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Utilizing deep learning models in 
an intelligent spiral drawing 
classification system for 
Parkinson’s disease classification
Nesren Farhah *

Department of Health Informatics, College of Health Sciences, Saudi Electronic University, Riyadh, 
Saudi Arabia

Introduction: Parkinson’s disease (PD) is a neurodegenerative illness that 
impairs normal human movement. The primary cause of PD is the deficiency 
of dopamine in the human brain. PD also leads to several other challenges, 
including insomnia, eating disturbances, excessive sleepiness, fluctuations in 
blood pressure, sexual dysfunction, and other issues.

Methods: The suggested system is an extremely promising technological 
strategy that may help medical professionals provide accurate and unbiased 
disease diagnoses. This is accomplished by utilizing significant and unique traits 
taken from spiral drawings connected to Parkinson’s disease. While PD cannot 
be cured, early administration of drugs may significantly improve the condition 
of a patient with PD. An expeditious and accurate clinical classification of PD 
ensures that efficacious therapeutic interventions can commence promptly, 
potentially impeding the advancement of the disease and enhancing the quality 
of life for both patients and their caregivers. Transfer learning models have been 
applied to diagnose PD by analyzing important and distinctive characteristics 
extracted from hand-drawn spirals. The studies were carried out in conjunction 
with a comparison analysis employing 102 spiral drawings. This work enhances 
current research by analyzing the effectiveness of transfer learning models, 
including VGG19, InceptionV3, ResNet50v2, and DenseNet169, for identifying 
PD using hand-drawn spirals.

Results: Transfer machine learning models demonstrate highly encouraging 
outcomes in providing a precise and reliable classification of PD. Actual results 
demonstrate that the InceptionV3 model achieved a high accuracy of 89% 
when learning from spiral drawing images and had a superior receiver operating 
characteristic (ROC) curve value of 95%.

Discussion: The comparison results suggest that PD identification using these 
models is currently at the forefront of PD research. The dataset will be enlarged, 
transfer learning strategies will be investigated, and the system’s integration into 
a comprehensive Parkinson’s monitoring and evaluation platform will be looked 
into as future research areas. The results of this study could lead to a better 
quality of life for Parkinson’s sufferers, individualized treatment, and an early 
classification.
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1 Introduction

Parkinson’s disease (PD) is a chronic deteriorating illness that 
primarily affects the motor system of the central nervous system. Its 
indications often manifest gradually, and as the disease progresses, 
non-motor indications become more prevalent. The primary 
indications are tremors, stiffness, bradykinesia, and gait disturbances. 
PD may also result in dysphoria, apprehension, sleep disturbances, 
sensory impairments, and alterations in behavior. Environmental 
factors and genetic inheritance are significant contributors to the 
development of PD (1, 2).

In 2019, a World Health Organization research reported that 
approximately 8.5 million individuals are diagnosed with PD (3). The 
prevalence of this condition increases with age, with only 4% of 
afflicted persons younger than 50 years old. PD is a highly prevalent 
neurological disorder worldwide, ranking as the second most common 
condition after Alzheimer’s disease. It affects a significant number of 
people, as evidenced by the data from sources (4, 5). Currently, 
therapists have limitations in effectively treating the symptoms of this 
condition as interventions are still in their early stages (6). The main 
tool used to determine a PD classification (PDD) is the patient’s 
medicinal past; however, such classification remains uncertain (3). 
Thus, it is critical to offer a simple and reliable method for detecting 
this disease in order to save time and money on invasive classification 
and treatment (7, 8).

Patients with PD may exhibit a broad variety of non-motor 
symptoms, including mood disorders and depression, among others. 
These symptoms, including language and other relevant aspects, may 
manifest in the patient’s facial expressions (9). The present study aims 
to analyze the effect of PD on both motor and non-motor abilities by 
applying handwriting modeling methodologies, with a special focus 
on spirals. This study seeks to fill a current knowledge gap by exploring 
the potential of spiral drawing as a tool for PD assessment.

Spiral drawing is a sophisticated and intricate motor skill that 
requires coordination. Consequently, it is regarded as an accurate 
evaluation of motor function. The Motion Rating Scale and its 
subcategory, The Unified PD Rating Scale (UPDRS-III), are the 
predominant and universally acknowledged rating scales for assessing 
PD. PD impacts a range of bodily processes, including speaking, 
handwriting, walking, and coordination, all of which are classified as 
motor functions. Various methods for measuring motor decline and 
non-motor biomarkers have been proposed to assess the severity of 
PD, which is considered a motor condition resulting from 
neurodegeneration. Both the classification and intensive care of PD 
are expensive and challenging because of two primary factors: (1) the 
inconvenience faced by caregivers in transporting the patient to the 
clinic and (2) the need for skilled medical professionals to conduct 
physical examinations and make diagnoses based on their 
observations. Clinical invasive techniques are only accessible at the 
early stage of the disease, and they carry risks and require considerable 
resources, especially in underdeveloped regions of the world. These 
techniques are only beneficial if early classification is achieved (10, 11).

