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Objectives: Sepsis-associated acute kidney injury (SA-AKI) commonly occurs 
in critically ill patients and is closely associated with adverse outcomes. A 
comprehensive analysis of the current research landscape in SA-AKI can help 
uncover trends and key issues in this field. This study aims to provide a scientific 
basis for research directions and critical issues through bibliometric analysis.

Methods: We searched all articles on SA-AKI indexed in the SCI-Expanded of 
WoSCC up to May 7, 2024, and conducted bibliometric and visual analyses using 
bibliometric software CiteSpace and VOSviewer.

Results: Over the past 20 years, there has been a steady increase in literature 
related to renal repair following AKI. China and the United  States contribute 
over 60% of the publications, driving research in this field. The University of 
Pittsburgh is the most active academic institution, producing the highest number 
of publications. J. A. Kellum is both the most prolific and the most cited author 
in this area. “Shock” and “American Journal of Physiology-Renal Physiology” are 
the most popular journals, publishing the highest number of articles. Recent 
high-frequency keywords in this field include “septic AKI,” “mitochondrial 
dysfunction,” “inflammasome,” “ferroptosis,” and “macrophage.” The terms 
“mitochondrial dysfunction,” “inflammasome,” “ferroptosis,” and “macrophage” 
represent current research hotspots and potential targets in this area.

Conclusion: This is the first comprehensive bibliometric study to summarize 
the trends and advancements in SA-AKI research in recent years. These findings 
identify current research frontiers and hot topics, providing valuable insights for 
scholars studying SA-AKI.
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1 Introduction

Sepsis is defined by a dysregulated host response to infection, resulting in life-
threatening organ dysfunction, frequently encompassing acute kidney injury (AKI) (1). 
Sepsis represents 45–70% of all AKI cases among critically ill patients (2, 3). Sepsis-
associated acute kidney injury (SA-AKI) is prevalent in this population and is closely 
linked to detrimental outcomes, including an elevated risk of chronic kidney disease, 
cardiovascular events, and mortality. The current optimal definition of SA-AKI is the 
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onset of AKI within 7 days following the onset of sepsis, diagnosed 
in accordance with the Kidney Disease Improving Global 
Outcomes (KDIGO) criteria (4) and the Third International 
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) 
criteria (5). Despite decades of investigation, the pathophysiology 
of sepsis-induced AKI remains inadequately elucidated. 
Historically, sepsis-induced AKI was regarded as a renal circulatory 
disease (6), attributed to global renal ischemia, cellular injury, and 
acute tubular necrosis (ATN). Increasing evidence indicates that 
AKI can manifest in a subset of patients without overt signs of 
perfusion deficit, suggesting the involvement of alternative 
mechanisms (7). Numerous facets of SA-AKI remain poorly 
characterized, including its epidemiology, pathophysiology, the 
impact of resuscitation and fluid strategies, the role of biomarkers 
in risk stratification and diagnostic and therapeutic guidance, as 
well as the effects of extracorporeal therapies and novel treatments 
on patient outcomes. Hence, a comprehensive understanding of 
the current research landscape and emerging trends concerning 
SA-AKI is imperative. Bibliometric analysis entails the quantitative 
examination of bibliographic materials through mathematical and 
statistical methods, facilitating the analysis of developmental and 
research patterns in specific fields (8). It grants researchers a broad 
perspective on essential data and dynamic trends, aiding in the 
evaluation of the quantity and quality of existing issues, 
institutions, and regional publications (9). Furthermore, 
bibliometrics is indispensable in forecasting potential future 
research directions and developmental trajectories. Thus, it is 
widely utilized and regarded as an essential tool for research 
assessment. Despite the substantial volume of literature on SA-AKI 
published to date, no study has yet performed visual analyses 
employing bibliometric methods.

2 Materials and methods

2.1 Data source and search strategy

This study employed the Science Citation Index Expanded from the 
Web of Science Core Collection (Clarivate Analytics) as the literature 
retrieval database, renowned for its systematic, authoritative, and 
comprehensive nature, making it a preferred choice for bibliometric and 
visualization analyses (10, 11). Given the swift updates to the database’s 
content, all data were independently retrieved by two authors within a 
single day, specifically May 7, 2024, to ensure real-time accuracy. The 
search keywords employed were “TS = (sepsis-induced acute kidney 
injury) OR TS = (sepsis-associated acute kidney injury) OR 
TS = (septic-induced acute kidney injury) OR TS = (septic-associated 
acute kidney injury) AND Document types = (ARTICLE OR REVIEW) 
AND Language = (English).” The retrieval period spanned from January 
1, 2002, to May 7, 2024. Furthermore, all pertinent bibliographic data—
including publication year, title, authors’ names, nationality, affiliations, 
abstracts, keywords, and journal titles—were meticulously stored in 
plain text format within the WoSCC database. Titles and abstracts of 
retrieved publications were also manually reviewed and screened to 
further exclude retractions and irrelevant records. The inclusion and 
exclusion criteria for the literature are depicted in Figure 1.

