first in-class inhibitor of ATP-
citrate lyase, bempedoic acid therapy, has also been the subject
of a phase 3 trial in T2DM patients and possible sex difference
(109–111). The results showed that bempedoic acid therapy is safe
and effective in patients with T2DM and greater improvements
in LDL-C, and non-HDL-C and apoprotein B were found in
women compared to men (110, 111). However, further studies
need to evaluate the sex differences in the lipid lowering effects
of bempedoic acid.

A number of questions remain unanswered, for example, is
lipid-lowering therapy for women with T2DM and MASLD or
MASH less effective or less aggressive than for men with T2DM
and MASLD or MASH? If so, what might be the reason? Further
long-term prospective studies should assess whether this difference
in women with T2DM and MASLD or MASH is associated with a
higher risk of ASCVD events.

This review has limitations. Patients of different ages,
races, cardiovascular risk groups, with adequate or inadequate
carbohydrate metabolism, and taking various blood sugar-lowering

medications (SGLT2 inhibitors and GLP-1 receptor agonists reduce
the risk of cardiovascular diseases) participated in the included
studies. Their lifestyle (eating habits, physical activity), which
is the basis of therapy for T2DM and MASLD, was often not
evaluated. All of these factors made comparisons difficult and
caused variability in some results.

8 Conclusion

Current medical recommendations to reduce the risk and
mortality of ASCVD do not include sex-specific recommendations
for patients with T2DM and MASLD. However, further evidence
is needed which may subsequently contribute to personalized
dyslipidemia therapy in these patients.
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