At present, there is no accurate standard for making an objective 
finding of PD. When a non-specialist makes the classification, the 
likelihood of a mistake increases dramatically. There is a 20% chance of 
making a wrong classification in such instances (12). The accuracy of 
the classification is improved by carefully analyzing the main indications, 
which include tremors, bradykinesia, and stiffness. Having said that, 

physician bias may creep into clinical assessments. Medical choice 
support systems are attracting interest for their capability to enhance 
objectivity and facilitate early classification. An early identification of 
PD will enable the development of tailored interventions for people with 
PD (13, 14). A crucial objective in the study of neurodegenerative 
illnesses is to discover precise biomarkers (15). Within the literature, 
several research have been conducted to diagnose PD by analyzing 
speech. These studies (16–18) mostly use sustained vowels and natural 
speech for diagnostic purposes. Motor symptoms may also be identified 
and monitored by analyzing patients’ motions and gait (19, 20).

Several techniques have been created to examine the handwriting 
of patients with PD (21). Both static and dynamic characteristics are 
intriguing, including factors such as speed and the lowering of pen 
pressure throughout the handwriting (22). Numerous recent review 
studies have been published (23, 24). The legibility of an individual’s 
handwriting is influenced by their visual acuity, writing technique, and 
linguistic proficiency, resulting in significant differences across 
individuals. A viable substitute for handwriting is the use of illustrations. 
Deep learning (DL) models have greatly revolutionized biomedical and 
medical image analysis (25). DL approaches have been applied in 
different domains, including segmentation, detection, classification, 
and classification (11), owing to their exceptional capability to extract 
sophisticated features, leading to enhanced accuracy in illness 
categorization. This may mostly be ascribed to their remarkable ability 
to generalize. Convolutional neural networks (CNNs) have been crucial 
in promoting the progress of the medical imaging field, achieving 
notable success in several medical image classification tasks (19, 20).

1.1 Main contribution

Spiral drawing is a sophisticated and intricate motor skill that 
requires coordination. Accordingly, it is regarded as an accurate 
evaluation of motor function and an initial examination for early 
indications of PD. This article proposes a method for PDD by 
analyzing spiral drawings and employing transfer learning models. 
The method categorizes an individual as either healthy or diagnoses 
them with PD based on their spiral drawing. A spiral drawing 
produced by a healthy individual will closely resemble a typical spiral 
form. By contrast, a spiral created by an individual with PD will 
exhibit significant deviation from a flawless spiral form and appear 
twisted because of the individual’s sluggish motor movements and 
diminished synchronization between the hand and the brain.

2 Related works

Drotar and colleagues planned the utilization of a feature selection 
algorithm and support vector machine (SVM) approach to analyze the 
handwriting of patients with PD (26, 27). Their study is one of the first 
efforts to analyze the results of hand motions in the air or on a surface 
for diagnosing motor disorders associated with neurodegenerative 
illnesses. The findings revealed that these motions have a significant 
influence on the evaluation of handwriting and achieve a prediction 
accuracy of 85.61% (26). The work featured the PaHaW handwriting 
database, which was created by having individuals with PD complete 
eight distinct handwriting challenges, one being the Archimedean 
spiral. Basnin et al. (27) demonstrated their approach by using deep 
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transfer learning, achieving a testing accuracy of 91.36%. The research 
only used a dataset consisting of 800 hand-drawn spiral pictures. Das 
et al. (28) investigated a sophisticated technique for identifying PD using 
pictures that were hand-drawn by the patients. The authors combined 
discrete wavelet transform coefficients with histograms of oriented 
gradient data to enhance the accuracy of detection rate. They revealed 
the effectiveness of integrating these methods to extract pertinent 
information and identify vital coefficients, resulting in improved 
accuracy in disease detection using machine learning techniques. They 
specifically highlighted the efficacy of random forest (RF) and SVM 
approaches when applied to spiral pattern features of images.