2.2 Data analysis

The literature downloaded for this study will subsequently 
be subjected to an analysis employing widely utilized bibliometric 
analysis tools, including CiteSpace 6.1.3, VOSviewer 1.6.18 (Leiden 
University Center for Science and Technology Studies), and R’s 

FIGURE 1

Flowchart of the screening process.
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Biblioshiny platform. VOSviewer 1.6.18 is a sophisticated bibliometric 
analysis software adept at extracting critical information from an array 
of publications (12), frequently utilized for constructing collaboration, 
co-citation, and co-occurrence networks (13, 14). In our inquiry, the 
software will primarily facilitate the following analyses: examination 
of countries and institutions, analysis of journals and co-cited journals, 
assessment of authors and co-cited authors, as well as keyword 
co-occurrence analysis. In the visualizations generated by VOSviewer, 
each node symbolizes an entity, be it a country, institution, journal, or 
author. The size and hue of nodes, respectively, denote the quantity 
and category of these entities. The thickness of the lines 
interconnecting nodes reflects the intensity of collaboration or 
co-citation (15, 16). CiteSpace 6.1.3, developed by Professor Chen C., 
is yet another software instrument employed for bibliometric analysis 
and visualization (17, 18). In this study, CiteSpace will be utilized to 
generate overlay dual-map journal visualizations and to conduct burst 
detection analyses on keywords (19), wherein burst strength indicates 
the frequency of keyword occurrences (20). Start and end times 
delineate the temporal distribution of keywords, while hotspots are 
characterized as high-frequency keywords within prominent scientific 
domains (21). The R package “bibliometrix” (version 3.2.1)1 will 
be  employed to scrutinize collaboration between countries and 
regions. Furthermore, Microsoft Office Excel 2019 will be harnessed 
for the quantitative analysis of publications.

3 Results

3.1 Annual publication outputs

In accordance with our investigative strategy, over the past two 
decades, a total of 615 articles and 73 reviews concerning SA-AKI 
have been published. We scrutinized the annual publication figures, 
with the earliest pertinent article traced back to 2011. As illustrated in 

1 https://www.bibliometrix.org

Figure 2, the entirety of this time frame can be segmented into three 
distinct phases: Phase 1 (2011–2016), Phase 2 (2017–2021), and Phase 
3 (2022–2023). During Phase 1, research was in its nascent stages, 
averaging 25.3 articles per year. Commencing in 2017, there was a 
marked surge, culminating in 105 articles by 2021. Nevertheless, in 
the subsequent 2 years, a slight regression has been observed, with an 
average of approximately 87.5 articles per year, although the subject of 
SA-AKI continues to be a prominent focus of inquiry.

3.2 Country and institutional analysis

These publications emanate from 45 nations and 200 institutions. 
The foremost 10 countries (as detailed in Table  1) exhibiting the 
highest number of publications are spearheaded by China (n = 397, 
49.7%), followed by the United States (n = 120, 15.0%), India (n = 21, 
2.6%), and Germany (n = 21, 2.6%). China constitutes nearly half of 
the total publications, with the United States following as the second 
most significant contributor.
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FIGURE 2

Annual research output on SA-AKI.

TABLE 1 Top 10 countries and institutions in SA-AKI research.

Country Count Institution Count

China 397 University of Pittsburgh 22

The United States 120 Wuhan University 21

Italy 21 Southern Medical University 21

Germany 21 Shanghai Jiaotong University 21

Brazil 18 Nanjing Medical University 19

Japan 17 Capital Medical University 17

Egypt 16 Huazhong University of Science 

and Technology

14

Korea 15 University of Melbourne 12

Australia 15 Central South University 12

Thailand 12 Wenzhou Medical University 11
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FIGURE 3

Geographic distribution (A) and country visualization (B) of SA-AKI research.

Subsequently, we filtered and visualized the 45 nations based on 
publications of two or more, and constructed a collaborative network 
(Figure 3) reflecting the quantity of publications and interrelations 
among each country. It is particularly noteworthy that there exists a 
plethora of active collaborations among various nations. For instance, 
China maintains a close collaborative relationship with the 

United States, Japan, and Australia; the United States actively engages 
with Germany, Thailand, and France.

The top 10 universities hail from three countries, with four out of 
five situated in China. The five universities that have published the 
most pertinent papers are: University of Pittsburgh (n = 22, 2.8%), 
Wuhan University (n = 21, 2.6%), Southern Medical University 
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(n = 21, 2.6%), Shanghai Jiao Tong University (n = 21, 2.6%), and 
Nanjing Medical University (n = 19, 2.4%). Subsequently, we selected 
200 institutions for visualization based on the criterion of having 
published at least 2 papers, constructing a collaborative network 
(Figure 4) based on the volume of publications and interrelationships 
for each institution. From Figure  4, it is evident that Wuhan 
University collaborates closely with Nanjing Medical University and 
Southern Medical University, while the Feinstein Institutes for 
Medical Research forges strong partnerships with the University of 
Melbourne and the University of Pittsburgh.

3.3 Journals and co-cited journals

Publications pertaining to SA-AKI have been disseminated across 
200 journals. As indicated in Table 2, the journal with the highest 

number of publications is Shock (n = 24, 3.6%), followed by the 
American Journal of Physiology-Renal Physiology (n = 19, 2.8%), 
PLoS One (n = 14, 2.1%), and International Immunopharmacology 
(n = 13, 1.9%). Among the top 15 journals ranked by impact factor, 
“Kidney International” holds the highest impact factor (IF = 19.6), 
trailed by “Critical Care” (IF = 15.1). Subsequently, we selected journals 
based on the criterion of a minimum of two related publications and 
constructed a journal citation network graph (Figure 5A). Figure 5A 
illustrates the close citation relationships between the American 
Journal of Physiology-Renal Physiology and journals such as Critical 
Care Medicine, Kidney International, and PLoS One.

