
fmed-11-1453421 August 2, 2024 Time: 17:56 # 1

TYPE Original Research
PUBLISHED 07 August 2024
DOI 10.3389/fmed.2024.1453421

OPEN ACCESS

EDITED BY

Salvatore Claudio Fanni,
University of Pisa, Italy

REVIEWED BY

Gayane Aghakhanyan,
University of Pisa, Italy
Deepanksha Datta,
All India Institute of Medical Sciences
Jodhpur, India

*CORRESPONDENCE

Yanzhu Bian
heyixue8144@126.com

†These authors have contributed equally to
this work and share first authorship

RECEIVED 23 June 2024
ACCEPTED 23 July 2024
PUBLISHED 07 August 2024

CITATION

Tian C, Hu Y, Li S, Zhang X, Wei Q, Li K,
Chen X, Zheng L, Yang X, Qin Y and Bian Y
(2024) Peri- and intra-nodular radiomic
features based on 18F-FDG PET/CT
to distinguish lung adenocarcinomas from
pulmonary granulomas.
Front. Med. 11:1453421.
doi: 10.3389/fmed.2024.1453421

COPYRIGHT

© 2024 Tian, Hu, Li, Zhang, Wei, Li, Chen,
Zheng, Yang, Qin and Bian. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Peri- and intra-nodular radiomic
features based on 18F-FDG
PET/CT to distinguish lung
adenocarcinomas from
pulmonary granulomas
Congna Tian1,2†, Yujing Hu2†, Shuheng Li3, Xinchao Zhang2,
Qiang Wei2, Kang Li2, Xiaolin Chen4, Lu Zheng2, Xin Yang2,
Yanan Qin2 and Yanzhu Bian1,2*
1Hebei Medical University, Shijiazhuang, Hebei, China, 2Department of Nuclear Medicine, Hebei
General Hospital, Shijiazhuang, Hebei, China, 3Department of Nuclear Medicine, Affiliated Hospital
of Hebei University, Baoding, Hebei, China, 4Department of Nuclear Medicine, The Fourth Hospital
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Objective: To compare the effectiveness of radiomic features based on
18F-FDG PET/CT images within (intranodular) and around (perinodular)

lung nodules/masses in distinguishing between lung adenocarcinoma and

pulmonary granulomas.

Methods: For this retrospective study, 18F-FDG PET/CT images were collected

for 228 patients. Patients diagnosed with lung adenocarcinoma (n = 156)

or granulomas (n = 72) were randomly assigned to a training (n = 159)

and validation (n = 69) groups. The volume of interest (VOI) of intranodular,

perinodular (1–5 voxels, termed Lesion_margin1 to Lesion_margin5) and total

area (intra- plus perinodular region, termed Lesion_total1 to Lesion_total5)

on PET/CT images were delineated using PETtumor and Marge tool of

segmentation editor. A total of 1,037 radiomic features were extracted separately

from PET and CT images, and the optimal features were selected to develop

radiomic models. Model performance was evaluated using the area under the

receiver operating characteristic curve (AUC).

Results: Good and acceptable performance was, respectively, observed in the

training (AUC = 0.868, p < 0.001) and validation (AUC = 0.715, p = 0.004)

sets for the intranodular radiomic model. Among the perinodular models,

the Lesion_margin2 model demonstrated the highest AUC in both sets

(0.883 and 0.616, p < 0.001 and p = 0.122). Similarly, in terms of total

models, Lesion_total2 model was found to outperform others in the training

(AUC = 0.879, p < 0.001) and validation (AUC = 0.742, p = 0.001) sets, slightly

surpassing the intranodular model.

Conclusion: When intra- and perinodular radiomic features extracted from the

immediate vicinity of the nodule/mass up to 2 voxels distance on 18F-FDG
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PET/CT imaging are combined, improved differential diagnostic performance

in distinguishing between lung adenocarcinomas and granulomas is achieved

compared to the intra- and perinodular radiomic features alone.
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1 Introduction

Lung cancer stand as the foremost cause of cancer-related death
(1). Non-small cell lung cancer (NSCLC) constituted over 85% of
lung cancer cases, and lung adenocarcinomas is the most prevalent
subtype (2). The early detection and diagnosis of the localized
disease plays a crucial role in the improvement in survival (3).
However, pulmonary granulomas often pose a challenge as they can
mimic adenocarcinomas radiologically, leading to false-positive
diagnoses. Hence, differentiating between malignant and benign
lung nodules remains a key challenge for diagnostic radiologists
and nuclear medicine physicians.