Researchers have discovered that studying handwriting or hand 
drawings is a more efficient method for identifying PD (29). Shaban (30) 
advocated for the use of a meticulously adjusted VGG19 model that 
applies spiral and wave handwriting patterns to diagnose conditions. 
The dataset used was of limited size and comprised 102 wave photos and 
102 spiral images. Data augmentation, such as applying picture rotation, 
was used to alleviate the problem of model overfitting. After 
implementing 10-fold cross-validation, the CNN model demonstrated 
impressive accuracies of 88 and 89% for the wave and spiral pictures, 
respectively. Megha Kamble et  al. (31) proposed a comprehensive 
examination of the static and dynamic spirals created by people with 
Parkinson’s disease. To do this, we extracted kinematic characteristics 
related to movement in the air and on the surface from data files created 
for 25 patients and 15 healthy controls. We utilized mathematical models 
for this purpose. Gil-Martín (32) this study contributes to the ongoing 
endeavor by examining a convolutional neural network (CNN) for the 
purpose of detecting PD based on drawing gestures. The analysis was 
conducted with a publicly available dataset: Digitized graphics are 
utilized to create spiral drawings for Parkinson’s disease. Donalto 
Impedovo et al. (33) have proposed handwriting as a robust indicator 
for the development of a diagnostic tool for Parkinson’s disease. The 
authors have applied a machine learning classification framework to the 
PaHaW dataset and achieved high specificity performance scores. Marta 
San Lucianol et al. (34) proposed the utilization of spiral drawing for 
computerized analysis of PD, as digitized spirals demonstrate a 
correlation with motor scores. The indices that are generated or 
calculated that have a correlation with the overall execution of a spiral 
include severity, shape, and kinematic irregularity. Kinematic irregularity 
includes second order smoothness and first order zero crossing. Other 
indices include tightness, mean speed, and variability of spiral width. 
Theyazn H. H. Aldhyani et  al. (10) study makes a contribution by 
utilizing deep learning models to diagnose PD using photos of spiral and 
wave drawings. Manju Singh et al. (35) aims to provide a method for 
detecting PD utilizing spiral sketching and convolutional neural 
networks (CNN). The core concept is to examine an individual’s spiral 
drawings and categorize them as either indicative of good health or 
indicative of Parkinson’s disease. The spiral doodles produced by 
individuals in good health bear a striking resemblance to conventional 
helical forms. Table 1 presents a concise summary of the key attributes 
of prior studies on PD identification using drawings and other datasets.

3 Materials and methods

This section details the planned methodology applied to develop 
a PDD system based on DL techniques, specifically designed to detect 
PD from features extracted from spiral drawing images. This 
methodology includes dataset collection, data preprocessing, DL 

classification models, evaluation metrics, and results analysis. The 
framework of this methodology is shown in Figure 1.

3.1 Dataset collection

For our experimental study, we  employed a dataset of spiral 
drawing images obtained from the Kaggle platform. This dataset, 
which was created by Adriano et al. (36) based on the NIATS of the 
Federal University, includes digital records of 102 spiral image 
samples, with 51 from Parkinson’s disease patients (PDP) and 51 from 
healthy persons. The images have been pre-split into a training set and 
a testing set (Figure 2).

3.2 Data preprocessing

For our experimental work on PDD using drawn spiral images, 
we utilized a comprehensive dataset from the Kaggle platform. This 
dataset includes digital drawings from 51 PDPs and 51 healthy 
individuals. The processing steps are presented in Figure 3.

3.2.1 Data loading and preparation
The dataset was divided into two classes: “healthy” and 

“parkinson.” Each image was resized to 100 × 100 pixels and converted 
to array format for consistency. Labels were encoded into binary 
format, where “healthy” was labeled as 0 and “parkinson” as 1. This 
preparation step ensured uniform input data for the model.

3.2.2 Data augmentation
To increase the diversity and robustness of the training dataset, 

we  applied data augmentation techniques using the Image Data 
Generator module, including rotation, shifting, and flipping of images. 
We  likewise introduced variations that prevent overfitting and 
enhance the model’s capability to generalize to novel, unnoticed 
image data.

3.2.3 Data splitting
In this step, we split the dataset into a training set and a testing set 

using an 80-20 split ratio. This stratification ensures a balanced 
representation of both classes in the training and testing phases.

3.2.4 Normalization and label encoding
The pixel values of the images were standardized to the range [0, 

1] to expedite the training process and improve model performance. 
Additionally, the labels were one-hot encoded to facilitate 
categorical classification.

3.3 Diagnoses and classification models

For the classification and classification of drawn spiral images into 
the “Parkinson” and “healthy” classes, we applied several advanced 
CNN architectures, including VGG19, InceptionV3, ResNet50v2, and 
DenseNet169. These models were pre-trained on the ImageNet 
dataset, which comprises over 14 million images across 1,000 
categories. ImageNet provides a robust foundation for transfer 
learning due to its diverse range of visual concepts, although it does 
not inherently include clinical images.
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FIGURE 1

Framework of the proposed methodology.

3.3.1 VGG19 model
We employed a CNN using the pre-trained VGG19 model to 

identify PD (37). The input layer accepts images resized to 100 × 100 
pixels with three color channels. The model, pre-trained on the 
ImageNet dataset and excluding its top categorization layer, assists as 

a feature mining with average pooling. This is followed by a custom 
dense layer with 64 units and ReLU activation to introduce 
nonlinearity. The final layer is a dense output layer with 2 units and 
softmax activation, designed for binary classification between healthy 
individuals and PDPs. The model is compiled with the Adam 

TABLE 1 Overview of the current state of the art in employing various types of publicly available datasets based on artificial intelligence techniques.