Among the top 15 cited journals, six have been referenced more 
than 500 times each. The most cited journal is Shock (cited 1,106 
times), followed by Kidney International (cited 1,074 times), Critical 
Care (cited 732 times), and the American Journal of Physiology-
Renal Physiology (cited 702 times). Journals were selected based on 

FIGURE 4

Institutional visualization of SA-AKI research.

TABLE 2 Contributions of the top 10 journals on SA-AKI.

Rank Journal Publications Citations The percentage of articles 
of institutions in total 

publications

IF

1 Shock 24 1,106 3.6 3.1

2 American Journal of Physiology-Renal Physiology 19 702 2.8 4.2

3 PLoS One 14 459 2.1 3.7

4 International Immunopharmacology 13 420 1.9 5.6

5 Critical Care Medicine 12 404 1.9 8.8

6 Critical Care 11 732 1.6 15.1

7 Biomedicine & Pharmacotherapy 11 281 1.6 7.5

8 Life Sciences 10 371 1.5 6.1

9 Renal Failure 10 206 1.5 3.0

10 Frontiers in Immunology 10 203 1.5 7.3
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FIGURE 5

Visualization of SA-AKI research journals (A) and co-cited journals (B).

a minimum of 20 citations, and a citation network graph was 
constructed (Figure  5B). As depicted in Figure  5B, Critical Care 
Medicine exhibits positive citation relationships with journals such 
as Nature Reviews Nephrology and Kidney International.

The dual overlay display of the journal elucidates the distribution 
of its themes (Figure 6). Cited journals are positioned on the left side 
of the map, while citing journals are situated on the right. The labels 
signify the disciplines encompassed by the journals. From left to right, 
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the colored lines portray the citation pathways, delineating four 
distinct citation trajectories (22). The orange pathway represents the 
primary citation route, indicating that the research published in the 
Molecular/Biology/Genetics journal is frequently referenced in studies 
conducted within the Molecular/Biology/Immunology journal.

3.4 Authors and co-cited authors

In 1919, authors contributed to SA-AKI research. Twelve authors 
published five or more papers (see Table 3). A collaboration network 
was established among authors with two or more publications (refer 
to Figure  7A), wherein the nodes for Kellum J. A., Bellomo R., 
Leelahavanichkul A., and Clive N. May stand out due to their prolific 
output. Furthermore, close collaborations were observed among 
several authors; for instance, Xing Zhang maintained a close 
association with Rui Huang, Rui Chen, Yang Ni, and others.

Additionally, we noted the total citations of authors, reflecting 
their recognition within the field. Kellum J. A., with 1,969 citations, 
garnered the highest total citations. Gomez H. ranked second in total 
citations. Authors with a minimum co-citation count of 15 were 
selected to construct a co-citation network (see Figure  7B). As 
illustrated in Figure 7B, active collaborations exist among various 
co-cited authors; for example, Bellomo R. closely collaborated with 
Bagshaw S. M., Uchino S., and others.

3.5 Co-cited references

Over the past two decades, research concerning SA-AKI has been 
referenced in a cumulative total of 22,052 scholarly publications. 
We devised a co-citation network (Figure 8) utilizing publications that 

have been cited 10 or more times. From Figure 8, it becomes apparent 
that there exist strong co-citation relationships among works such as 
“Singer M., 2016, JAMA” in conjunction with “Poston J. T., 2019, BMJ,” 
“Zarjou A., 2011, J Am  Soc Nephrol,” “Gomez H., 2014, Shock,” 
among others.

3.6 Reference with citation bursts

We utilized CiteSpace to select highly cited references. The results 
reveal that over time, the following 15 references have been 
extensively cited (Figure 9), with their findings being well recognized 
in the field. The deep blue line denotes the citation duration from 
2011 to 2024, while the red bars illustrate the intensity of citation 
bursts (23). Citation bursts in the references were observed as early 

FIGURE 6

Overlay of SA-AKI research journals.

TABLE 3 Top 10 authors by publication count in SA-AKI research papers.

Rank Author Publications Citations

1 Kellum J. A. 14 1,969

2 Bellomo R. 12 399

3 Leelahavanichkul A. 11 472

4 Clive N. May 11 322

5 Mayeux P. R. 10 693

6 Zeng Zhenhua 11 732

7 Hernando Gomez 9 1,758

8 Li Tao 9 212

9 Peng Zhiyong 9 145

10 Chen Zhongqing 8 163
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FIGURE 7

Visualization of authors (A) and co-cited authors (B) in SA-AKI research.

as 2008 and as recently as 2024. The most robust citation burst 
(intensity = 21.07) was noted in the article titled “A unified theory of 
sepsis-induced acute kidney injury: inflammation, microcirculatory 
dysfunction, bioenergetics, and the tubular cell adaptation to injury,” 
authored by Gomez H. et al., with citation bursts occurring from 

2014 to 2019. The second highest citation burst (intensity = 19.81) 
was identified in the article titled “Acute kidney injury from sepsis: 
current concepts, epidemiology, pathophysiology, prevention, and 
treatment” by Sadudee Peerapornratana et al., published in Kidney 
International, with citation bursts occurring from 2011 to 2019. 

https://doi.org/10.3389/fmed.2024.1456535
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2024.1456535

Frontiers in Medicine 09 frontiersin.org

Overall, citation burst intensities for the top 15 articles ranged from 
6.11 to 21.07.