Radiomics, an emerging field in medical imaging, enables
the automatic extraction of high-throughput quantitative features
to reveal relationships between image voxels that may elude
radiologists’ naked eye. These features can convey biological
information such as cell morphology, molecular characteristics,
and gene expression. Several studies have shown that radiomics
can enhance the diagnostic, prognostic, and predictive accuracy
of lung nodules (4–10). However, these studies predominantly
focused on intranodular radiomic characteristics like shape,
edge, and texture. Conventionally, morphological characteristics
such as spiculation and structural distortion of the surrounding
parenchyma are used to evaluate malignant lung nodules on CT
images. The perinodular parenchyma holds biological significance
concerning cell migration, inflammation, and vascularization.
Considering that benign and malignant lung nodules interact
differently with the surrounding parenchyma, radiomic features
reflecting heterogeneity patterns in the immediate vicinity outside
the nodule may have potential predictive value for malignancy.
Previous studies have demonstrated that incorporating perinodular
parenchymal features on CT images can improve lung nodule
classification (11–16).

CT images offer high-resolution anatomical details, including
speculation, lobulation, vessel convergence, and air bronchogram,
while PET images capture glucose metabolism information. 18F-
FDG PET/CT imaging has become an essential modality for
diagnosing, staging, evaluating therapy response, and predicting
prognosis for NSCLC (17). Despite this, there have been
relatively few studies on PET/CT intranodular radiomic features
to differentiate between tuberculosis and lung cancer, Hu et al.
(6) and Du et al. (18) found that PET/CT radiomic features
achieved an AUC of 0.861 and 0.97, respectively, suggesting
potential for lung nodule classification. Du et al. (18) observed that
the PET/CT-derived features improved diagnostic performance
compared to CT-only signatures. However, to date, no studies
have been conducted on 18F-FDG PET/CT-derived perinodular
radiomic features to differentiate between lung adenocarcinomas

and pulmonary granulomas. Our study aims to evaluate whether
18F-FDG PET/CT radiomic features associated with perinodular
parenchyma can predict lung adenocarcinomas, and whether
combining peri- and intranodular radiomic patterns enhances
predictive accuracy compared to intranodular determination alone.

2 Materials and methods

2.1 Patients

In this retrospective diagnostic study, patients with a solitary
pulmonary nodule/mass were recruited from Hebei General
Hospital between April 2014 and June 2023. The institutional
ethics committee approved the retrospective analysis of all data
and waived the requirement for informed consent. Patients
with the following criteria were included: (1) confirmed lung
adenocarcinoma or granulomas (e.g., inflammatory pseudotumor,
tuberculosis, or organizing pneumonia) via surgery, biopsy, or
follow-up; (2) 18F-FDG PET/CT scan conducted prior to surgery
or biopsy; (3) absence of other malignant tumors history; (4)
lesion with a maximum diameter of ≥ 8 mm. According to
Chinese expert consensus on diagnosis of early lung cancer (2023
Edition), PET/CT can be used to differentiate between benign
and malignant pulmonary nodules with a diameter of ≥ 8 mm
(19). The criterion for exclusion were: (1) lesions lacking 18F-FDG
metabolism; (2) non-solitary pulmonary nodules/masses; and (3)
PET images displaying respiratory motion artifact.

Based on the aforementioned criteria, the final cohort
comprised 228 patients (133 males and 95 females) with an
average age of 64.12 ± 11.10 years (range 21–90). Patients were
randomly allocated to a training set comprising 159 patients (109
adenocarcinomas, 50 granulomas), and a validation set comprising
47 adenocarcinomas and 22 granulomas. The patient selection
process is depicted in Figure 1.

2.2 PET/CT examination

Patients underwent a minimum 6-h fast before intravenous
injection of 3.7–5.55 MBq/kg 18F-FDG, followed by a period of
rest. Subsequently, a PET/CT scan (Discovery Elite PET/CT; GE
Healthcare) was conducted 60 ± 5 min later in accordance with
European Association of Nuclear Medicine guidelines (20). CT
images were acquired with a tube voltage of 120 kV, 130–280
mA, and slice thickness of 3.75 mm. PET data were collected for
2 min per bed with a matrix size of 192 × 192 in 3D acquisition
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FIGURE 1

Flowchart for the patient selection process.