Authors Datasets Approaches Object of study

Vanegas et al. (42) Parkinson’s dataset in 

EGG

Decision tree 

approaches

For this study, authors employed machine learning techniques to create a model that can accurately 

detect the most significant indicators from the EEG spectra during visual stimulation. The purpose 

of this model is to aid in the classification of PD.

Oh et al. (43) Parkinson’s dataset in 

EGG

CNN model This study utilized the electroencephalogram (EEG) data of twenty individuals with PD and twenty 

individuals without PD. An established CNN architecture consisting of thirteen layers effectively 

eliminates the requirement for traditional feature representation stages.

Prasuhn et al. (44) Parkinson’s dataset in 

using MRI images

SVM approach The proposed work suggests utilizing computer-aided methods and a highly reproducible method, 

as opposed to manually segmenting Substantia nigra (SN) to enhance the dependability and 

precision of Diffusion Tensor Imaging (DTI) of the measurements employed for categorisation.

Rasheed et al. (45) Parkinson’s dataset in 

using voice

BPVAM This study presents two classification algorithms aimed at enhancing the accuracy of identifying PD 

cases based on voice measures. Initially, implemented the BPVAM algorithm, which is a variable 

adaptive moment-based backpropagation algorithm of artificial neural networks (ANN).

Gunduz et al. (46) Parkinson’s dataset in 

using voice

GB model This study presents two frameworks utilizing CNNs method to accurately classify PD by analyzing 

sets of vocal (voice) data. Both frameworks are used to combine different feature sets, but they differ 

in how they combine these sets.

Pdisher et al. (47) Parkinson’s dataset 

collected using sensor 

device

CNN model Employed DL techniques to categorize motion data obtained from a solitary IMU sensor worn on 

the wrist, which was recorded in unstructured settings. In order to validate the results, patients were 

followed by a specialist in movement disorders, and their motor condition was assessed regularly 

and without active participation every minute.

Taliki et al. (48) Parkinson’s dataset in 

using sensory

Random forest This article explores instances of misclassification and presents a proposed system for obtaining a 

second opinion. The system relies on wearable sensors and artificial intelligence. To address this 

issue, authors developed several standardized tasks and collected movement data using wearable 

sensors worn by persons diagnosed with PD other extrapyramidal illnesses.

Shaban et al. (30) Parkinson’s dataset 

using hand drawing

DL-based VGG16 This work explores the application of a fine-tuned VGG-19 model to screen for PD using a Kaggle 

handwriting dataset. The study involves conducting experiments to test the effectiveness of this 

approach. The dataset consisted of 102 wave and 102 spiral handwriting patterns.

Robin (49) Parkinson’s dataset 

using hand drawing

RestNet50 Developing RestNet50 to detect PD using of 102 of 102 wave and 102 spiral

Stpete_ishii (50) Parkinson’s dataset 

using hand drawing

CNN model Developing online for classification of PD by using spiral images

Shaban et al. (30) Handwriting dataset 

(same dataset)

CNN model Developing online for classification of PD by using spiral images

Adrian (36) Parkinson’s dataset 

using hand drawing

CNN model Developing online for classification of PD by using spiral images
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optimizer, where categorical cross-entropy is the loss function and 
accuracy is the assessment metric. The data training process was 
conducted over 50 epochs with a batch size of 16 samples in each 
iteration, utilizing augmented training data. Figure  4 shows the 
VGG19 model architecture. The parameters of the VGG19 model are 
presented in Table 2.

3.3.2 InceptionV3 model
We also employed the pre-trained InceptionV3 model (38), whose 

inception modules are well known for their effective multi-scale 
feature extraction capabilities for PD detection by analyzing spiral 
drawing image features. Images with three color channels and a 
resizing of 100 × 100 pixels are accepted by the input layer. With 
average pooling, the InceptionV3 model functions as the feature 
extractor, omitting its top classification layer. To add nonlinearity, a 
bespoke dense layer with 128 units and a ReLU activation function is 
applied. The last layer is a dense output layer for binary classification 
among individuals without PD and those with the condition. Figure 5 
depicts the Inception model structure.

InceptionV3 has two units in the output layer to represent the 
dataset classes, namely, Parkinson and Healthy, as well as softmax 
activation applied for the classification task. The Adam optimizer is 

used to create the model. Model training is carried out using a batch 
size of 32 utilizing augmented training data across 50 epochs. Table 3 
summarizes the inception model parameters and their values used to 
develop and implement the model.