3.7 Hotspots and frontiers

Through the analysis of co-occurring keywords, one can swiftly 
discern research hotspots within a particular domain. We filtered 
keywords that appeared two or more times and performed a cluster 

analysis utilizing VOSviewer (see Figure 10A). The thickness of the 
lines connecting nodes denotes the strength of relationships between 
the keywords. Ultimately, we  identified three distinct clusters 
delineating three research directions.

The green cluster comprises keywords such as sepsis, sepsis-
induced acute kidney injury, innate immunity, and Extracellular 
Signal-regulated Kinase 1/2. The red cluster encompasses terms like 
S-AKI, nlrp3, and mir-22-3p, among others. Keywords in the blue 
cluster include renal replacement therapy, nitric oxide, toll-like 

FIGURE 8

Visualization of co-cited publications in SA-AKI research.

FIGURE 9

Top 15 references with strong citation bursts.
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FIGURE 10

Keyword clustering analysis (A) and trend topic analysis (B).

receptor 4, and various others. The keyword trend topic analysis 
(refer to Figure  10B) elucidates the temporal trajectory and 
evolution of specific research themes. Presently, the investigation 
into SA-AKI predominantly revolves around mitochondrial 
dysfunction, inflammasome activity, ferroptosis, and 
macrophage involvement.

4 Discussion

4.1 General information

Beginning in 2011, scholarly articles on SA-AKI began to emerge 
gradually. The publication of the KDIGO guidelines (24) offered a 
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foundational basis for research on SA-AKI; however, until 2016, this 
area of inquiry remained in its nascent stages, with an average of 
merely 25.3 articles published annually. From 2017 to 2021, the 
volume of published works experienced a significant upsurge, 
averaging 65.4 articles per year. This remarkable increase in 
publication numbers may correlate with the dissemination of various 
guidelines (1, 25–28). These guidelines and expert consensus have 
provided crucial guidance for clinical trials and established diagnostic 
criteria for SA-AKI. Despite a noticeable decline in publication 
volume over the past 2 years, the output remains substantial, averaging 
approximately 87.5 articles annually. Currently, research on SA-AKI 
remains a vibrant topic, garnering increasing attention from scholars.

An analysis of national and institutional distribution aids in 
fostering collaboration within research teams both domestically and 
globally. China emerges as a formidable leader in SA-AKI research, 
boasting the highest publication output, followed by the United States 
(n = 120, 15.0%) and India (n = 21, 2.6%). China maintains close 
partnerships with the United States, Japan, and Australia; similarly, the 
United  States actively engages in collaborations with Germany, 
Thailand, and France. Among the top  10 research institutions, 
approximately 80% are situated in China, with the University of 
Pittsburgh (n = 22, 2.8%) contributing the most extensive body of 
SA-AKI-related research. Numerous institutions demonstrate strong 
collaborative ties; for example, Wuhan University collaborates 
intimately with Nanjing Medical University and Southern Medical 
University, while the Feinstein Institutes for Medical Research 
maintain a close partnership with the University of Melbourne and 
the University of Pittsburgh.

While certain nations display commendable collaborative 
endeavors, the scope and profundity of institutional cooperation 
remain regrettably inadequate. Undoubtedly, the augmentation of 
enduring institutional collaboration is advantageous for the progression 
of research within this realm. Therefore, we fervently implore research 
institutions globally to partake in expansive collaboration and 
exchange, thereby collectively nurturing the advancement of 
SA-AKI. The journal with the most publications concerning SA-AKI 
research is “SHOCK” (IF = 3.1, Q2), which currently stands as the most 
esteemed journal in this academic field. The journal boasting the 
highest impact factor is “Kidney International” (IF = 19.6, Q1), 
succeeded by “Critical Care” (IF = 15.1, Q1). An examination of 
co-cited journals reveals that the majority are esteemed Q1 
publications, clearly indicating their high caliber and their role in 
underpinning SA-AKI research. From an authorship perspective, the 
research leadership within this discipline is predominantly confined to 
a select few remarkably prolific authors, notably Kellum J. A. from the 
United States and Bellomo R. from Australia. Not only do they lead in 
terms of publication volume, but they also demonstrate exceptional 
h-index performance, rendering them the most authoritative figures in 
this arena. Kellum J. A. investigates various dimensions of SA-AKI, 
encompassing concepts, epidemiology, pathophysiology, prevention, 
and treatment (7, 25, 29–32), and has generated a substantial corpus of 
seminal articles.