FIGURE 2

Images show intra- and perinodular segmentation. (A) Lung tissue segmentation: a deep learning method (The TotalSegmentator AI model) was
used to automatically segment the anatomical structure of the chest in CT images and remove the extrapulmonary structure, (B) PETtumor was used
to semi-automatically delineate the original 3D volume of interest (VOI) of lung nodule based on PET images, (C) Marge tool of segmentation editor
was used to grow from the VOI of the nodular edge by 1, 2, 3, 4, 5 voxels, and the nodular segmentation was subtracted to achieve the perinodular
segmentation. Intersect the expanded portion with the anatomical structure segmented by CT images to obtain the expanded portion in lung tissue.

mode and underwent attenuation correction based on CT images.
The attenuation-corrected PET images were reconstructed using
iterative reconstruction algorithm (2 iterations and 24 subsets).

2.3 Nodule/mass segmentation

PET and CT images in DICOM format were imported into
open-source software (3D Slicer, version 5.0)1 and registered
using General Elastix (with fixed CT) (21). The voxel size of
PET and CT images was 0.9766 × 0.9766 × 3.27 mm. A deep
learning method (The TotalSegmentator AI model) was used to
automatically segment the anatomical structure of the chest in

1 https://www.slicer.com

CT images and remove the extrapulmonary structure (22). The
nuclear medicine physician with 9 years of experience and a senior
with 11 years of experience blinded to the pathologic diagnosis,
utilized PETtumor to semi-automatically delineate the volume of
interest (VOI) of lung nodules/masses (termed Lesion) based on
PET images (23). Marge tool of segmentation editor was then
employed to expand from the nodular edge on PET images by
1–5 voxels (marked as Lesion_total1 to Lesion_total5), and the
nodular segmentation was subtracted to obtain the perinodular
segmentation (named as Lesion_margin1 to Lesion_margin5). The
expanded portion within lung tissue was obtained by intersecting
the expanded portion with the anatomical structure segmented by
CT images. Due to the high correspondence between PET and CT
images, features were extracted from both types of images within
the same VOI of the intra- and perinodular regions. In cases where
there was poor registration between PET and CT images, manual
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adjustment was performed to ensure excellent alignment between
the two image types. Nodule/mass segmentation process is shown
in Figure 2.

2.4 Radiomic feature extraction and
selection

Radiomics features were extracted using Pyradiomics Version
3.1.0, an open-source Python package designed for extracting
radiomic features from 2-dimensional and 3-dimensional images
and binary masks. All image processing and radiomic feature
extraction procedures adhered to the IBSI reporting guidelines
(24). PET/CT images underwent processing using the Laplacian of
Gaussian (LoG) algorithm (parameters: σ = 2.0, 3.0) and wavelet
transform algorithm, then discretized to fixed bin widths of 0.5
for PET and 25 HU for CT, respectively. A total of 1,037 radiomic
features were automatically extracted based on the aforementioned
volume of interest (VOI), covering eight categories: first-order
statistics, shape-based (2D and 3D), gray level co-occurrence
matrix (GLCM), gray level dependence matrix (GLDM), gray level
run length matrix (GLRLM), gray level size zone matrix (GLSZM),
and neighboring gray tone difference matrix (NGTDM). Z-score
normalization was applied to standardize radiomic parameters for
all patients. Informative features for lung nodule prediction were
selected using correlation analysis and general-univariate analysis
with or without Gradient Boosting Decision Tree (GBDT) in both
training and validation cohorts (25).

2.5 Model establishment and testing

In the training cohort, three machine learning models were
established using the logistic regression algorithm: the intranodular
model, perinodular model and total model. The parameters of
these models included optimal radiomic features with significant
differences extracted from the intranodular, perinodular, and intra-
plus peri-nodular VOIs, respectively. Subsequently, data from the
testing set were utilized to test the performance of these models.
The predictive performance was evaluated using receiver operating
characteristic (ROC) curves and the area under the ROC curve
(AUC) in both the training and validation sets.

2.6 Statistical analysis

A Student’s t-test was used for continuous variables with
a normal distribution, while Mann-Whitney test was used
for continuous variables with abnormal distribution. Nominal
variables were analyzed using either a chi-square test or Fisher’s
exact test. ROC curves were used to evaluate the models, and
pairwise comparisons of the ROC curves were conducted using
DeLong tests. Data handling, model establishment, statistical
analysis, and model evaluation were carried out using Python
(version 3.5.6), SPSS version 25.0, R (version 3.5.1), and
MedCalc software 20.217. A two-tailed p-value < 0.05 indicated
statistical significance.