3.3.3 DenseNet169 model
We also applied the pre-trained DenseNet169 (39, 40) model for 

PD detection and classification based on spiral drawing image 
features. This model is known for having a dense pattern of 
connectivity that promotes improved feature reuse and maximum 
information flow across layers. Images with three color channels and 
a resizing of 224 × 224 pixels are accepted by the input layer. With 
average pooling, the pre-trained DenseNet169 model functions as 
the feature extractor, omitting its top classification layer. A bespoke 
dense layer with 128 units and a ReLU activation function is applied 
to add nonlinearity. Figure  6 illustrates the DenseNet169 
model structure.

The final layer is a dense output layer used for binary classification 
between individuals without PD and those with the condition. Also 
known as the output or last layer, this layer has two units to represent 
the dataset classes and uses a Softmax activation function to calculate 
the probability of each sample being either PPD or Healthy. The model 

FIGURE 2

Samples of spiral drawing images dataset.

FIGURE 3

Preprocessing steps.
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TABLE 2 Summary of the VGG19 model parameters.

Layer Parameters

Input Layer (100, 100, 3)

VGG19 Base Model Pre-trained on ImageNet, include_top = False, average 

pooling

Dense Layer 64 units, ReLU activation

Output Layer 2 units, Softmax activation

Optimizer Adam

Loss Function Categorical Cross-entropy

Metrics Accuracy

No. of Epochs 50

Batch Size Used 16

utilizes accuracy as the evaluation measure, categorical cross-entropy 
as the loss function, and the Adam optimizer for training. Table 4 
presents the summary of the model parameters used.

3.3.4 ResNet50v2 model
A DL framework called residual network (ResNet) was presented 

by Kaiming He  et al. (41). The capability of this architecture to 
effectively train deep neural networks has attracted huge interest. The 
main breakthrough in ResNet is the use of residual connections, or 
skip connections, which improve gradient flow and lessen the problem 
of vanishing gradients. The residual blocks make up the bulk of the 
ResNet architecture. These blocks are made up of multiple 
convolutional layers, an activation function (usually ReLU), and batch 
normalization. The skip link, which enables the direct addition of the 
block’s input to its output, is what distinguishes a residual block. This 
method enhances gradient flow during backpropagation and helps the 
network learn residual functions. We applied the ResNet50v2 model 
structure in our experimental work for PD detection and classification 
based the features of spiral drawing images. The images were scaled to 

224 × 224 pixels with three color channels an can be loaded into the 
input layer. The feature extractor with average pooling is the 
pre-trained ResNet50v2 model without its top classification layer. 
Nonlinearity is added by adding a customized dense layer with 128 
neurons and a ReLU activation function. Figure  7 depicts the 
model architecture.

The final layer is an output layer with two neurons and softmax 
activation function for binary classification of patients with PD and 
healthy people. Categorical cross-entropy is used as the loss function, 
accuracy is the assessment measure, and the model is assembled based 
on the Adam optimizer. Using supplemented training data, the 
training process was run across 50 epochs with a batch size of 32. 
Table 5 outlines the model parameters used.

To evaluate the models’ performance on our current dataset, 
we first trained these pre-trained models on the spiral image dataset 
before testing them. We  recorded performance metrics such as 
accuracy, precision, recall, and F1-score.

3.4 Evaluation metrics

Assessing the performance and testing results obtained by the 
proposed DL models, namely, VGG19, DenseNet169, Inception, and 
ResNet50v2, are crucial for gauging the effectiveness of the models. 
Several metrics are used to quantify performance, including precision, 
recall, accuracy, F1-score, and ROC curve, which are calculated from 
the confusion matrix. The evaluation measures provide an alternative 
perspective on the advantages and disadvantages of the model.
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FIGURE 4

Structure of the VGG19 model.
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4 Experimental results

This section reports the findings obtained from various experiments 
carried out for PD recognition and classification using various DL 
models, namely, VGG19, ResNet50, InceptionV3, and DenseNet169. 
Each model was assessed based on its ability to accurately categorize 
spiral drawn images from patients with PD and healthy individuals.

4.1 Testing results of the VGG19 model

As revealed in Table 6 below, an overall accuracy of 72% is shown 
in the testing classification results for PD recognition utilizing the 

VGG19 model. With a recall of 86% and precision of 60% for 
Parkinson’s cases, the model successfully recognized the majority of 
Parkinson’s cases with a small number of false positives.

Recall was 64% and precision was 88% for healthy persons, 
indicating a higher classification accuracy for healthy cases but with 
some false negatives. For Parkinson’s patients, the F1-score was 71, 
while for healthy cases it was 74. The macro averages for precision, 
recall, and F1-score were 74, 75, and 72%, respectively. These findings 
point to areas where the model might be  improved to lower 
classification mistakes while also demonstrating how well it detects 
PD. Figure 8 shows a graphical representation of the performance 
results for the VGG19 model.