Co-cited literature refers to documents frequently referenced by 
multiple other publications; thus, it can be deemed a foundation of 
research within a field (19). In this bibliometric analysis, we selected 
the 10 most co-cited articles to illustrate the research landscape of 
SA-AKI. The most co-cited study, published by Singer et  al. (1), 
revisited the definitions of sepsis and septic shock (33) established in 

2001, reassessing and updating the pathobiology, therapy, and 
epidemiology of sepsis as necessary. These revised definitions and 
clinical standards afford greater consistency for epidemiological 
studies and clinical trials, facilitating the early identification and 
more timely management of septic patients or those at heightened 
risk of sepsis. Among these 10 co-cited papers, Hernando Gomez has 
authored two, with the initial review published in “Shock” in 2014. 
This review posits that AKI may manifest in numerous patients 
without overt indicators of systemic hypoperfusion, and that sepsis-
induced AKI may occur even in the presence of normal or elevated 
renal blood flow. Consequently, renal injury may not be  entirely 
elucidated by the classical paradigm of hypoperfusion, warranting 
consideration of alternative mechanisms. A “unifying theory” has 
therefore been proposed to elucidate the interplay between 
inflammation and oxidative stress, microvascular dysfunction, and 
the adaptive responses of tubular epithelial cells to septic injury, 
suggesting these responses are primarily adaptive and driven by 
mitochondria, ultimately elucidating the clinical phenotype of sepsis-
induced AKI (7). The second review posits that while earlier 
perspectives suggested organ dysfunction ensues solely from 
hypoperfusion, this analysis contests that notion by asserting that 
AKI can arise alongside normal or augmented renal blood flow. Its 
characteristics are not confined to acute tubular necrosis or apoptosis, 
but instead manifest as heterogeneous, localized, gradual areas of 
peritubular capillary blood flow and oxidative stress within tubular 
epithelial cells. Furthermore, it proposes that microvascular 
dysfunction, inflammation, and metabolic responses to inflammatory 
injury might elucidate the fundamental pathophysiological 
mechanisms underlying acute kidney injury induced by sepsis (34). 
This realization is pivotal, as it opens avenues for a more profound 
understanding of the injury and repair processes, against the 
backdrop of decades of clinical trial outcomes. It also provides 
invaluable opportunities for the design of mechanism-targeted 
therapeutic interventions.

Peerapornratana et  al. (25) published an article in “Kidney 
International,” redefining the conceptual framework, epidemiology, 
pathophysiology, prevention, and management of SA-AKI. They 
emphasized the current limitations in defining and diagnosing 
SA-AKI, acknowledging the potential of biomarkers as valuable 
supplements to clinical judgment, functional testing, and existing 
standards to enhance early detection, which may ultimately guide 
management and recovery monitoring. Nevertheless, effective and 
specific interventions for the prevention and treatment of SA-AKI 
remain sorely deficient. In summary, much-cited literature 
predominantly centers on elucidating the pathophysiology of 
SA-AKI, predicting novel biomarkers, and potentially refining 
treatment strategies to optimize outcomes for SA-AKI patients, yet 
these endeavors largely reside within the domain of 
fundamental research.

4.2 Research hotspots and frontiers

The references cited in the surge of citations concerning hotspots 
and frontiers represent burgeoning topics within specific research 
domains, as these references have been frequently acknowledged by 
scholars in recent years (35). To date, the majority of studies have 
indicated that SA-AKI is a grave condition wherein mitochondrial 
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oxidative stress and inflammation play pivotal roles in its pathophysiology 
(36). Moreover, levels of cytokines (such as interleukin IL-6, IL-10, and 
macrophage migration inhibitory factor) demonstrate strong correlations 
with the onset of SA-AKI (37, 38), underscoring the significant influence 
of systemic inflammatory mediators in this process. Additional research 
suggests that sepsis-induced injury to renal tubular cells transpires 
through increased permeability resulting from endothelial disruption 
(39). Apoptosis is a form of programmed cell death, alongside necrosis, 
autophagy, and ferroptosis. Excessive apoptosis has been identified as a 
prominent characteristic of renal tubular cells in acute inflammatory 
environments, thereby facilitating the progression to chronic kidney 
disease through tubular atrophy and interstitial fibrosis (40). The 
trending topic map illustrates that the vanguard of acute kidney injury 
biomarkers is concentrated on mitochondrial dysfunction, 
inflammasome, ferroptosis, and macrophages.

4.2.1 Mitochondrial dysfunction
Sepsis can instigate mitochondrial damage and immune 

dysfunction. Owing to perilous factors such as an abundance of 
reactive oxygen species (ROS) or nitric oxide within the inflammatory 
response, mitochondrial dysfunction, oxidative stress, and cellular 
apoptosis may be induced (41–43), ultimately culminating in cellular 
demise (44–46). Mitochondria, serving as the energy hub of 
organisms, partake in the oxidative metabolism of eukaryotes and 
represent the primary intracellular source of most reactive oxygen 
species (ROS) (47). ROS are regarded as pivotal agents inciting renal 
damage manifestations, including mesangial cell hypertrophy, 
podocyte apoptosis, glomerulosclerosis, and endothelial dysfunction. 
Furthermore, ROS function as significant mediators in proteinuria 
and compromise glomerular hemodynamics. Excessive ROS 
production linked to mitochondrial dysfunction may disrupt the 
equilibrium between ROS generation and the cellular defense 
mechanisms, thereby invoking oxidative stress (48), which is deemed 
a prerequisite for sepsis-associated acute kidney injury (SA-AKI) (49). 
Moreover, prior studies have indicated that mitochondrial dysfunction 
is not merely a vital factor inducing imbalanced oxidative stress within 
cells (50) but also one of the mechanisms by which sepsis inflicts 
damage upon various organs (51).