3 Results

3.1 Clinical characteristics

The characteristics of the 228 patients in the training and
validation sets are summarized in Table 1. There were no
significant differences observed in age (p = 0.671), sex (p = 0.270),
smoking history (p = 0.254), carcinoembryonic antigen (CEA) level
(p = 0.100), cytokeratin 19 fragment (Cyfra 21-1) (p = 0.090), the
distribution of lobar locations (p = 0.173), the type of nodules
(p = 0.142), or nodular size (p = 0.188) between the training and
validation cohorts. However, sex exhibited a statistically significant
difference between the adenocarcinoma and granuloma groups in
both the training (p = 0.016) and validation cohorts (p = 0.030).
CEA levels in the adenocarcinoma subset were significantly higher
than that in the granuloma subset in both the training (p < 0.001)
and validation cohorts (p< 0.001). Similarly, Cyfra 21-1 levels were
notably elevated in the adenocarcinoma subset compared to the
granuloma subset in the training cohort (p < 0.001), though no
statistical difference was found in the validation cohort (p = 0.071).
Regarding age (p = 0.145 and 0.844) and smoking history (p = 0.230
and 0.345), there were no significant differences observed between
the adenocarcinoma and granuloma groups in either cohort. The
distribution of lobar locations, predominately in the upper lobes,
the type of nodules, with more solid nodules, and nodular size
were similar between the malignant and benign nodules in both
the training and validation sets (all p > 0.05). Univariate analyses
revealed that CEA level (OR = 2.105, 95% CI [1.310–3.381],
p = 0.002) and Cyfra 21-1 level (OR = 1.737, 95% CI [1.001–3.014],
p = 0.049) were significant predictors of lung adenocarcinoma.

3.2 Calculation of the RAD-score

Inter-observer reproducibility of segmentation had been
assessed, indicating a good agreement with the correlation
coefficients (ICCs) > 0.75. A total of 19 features were screened
from the intranodular region to build the radiomics signature in
the training cohort. The radiomics signature score (RAD-score)
for each enrolled patient was computed using the following logistic
regression formula:

RAD-score = 1.178984–0.211528 × original_shape_Elongation
+ 0.347640 × original_shape_ SphericityCT + 0.113382
× original_firstorder_90Percentile–0.230377 × original_
NGTDM_ Complexity + 0.477789 × log-sigma-2-0-mm-3D_
firstorder_Minimum + 0.167416 × log-sigma-3-0-mm-3D_
GLDM_LargeDependenceLowGrayLevelEmphasis–0.291020 ×

log-sigma-3-0-mm-3D_ GLSZM_GrayLevelVariance + 0.011914 ×

log-sigma-3-0-mm-3D_GLSZM_SmallAreaEmphasis + 0.549300
× wavelet-HLL_GLDM_LargeDependenceLowGrayLevelEmphasis–
0.082842 × wavelet-HHL_GLCM_Correlation + 0.089530 ×

wavelet-HHH_GLSZM_GrayLevelNonUniformityNormalized +
0.347640 × original_shape_Sphericity + 0.418771 × original_
firstorder_Minimum–0.452291 × wavelet-LLH_firstorder_
Skewness + 0.095162 × wavelet-LLH_GLCM_InverseVariance–
0.171994 × wavelet-LLH_GLDM_DependenceVariance +
0.500768 × wavelet-LHL_GLCM_InverseVariance −0.316888
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TABLE 1 Characteristics of patients in the training and validation cohorts.

Characteristic Training cohort (n = 159) Validation cohort (n = 69)

Adenocarcinomas
(n = 109)

Granulomas
(n = 50)

P Adenocarcinomas
(n = 47)

Granulomas
(n = 22)

P

Age (mean ± SD,
years)

64.93 ± 9.72 61.68 ± 14.48 0.145 64.77 ± 9.42 64.23 ± 12.77 0.844

Sex, n (%) 0.016 0.030

Male 54 (49.54) 35 (70.00) 34 (72.34) 10 (45.45)

Female 55 (50.46) 15 (30.00) 13 (27.66) 12 (54.55)

Smoking status, n (%) 0.230 0.345

Yes 20 (18.35) 11 (22.00) 16 (34.04) 4 (18.18)

Mean pack-years 14.25 ± 29.49 16.54 ± 30.55 0.730 17.97 ± 22.32 8.33 ± 15.08 0.083