Figure 8A illustrates the validation and training accuracies of the 
model over 50 epochs, presenting how well it learned to distinguish 
between Parkinson’s and healthy cases. Figure 8B presents the model’s 
loss over the training period, indicating the reduction in prediction 
error as training progressed. Figure 8C depicts the area under the 
curve (AUC) of the VGG19 model, providing a quantity of the model’s 
capacity to distinguish between the two classes with an AUC value of 
81% The AUC is a valuable metric for evaluating the overall results of 
the classification model.

4.2 Testing results of the inception v3 
model

The testing classification findings utilizing the InceptionV3 model 
for PD identification are given in Table 7. The InceptionV3 model 
attained an overall accuracy of 89%. For Parkinson’s cases, the model 
achieved a precision of 78% and a recall of 100%, indicating it 
accurately recognized all true Parkinson’s occurrences but included 
some false positives. For healthy individuals, the precision was 100% 
and the recall was 82%, showing exceptional precision but missing 
some real healthy examples. The F1-score for PD was 88%, and for 
healthy persons, it was 90%.

FIGURE 5

Inception model structure.

TABLE 3 Summary of the Inception model parameters.

Layer Parameters

Input layer (100, 100, 3)

Dense layer 128 units, ReLU activation

Output layer 2 units, Softmax activation

Optimizer Adam

Loss function Categorical Cross-entropy

Metrics Accuracy

No. of epochs 50

Batch size used 32
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TABLE 4 Summary of the DenseNet169 model parameters.

Layer Parameters

Input layer (224, 224, 3)

DenseNet169 base model Pre-trained on ImageNet, include_

top = False, average pooling

Dense layer 128 units, ReLU activation

Output layer 2 units, Softmax activation

Optimizer Adam

Loss function Categorical cross-entropy

Metrics Accuracy

No. of epochs 50

Batch size used 16

The overall averages of the metrics are 91% for precision, 89% for 
recall, and 89% for F1-score, demonstrating the balanced performance 
of the model across both classes. These results suggest that 
InceptionV3 is highly effective for PD detection, particularly excelling 
in correctly identifying true cases of the disease. Figure 9 shows a 
graphical representation of the performance results for the 
Inceptionv3 model.

Figure 9A shows the validation and training accuracies, which 
started at 55% and ended at 79% for training and the validation started 
at 45% and ended at 89%. The significant improvement from the 
initial to the final epoch indicates effective learning. Figure  9B 
illustrates the model’s loss over the training period, with a notable 
reduction from an initial loss of 1.2840 to a final loss of 0.4486 for 
training and 0.3879 for validation, indicating the increased ability of 
the model to make accurate predictions. Figure 9C depicts the AUC 
of the InceptionV3 model, which reached an impressive value of 95, 

demonstrating the robust discriminative ability of the model between 
Parkinson’s and healthy cases.

4.3 Testing results of the ResNet50v2 
model

This subsection presents the outcomes of our experiments 
utilizing the ResNet50v2 model for the detection and classification of 
Parkinson’s Disease (PD). The model achieved an overall accuracy of 
80%. For instances of Parkinson’s, the ResNet50v2 model exhibited a 
precision of 79% and a recall of 92%. This indicates that the model 
correctly identified 92% of Parkinson’s cases within the testing set, 
though it produced some false positives. In contrast, for healthy 
individuals, the model attained a precision of 83% and a recall of 62%, 
signifying a reasonable accuracy in classifying healthy cases but 
missing some true healthy instances. The F1-scores were 85% for 
Parkinson’s cases and 71% for healthy cases. The testing classification 
performance of the ResNet50V2 model is summarized in Table 8.

The macro average precision, recall, and F1-score were 81, 77, and 
78%, respectively. These metrics underscore the model’s efficacy in 
distinguishing between PD and healthy individuals, although there 
remains room for improvement, particularly in increasing the recall 
for healthy cases. Figure 10 graphically represents the performance of 
the ResNet50V2 model over 50 epochs.

Figure 10A shows the validation and training accuracies, which 
improved significantly from 40% initially to 90% for training and 85% 
for validation by the final epoch, indicating effective learning. 
Figure 10B illustrates the model’s loss over the training period, with a 
reduction from a preliminary loss of 1.20 to an ending loss of 0.20 for 
training and 0.40 for validation, reflecting good enhanced prediction 
accuracy of the model.

FIGURE 6

DenseNet169 model structure.

https://doi.org/10.3389/fmed.2024.1453743
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Farhah 10.3389/fmed.2024.1453743

Frontiers in Medicine 09 frontiersin.org

4.4 Testing results of the DenseNet169 
model

The testing classification results for the DenseNet169 model in 
detecting PD using spiral drawing images are summarized in Table 9. 
The DenseNet169 model achieved an overall accuracy of 85%, 
indicating a high level of performance in distinguishing between PD 
patients and healthy individuals based on their spiral drawing patterns.