In sepsis, the generation of free radicals markedly escalates due to 
oxygen deprivation, incomplete oxidative reactions, and hypoxia. 
Mechanisms that hinder the antioxidant system further exacerbate 
mitochondrial dysfunction (52). Additionally, research suggests that 
morphological alterations in mitochondria serve as early indicators of 
ROS-induced mitochondrial dysfunction (53). Scholars increasingly 
acknowledge the role of mitochondria in the pathophysiology of acute 
kidney injury precipitated by sepsis and its potential as a therapeutic 
target (54).

Previous inquiries have elucidated that the Toll-like receptor 4 
(TLR4)/nuclear factor-κB (NF-κB) signaling pathway constitutes a 
critical nexus mediating inflammation and is accountable for the 
initiation of mitochondrial dysfunction (55), recognized as one of the 
signaling pathways implicated in the onset of SA-AKI (56–58). 
Importantly, investigations have documented a profound association 
between TLR4/NF-κB activation and the occurrence of acute kidney 
injury, with the activation of this pathway likely paving the way for 
SA-AKI symptoms (59). It is posited that inhibiting the activity of the 
TLR4/NF-κB signaling pathway may attenuate oxidative stress and the 
synthesis of pro-inflammatory factors (60, 61). Current studies 

utilizing cecal ligation and puncture (CLP)-induced SA-AKI have 
demonstrated that TAK-242 can promote mitochondrial biogenesis 
(62), modulate mitochondrial quality (63), and ameliorate 
mitochondrial dysfunction (64), thereby inhibiting the TLR4/NF-κB 
signaling pathway, enhancing renal tissue mitochondrial function, and 
preventing CLP-induced SA-AKI in rats, providing substantive data 
support for the treatment of SA-AKI (65).

4.2.2 Inflammasome
The inflammasome is a complex assembly of multiple proteins 

formed by cytoplasmic pattern recognition receptors (PRRs) and 
constitutes a pivotal element of the innate immune system. It 
identifies pathogen-associated molecular patterns (PAMPs) or 
danger-associated molecular patterns (DAMPs) derived from host 
sources, subsequently recruiting and activating the pro-inflammatory 
protease caspase-1. The activation of caspase-1 results in the cleavage 
of pro-IL-1β and pro-IL-18, culminating in the production of 
inflammatory cytokines such as IL-18 and IL-1β (66–68). Moreover, 
the activation of the inflammasome may instigate pyroptosis, a form 
of programmed cell death characterized by inflammation. Pyroptosis 
is a pro-inflammatory process of programmed cell death implicated 
in the pathogenesis of a variety of diseases, particularly kidney 
ailments. Focal cell death contributes to renal disorders through two 
primary pathways: the classical pyroptosis pathway mediated by 
caspase-1 and the non-classical pyroptosis pathway facilitated by 
caspase-11. The classical pyroptosis mediated by caspase-1 is a 
regulated mode of cell death that depends on the activation of 
caspase-1. Upon host infection, the generation of danger signals 
such as damage-associated molecular patterns (DAMPs) or 
pathogen-associated molecular patterns (PAMPs) occurs, which are 
detected by nod-like receptors (NLRs) that subsequently initiate 
pyroptosis (69, 70). NLRs commonly include NOD-like receptor 
family pyrin domain-containing protein 3 (NLRP3) or NOD-like 
receptor family pyrin domain-containing protein 4 (NLRP4). 
NLRP3, a cytosolic sensor, comprises a central NACHT domain, 
C-terminal leucine-rich repeats (LRRs), and an N-terminal pyrin 
domain (71), and is among the most crucial intracellular receptors 
that can be induced by NF-κB transcription. The activation of the 
NLRP3 inflammasome results in the maturation of caspase-1, 
facilitating pyroptosis and regulating the cleavage and maturation of 
pro-inflammatory cytokines like IL-1β and IL-18 (72), thus playing 
a vital role in the pyroptotic process (73–76). Research has 
demonstrated that the inhibition of NLRP3 inflammasome 
activation can mitigate the inflammatory response and the 
expression of kidney injury markers such as neutrophil gelatinase-
associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) 
in mice with lipopolysaccharide-induced acute kidney injury (77). 
Therefore, the NLRP3 inflammasome plays a significant role in the 
progression of acute kidney injury (78), albeit its precise role and 
mechanisms in sepsis-induced acute kidney injury remain poorly 
understood. Galectin-3, a member of the β-galactosidase family, 
plays significant roles in various biological processes such as cell 
proliferation, differentiation, adhesion, and apoptosis. The 
overexpression of Galectin-3 fosters renal cell apoptosis and the 
synthesis of type I collagen, thereby contributing to inflammation 
and fibrosis (79). The activation of NLRP3 induces intracellular 
oxidative stress, which in turn leads to an increased expression of 
Galectin-3 (80), suggesting that NLRP3 might trigger renal injury 
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through galectin-3. Additionally, the production of reactive oxygen 
species (ROS) serves as a potential instigating factor for the assembly 
of the NLRP3 inflammasome (81). Due to factors such as infection, 
inflammation, or mitochondrial dysfunction, levels of mitochondrial 
reactive oxygen species (mtROS) rise. Oxidized mitochondrial DNA 
(oxmtDNA) is released into the cytoplasm, leading to the assembly 
and activation of the NLRP3 inflammasome via direct interaction 
with NLRP3 (82–84). Functioning as a sensor for mitochondrial 
dysfunction, the NLRP3 inflammasome highlights the connection 
between mitochondrial damage, autophagy/mitophagy, and 
inflammation (85). Studies have indicated that in a septic rat model, 
the caspase-1 inhibitor AC-YVAD-CMK significantly diminishes the 
expression of GSDMD in renal tissues. This inhibition of NLRP 
inflammasome expression reduces the pyroptotic death of renal 
tubular epithelial cells (RTECs), enhances antioxidant enzyme 
activity, decreases oxidative products, thereby providing protection 
against sepsis-induced acute kidney injury (86).