No 54 (49.54) 17 (34.00) 19 (40.43) 11 (50.00)

Unavailable 35 (32.11) 22 (44.00) 12 (25.53) 7 (31.82)

CEA, M (IQR) 5.72 (2.63, 11.80) 2.37 (1.54, 2.97) < 0.001 4.54 (2.85, 30.32) 2.31 (1.43, 2.90) < 0.001

Cyfra 21-1
(mean ± SD)

3.92 ± 2.92 2.28 ± 0.89 < 0.001 5.11 ± 4.25 2.37 ± 0.74 0.071

Location, n (%) 0.581 0.536

Upper and middle 76 (69.72) 37 (74.00) 36 (76.60) 19 (86.36)

Lower 33 (30.28) 13 (26.00) 11 (23.40) 3 (13.64)

Type of nodule, n (%) 0.142 0.801

Solid nodule 88 (80.73) 45 (90.00) 35 (74.47) 17 (77.27)

Subsolid nodule 21 (19.27) 5 (10.00) 12 (25.53) 5 (22.73)

Lesion size (mm) 25.47 ± 7.54 24.06 ± 9.73 0.318 28.79 ± 10.68 25.32 ± 15.23 0.278

SD, standard deviation; M, median; IQR, Interquartile range; CEA, carcinoembryonic antigen; Cyfra 21-1, cytokeratin 19 fragment.

× wavelet-LHL_GLCM_MaximumProbability–0.794517 ×

wavelet-LHL_NGTDM_ Busyness.
Among these features, the first 11 are derived from CT, while

the last 8 are PET features. The calculation formulas for RAD-score
of perinodular models and total models are provided in electronic
Supplementary material.

The median and interquartile range of the calculated RAD-
score from all regions are presented in Table 2. The RAD-
score from intranodular, perinodular or total regions in the
lung adenocarcinoma group was significantly higher than that
in the granuloma group in the training cohort, and there was
a significant difference between the two subsets (all p < 0.001).
In the validation cohort, lung adenocarcinomas exhibited higher
RAD-score than the granuloma group from intranodular or total
regions (intranodular plus perinodular distance of 2–4 voxels
outside the nodule) (all p < 0.05). However, there was no statistical
difference between the two groups from perinodular or total
regions (intranodular plus perinodular distance of 1/5 voxels
outside the nodule) (all p > 0.05).

3.3 Intra- and perinodular features to
distinguish adenocarcinomas from
granulomas

The predictive performance of the 11 models in both the
training and validation cohorts is summarized in Table 3, with

corresponding ROC curves illustrated in Figures 3A–D. The
intranodular radiomic model demonstrated strong performance in
both the training (AUC: 0.868, p < 0.001) and validation (AUC:
0.715, p = 0.004) cohorts. Among the perinodular models, the
Lesion_margin2 model exhibited the highest AUC values (AUC:
0.883 and 0.616, p < 0.001 and p = 0.122) in both cohorts,
although the AUC of the validation set is not statistically significant.
Similarly, in terms of total models, the Lesion_total2 model showed
the highest AUC in both the training (0.879, p < 0.001) and
validation (0.742, p = 0.001) sets, outperforming the intranodular
model.

The DeLong test revealed that in the training set, the AUC of the
Lesion_margin5 model was significantly lower than those of other
perinodular models and the intranodular model (all p < 0.05).
However, no significant difference was found between other
perinodular models and the intranodular model (all p > 0.05).
In the validation set, the AUC of the intranodular model was
statistically higher than those of perinodular models (all p < 0.05),
except for the Lesion_margin2 model (p > 0.05). Among the total
models and intranodular model, a significant difference between
the AUC of the Lesion_total1 model and that of the Lesion_total5
model (p = 0.0289) was detected, but this difference was not
observed in other models (all p > 0.05) in the training set. In the
validation set, the AUC of the Lesion_total5 model was significantly
lower than that of the Lesion_total2 model (p = 0.0293) and
Lesion_total4 model (p = 0.0453), while no significant difference
was found between other models (all p > 0.05).
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TABLE 2 Comparison of radiomic signature score (RAD-score) between lung adenocarcinoma subset and pulmonary granuloma subset in training
cohort and validation cohort.