The model showed 80% precision and 100% recall for Parkinson’s 
cases. This implies that there were no false negatives in the model’s 
identification of all actual cases of PD. However, as the precision score 
shows, the model did generate some erroneous positives. For 
Parkinson’s cases, the F1-score was 89%, indicating a fair trade-off 
between recall and precision for this class.

The model’s precision for healthy individuals was 100%, meaning 
that it was always accurate when it projected a case to be healthy. The 

recall rate for healthy patients was 62%, indicating that some genuine 
healthy instances were overlooked by the algorithm, leading to 
misleading negative results. Compared to the Parkinson’s class, the 
F1-score for healthy persons was 77%, indicating a reduced but still 
acceptable balance between precision and recall. The macro averages 
of 81% for recall, 83% for F1-score, and 90% for accuracy show how 
well the model performed generally in both classes. The recall macro 
average shows that there is still need for growth in accurately 
recognizing every instance across both classes, but the high precision 
macro average shows how well the model can make positive 
predictions. Figure  10 shows a graphical representation of the 
performance plots of the DensNet169 model.

As seen in Figure 10, the training accuracy of the model started at 
50% and steadily increased to 89% by the last epoch. Simultaneously, 
there was an upward trend in the validation accuracy, starting at 60% 
and reaching 83%. The training loss was reduced significantly from 90 
to 20% in terms of model loss. In a similar vein, the validation loss 
significantly decreased, going from 100 to 55%. Collectively, these 
indicators show how the model’s performance and capacity for 
generalization have increased during the training phase.

5 Discussion of the results

PD is a neurodegenerative condition that progresses over 
time and is characterized by both motor and non-motor 
symptoms. Accurate identification of PD is essential for timely 
intervention. Conventional diagnostic methods often rely on 
subjective neurological exams and clinical evaluations, leading to 
potential inaccuracies. Therefore, there is growing interest in 
leveraging advanced computational and machine learning 
methods to enhance diagnostic precision. Figure  11 shows 
performance of DenseNet169.

FIGURE 7

ResNet50 model architecture.

TABLE 5 Summary of the ResNet50 model parameters.

Layer Parameters

Input layer (224, 224, 3)

ResNet50v2 base model Pre-trained on ImageNet, include_

top = False, average pooling

Dense layer 128 units, ReLU activation

Output layer 2 units, Softmax activation

Optimizer Adam

Loss function Categorical Cross-entropy

Metrics Accuracy

No. of epochs 50

Batch size used 32
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TABLE 7 Testing classification results of the InceptionV3 model.

Precision % Recall % F1-score% Support Accuracy%

Parkinson 78 100 88 7 89

Healthy 100 82 90 11

Macro average 91 89 89 18

FIGURE 8

(A) Validation and training accuracies of the model, (B) model loss, and (C) AUC of the VGG19 model.

In this study, we assessed the performance of several deep 
learning models VGG19, InceptionV3, ResNet50V2, and 
DenseNet169 in identifying PD from spiral drawing tests. The 
results highlight the strengths and limitations of each model. The 
VGG19 model achieved a total accuracy of 72%, demonstrating 
the lowest performance in detecting PD cases and a higher rate 
of false positives and false negatives compared to the 
other models.

The DenseNet169 model demonstrated an accuracy rate of 
85%, whereas the InceptionV3 model achieved a higher accuracy 
of 89%, both surpassing the performance of the ResNet50V2 
model. The InceptionV3 model, in particular, exhibited excellent 

sensitivity and minimal false positives, making it highly effective 
in identifying both Parkinson’s disease (PD) and healthy cases. In 
contrast, ResNet50V2 achieved an accuracy of 80%, with notable 
precision in identifying PD cases but less efficacy in classifying 
healthy individuals. Collectively, these findings indicate that 
transfer learning models based CNN architectures have capability 
to classify Parkinson’s disease status using intelligent spiral 
drawings features, especially InceptionV3 and DenseNet169, that 
showed substantial potential for enhancing PD classification. 
Future research should focus on optimizing these models further, 
exploring additional data sources, and validating these findings in 
real-world clinical settings. Figure  12 displays the ROC of the 

TABLE 6 Testing classification results of the VGG19 model.

Precision % Recall % F1-score% Support Accuracy%

Parkinson 60 86 71 7 72

Healthy 88 64 74 11

Macro average 74 75 72 18

TABLE 8 Testing classification results of the ResNet50v2 model.

Precision % Recall % F1-score % Support Accuracy %

Parkinson 79 92 85 12 80

Healthy 83 62 71 8

Macro average 81 77 78 20
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proposed models, where the InceptionV3 model is found to 
achieve a high percentage of 91%.