4.2.3 Ferroptosis
Ferroptosis represents a novel variant of programmed cell death, 

first delineated in 2012 (87). This cellular demise is intricately 
governed by a myriad of metabolic pathways, encompassing redox 
homeostasis, iron metabolism, mitochondrial function, as well as the 
metabolism of amino acids, lipids, and glucose (88). In contrast to 
apoptosis, necrosis, and autophagy, ferroptosis is distinguished by the 
preservation of cellular membranes, nuclei that are both appropriately 
sized and dense, and diminutive mitochondria (89, 90). Ferritin heavy 
polypeptide 1 (FTH-1) holds a pivotal role in the maintenance of 
intracellular iron equilibrium and the modulation of ferroptosis (91). 
Moreover, it provides a protective function in cases of sepsis-induced 
organ failure (92). Ferroptosis serves as a pro-inflammatory mediator, 
attracting macrophages and inciting inflammation (93), which 
culminates in the augmentation of reactive oxygen species (ROS) and 
lipid peroxidation (94). As insights into ferroptosis expand, a plethora 
of studies has documented its activation during organ damage 
consequent to sepsis (95–97). Tubular ferroptosis is triggered in 
SA-AKI, corroborating recent findings (96, 98, 99). Furthermore, 
ferroptosis may accompany several processes, including ROS 
accumulation and lipid peroxidation, both of which contribute to 
acute kidney injury (AKI) (95, 100, 101). The formation of ROS is 
regarded as the paramount executor in ferroptosis, wherein an 
overabundance of ROS instigates oxidative stress, exacerbates 
mitochondrial dysfunction, and directly engenders renal injury (102). 
Elevated levels of ROS evoke inflammatory responses in distant organ 
damage (103). The kidney is particularly susceptible to ferroptosis. In 
prior studies, the genetic ablation of the ferroptosis regulator GPX4 
resulted in acute kidney injury in murine models, ultimately 
culminating in mortality (104). Recent investigations have illuminated 
that, in AKI, the upregulation of the Hmox1 pathway performs an 
anti-ferroptotic function amid oxidative stress and inflammation 
(105). An inhibitor of mmu-miR-7212-5p enhances Hmox1 
expression and mitigates ferroptosis by diminishing Acsl4 expression, 
suggesting that mmu-miR-7212-5p inhibitors may represent a 
promising clinical therapeutic target for sepsis-related AKI. The 
kidney is deemed one of the most susceptible organs during sepsis, in 
part due to the excessive rupture of erythrocytes induced by sepsis, 
which leads to the liberation of substantial quantities of free 
hemoglobin, heme, and iron into the bloodstream. The increased 

filtration and reabsorption of hemoglobin in the kidneys aggravate 
oxidative stress and ferroptosis (106). The infiltration of immune cells, 
particularly macrophages, also contributes to the accumulation of iron 
within tissues (107), resulting in oxidative stress and cellular injury 
(108). This aligns with previous reports indicating that FER1 alleviates 
LPS-induced organ injury by effectively counteracting membrane 
lipid damage through redox reactions (109, 110). Additionally, 
Glutathione peroxidase 4 (Gpx4) functions as a critical regulator of 
ferroptosis by inhibiting lipid peroxidation (111). Researchers have 
identified that AKI can result in the downregulation of endogenous 
H2S production, thereby diminishing glutathione (GSH) levels and 
amplifying cardiac oxidative stress (112). H2S has been extensively 
studied in various animal and cellular models of AKI, demonstrating 
efficacy in ameliorating renal damage (113). Sepsis may provoke 
ferroptosis through the elevation of mitochondrial lipid peroxidation 
and MDA levels, while concurrently reducing MMP and GSH levels 
(114). H2S may counteract AKI induced by iron toxicity by inhibiting 
mitochondrial oxidative stress. Iron-dependent cell death during 
SA-AKI exacerbates injury, indicating that the inhibition of ferroptosis 
could serve as a promising therapeutic strategy. The concept of iron 
death remains nascent within the realm of acute kidney injury 
research, and the interplay between iron death and other forms of 
programmed cell death will be a focal point for future investigations 
(115). Furthermore, iron death is also implicated in the transition 
from acute kidney injury to chronic kidney disease, and the regulation 
of iron death may prospectively avert this transition (116).

4.2.4 Macrophage
M1 pro-inflammatory macrophages serve as the initial responders 

to septic kidney injury, possessing the capacity to clear damaged cells, 
promote renal fibrosis, and facilitate recovery (117). Dying tubular cells 
actively or passively release inflammatory mediators and damage-
associated molecular patterns (DAMPs) into the extracellular 
microenvironment, thereby recruiting and fostering the differentiation 
of renal monocytes into M1 macrophages (118). The sustained 
presence of M1 macrophages can precipitate further tissue damage and 
worsen prognosis following kidney injury (119), while M2 
macrophages play a pivotal role in suppressing inflammation and 
steering recovery (119). Extensive research emphasizes the significance 
of regulating M1/M2 macrophage polarization as a promising 
therapeutic target for acute kidney injury (AKI) (120, 121). Moreover, 
macrophages have been identified as critical immune cells in the 
process of ferroptosis (122). Prior reports suggest that iron-dependent 
cell death in tumor cells promotes M1 macrophage polarization and 
contributes to pro-inflammatory responses (123, 124). Hence, it may 
be inferred that macrophages, particularly M1 macrophages, might 
be involved in exacerbating apoptosis-related inflammation during 
kidney injury. C-type lectin domain family 4, member E (Clec4e, also 
known as Mincle), is markedly expressed on the surface of M1 
macrophages, detecting pathogens and endogenous ligands, thereby 
initiating innate immunity in the realms of host defense, immune 
disorders, infectious diseases, inflammation, and even tumors (125). 
Studies have indicated that in ischemia/reperfusion-induced AKI, 
Mincle and its downstream mediator, the Syk pathway, are integral in 
maintaining the M1 polarization of macrophages, promoting 
inflammation, and aggravating renal damage (126–128). Inhibiting 
Mincle expression in macrophages has been demonstrated to 
significantly alleviate inflammation, suggesting a potential target for 
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AKI treatment (129). Splicing factor 130 (SAP130), a component of the 
small nuclear ribonucleoprotein, is released from dying cells during 
processes such as apoptosis and regulated necrosis (130, 131). It is 
identified as the first described endogenous ligand of Mincle, inducing 
the activation of the M1 phenotype in macrophages during tissue 
injury (128, 130, 132). Prior studies have shown that M1 macrophages 
recognize SAP130, activating Mincle and contributing to various 
ailments, including acute and chronic kidney injuries (133, 134). 
SAP130 released from iron-dead tubular epithelial cells (TECs) further 
activates the Mincle/Syk/NF-κB signaling pathway in macrophages, 
propelling the formation of M1 macrophages, ultimately exacerbating 
TEC iron death and initiating an inflammatory feedback loop within 
the microenvironment of sepsis-associated acute kidney injury 
(SA-AKI). Silencing Mincle in macrophages or neutralizing SAP130 
disrupts the crosstalk between TECs and macrophages, both in vivo 
and in  vitro, thereby reducing tubular cell death and interstitial 
macrophage infiltration. This intervention mitigates renal injury and 
preserves renal function. Numerous studies highlight that the interplay 
between tubular epithelial cell (TEC) death and macrophage-mediated 
inflammation is crucial in the progression and reparative mechanisms 
of AKI (135, 136). However, macrophage phenotypes and functions 
exhibit considerable plasticity, potentially exerting opposing roles in 
both AKI and repair processes by altering their phenotypic expression 
(137). Consequently, an enhanced understanding of macrophage 
activation following tubular injury is essential.

5 Advantages and limitations

This study employed bibliometric methods to conduct the first 
comprehensive visualization analysis of research on SA-AKI, thereby 
assisting scholars in better comprehending the field’s focal points and 
trends. Furthermore, we concurrently employed three bibliometric 
tools for our investigation, ensuring objectivity in our data analysis 
process. Ultimately, bibliometric analysis yields more profound 
insights into hotspots and frontiers compared to traditional reviews. 
Nonetheless, our study is not without limitations: firstly, we exclusively 
analyzed English articles indexed in the Web of Science Core 
Collection within a defined timeframe, which may have led to the 
omission of pertinent research from other databases. Secondly, 
bibliometric analysis tools may possess intrinsic limitations and biases 
that could potentially influence the results. Nevertheless, the use of 
visual methods to discern the current status, hotspots, and trends 
within a field remains invaluable.

6 Conclusion

In summary, this bibliometric analysis meticulously examines the 
present status of research on SA-AKI, charting the trajectory of future 

developments in the field. The swift rise in publications signifies an 
escalating global interest among scholars in SA-AKI. Prominent 
nations in this research endeavor include China and the United States; 
nonetheless, there exists a pressing need to enhance collaboration and 
communication among countries and institutions. Investigations 
centering on mitochondrial dysfunction, iron metabolism pathways, 
and the identification of antagonistic axes in the pathogenesis of 
SA-AKI are emerging as pivotal areas for forthcoming studies. 
Therefore, delving into the pathophysiology and therapeutic strategies 
of SA-AKI offers considerable promise for precise treatments in the 
future. This study may assist scholars in obtaining a clearer and more 
rapid comprehension of the global research landscape surrounding 
SA-AKI, thereby providing valuable insights for institutions or groups 
pursuing research collaborations.
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