This subsection highlights the variations in accuracy outcomes by 
providing an analysis of several techniques used on the same dataset 
of 102 spiral images. The authors reported a 67% accuracy rate using 

the RF technique in (38). According to Haq et al. (39), lightning CNNs 
achieved an accuracy of 63.33%, while in Huang et al. (41), a standard 
CNN approach demonstrated a significant increase with an accuracy 
of 83%. By comparison, the InceptionV3 model we  used in our 
investigation produced the best accuracy of 89%. This better 

FIGURE 9

(A) Validation and training accuracies of the model, (B) model loss of the InceptionV3 model.

TABLE 9 Testing classification results of the DensNet169 model.

Precision % Recall % F1-score % Support Accuracy %

Parkinson 80 100 89 12 85

Healthy 100 62 77 8

Macro average 90 81 83 20

FIGURE 10

(A) Validation and training accuracies of the model, (B) model loss of the ResNet50v2 model.
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performance highlights the potential of sophisticated DL architectures 
above more conventional machine learning and simpler neural 
network approaches, proving their effectiveness in correctly detecting 
PD using spiral drawing images. Table 10 displays the comparative 
analysis between our study results and existing ones based on the 
same dataset and accuracy metric.

6 Conclusion

The timely detection of PD is of utmost significance. The 
complexity of identifying PD necessitates the development of 
effective diagnostic instruments. In this work, PDD was determined 
by examining the Parkinson’s spiral test. In contrast to other 
investigations in the literature, this study regarded the Parkinson’s 
spiral test as an issue of recognition. Furthermore, pattern 
recognition approaches can yield favorable outcomes when used in 
the analysis of spiral images in PD. This strategy can enhance the 
effectiveness of diagnosing PD, a condition that is challenging to 
detect in its early stages. The proposed approach utilized a 
standardized dataset of 102 spiral samples obtained from 
individuals diagnosed with PD. The implementation involved the 
use of VGG19, InceptionV3, ResNet50v2, and DenseNet169 models 
for the detection of PD utilizing spiral drawings. The aim of this 

work was to improve the diagnostic process of PD by utilizing 
transfer learning models. The approach shows promising results in 
diagnosing PD by analyzing the movement patterns of patients with 
PD. The classifier, trained on photos of the spiral drawing challenge, 
achieved an accuracy of 89% and an ROC score of 91% using the 
InceptionV3 and ResNet50v21 models. The use of DL-based 
analysis can enhance the efficiency and accessibility of spiral 
drawing assessment in clinical and research contexts due to its 
automated and scalable nature. Creating a deep learning system that 
utilizes spiral drawing images to detect PD can be  a valuable 
method for aiding clinical decision making and advancing drug 
research. It can improve the diagnostic process, assist in selecting 
and monitoring patients in clinical trials, and offer objective 
measures of outcomes, ultimately leading to better patient care and 
the progress of PD research. The limitation of this research is that 
it did not investigate the possibility of use spiral drawings to identify 
other associated movement disorders; instead, it concentrated on 
utilizing them to create a system for diagnosing PD. The study 
showed that spiral image analysis is a useful tool for diagnosing PD, 
but it did not look into whether the technique can distinguish PD 
from other disorders that can similarly impair motor function, such 
essential tremor. Another key limitation is that the data utilized was 
based on previously diagnosed PD participants, thereby making it 
more challenging to apply this AI approach as PD diagnostic 
criteria, given that the classification is already known. However, this 
research demonstrates that more sophisticated transfer learning 
architectures can improve on previous deep learning approaches for 
PD classification. As additional study data becomes available, 
especially spiral drawing data that can be collected in a general 
population of prodromal PD or those displaying motor symptoms, 
such architectures can be readily adapted.

Overall, although spiral image analysis for PD classification shows 
promise in the current research, more investigation is required to 
examine the approach’s more extensive prospective applications and 
prove its efficacy for a larger range of movement disorders and patient 
demographics. Future research addressing these limitations may result 
in an even more potent and therapeutically valuable tool to aid in the 
differential classification and early detection of PD and associated 

FIGURE 11

(A) DensNet169 model training and validation accuracy and (B) model loss.

TABLE 10 Comparison of the contribution of the present study with 
existing research.

Reference ID Approach Dataset Accuracy

Prasuhn et al. (44) RF Same dataset 102 

spiral images

67%

Rasheed et al. (45) Lightning 

CNNs

Same dataset 102 

spiral images

63.33%

Pfister et al. (47) CNNs Same dataset 102 

spiral images

83%

Our study InceptionV3 Same dataset 102 

spiral images

89%
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disorders. In Future studies will try to solve this issue for improving 
the system.
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