Characteristic Training cohort P Validation cohort P

Adenocarcinoma Granulomas Adenocarcinoma Granulomas

Lesion 1.897 (1.054, 3.182) −0.313 (−1.840, 0.748) < 0.001 1.558 (0.480, 3.086) 0.166 (−1.718, 2.111) 0.004

Lesion_margin1 2.188 (0.889, 3.393) −0.429 (−1.421, 0.564) < 0.001 1.667 (1.093, 2.364) 1.668 (0.298, 2.171) 0.709

Lesion_margin2 2.329 (0.874, 3.856) −0.852 (−1.645, 0.706) < 0.001 1.161 (0.334, 2.462) 0.672 (−0.336, 1.618) 0.122

Lesion_margin3 2.388 (0.823, 3.628) −0.558 (−1.627, 0.521) < 0.001 1.224 (0.218, 2.159) 1.154 (−0.131, 1.720) 0.520

Lesion_margin4 1.685 (0.759, 3.020) −0.416 (−1.081, 0.739) < 0.001 0.884 (0.609, 2.118) 1.307 (0.331, 1.940) 0.898

Lesion_margin5 1.345 (0.541, 2.104) 0.389 (−0.334, 0.864) < 0.001 1.064 (0.400, 1.514) 0.801 (0.320, 1.582) 0.787

Lesion_total1 2.295 (1.232, 3.009) −0.763 (−2.156, 0.756) < 0.001 0.665 (−0.475, 2.437) 1.831 (−0.821, 4.062) 0.285

Lesion_total2 2.077 (0.917, 3.181) −0.559 (−1.788, 0.288) < 0.001 2.020 (0.651, 2.896) −0.228 (−1.234, 1.148) 0.001

Lesion_total3 2.209 (0.994, 3.902) −0.809 (−1.874, 0.326) < 0.001 1.511 (0.429, 4.222) −0.623 (−2.185, 2.735) 0.015

Lesion_total4 1.613 (0.868, 2.548) −0.280 (−1.606, 0.844) < 0.001 1.873 (0.729, 2.518) 0.743 (−0.802, 1.442) 0.004

Lesion_total5 1.667 (0.777, 2.638) −0.944 (−1.679, 1.244) < 0.001 1.640 (−0.016, 2.596) −0.140 (−0.877, 2.334) 0.160

The value of RAD-score was expressed as median (interquartile range).

TABLE 3 AUC values obtained in the training and validation cohorts by using different feature extraction from intra- and perinodular region to
distinguish adenocarcinomas from granulomas on PET/CT images.

Intranodular model Perinodular model Total model

Training
AUC

Validation
AUC

Training AUC Validation
AUC

Training AUC Validation
AUC

0.868 (0.823,
0.911)

0.715 (0.585,
0.833)

1 voxel 0.881 (0.835, 0.921) 0.528 (0.391, 0.659) 0.895 (0.850, 0.932) 0.420 (0.290, 0.558)

2 voxels 0.883 (0.838, 0.924) 0.616 (0.487, 0.734) 0.879 (0.825, 0.927) 0.742 (0.620, 0.854)

3 voxels 0.880 (0.829, 0.924) 0.548 (0.428, 0.669) 0.885 (0.833, 0.932) 0.682 (0.545, 0.815)

4 voxels 0.852 (0.798, 0.904) 0.510 (0.381, 0.639) 0.833 (0.773, 0.890) 0.718 (0.606, 0.817)

5 voxels 0.780 (0.719, 0.838) 0.520 (0.394, 0.647) 0.830 (0.774, 0.883) 0.605 (0.48, 0.727)

Total model includes intra- and perinodular features. Data in parentheses are 95% confidence intervals.

4 Discussion

This study initially assessed the ability of radiomic
features extracted from both the segmented nodule/mass alone
(intranodular region) and perinodular region on 18F-FDG PET/CT
images, defined as the immediate lung parenchyma outside the
nodule up to the distance of 1 to 5 voxels, in distinguishing
between lung adenocarcinomas and granulomas. We found that
the gross radiomics signature from the intranodular region and the
immediate vicinity extending to 2 voxels outside the nodule yielded
the most favorable performance (AUC = 0.879). Our findings
indicated that incorporating perinodular radiomic features
alongside the intranodular features enhanced the predictive
capability of the approach for lung cancer in both the training
and validation sets, although the observed differences were not
highly significant. The proposed model serves as a non-invasive
diagnostic tool for discriminating between granuloma nodules
and tumor nodules, potentially reducing the necessity for invasive
diagnostic procedures.

The majority of radiomic studies focusing on distinguishing
between malignant and benign lung nodules have primarily utilized
features derived solely from the nodule itself. However, in recent
years, there has been increasing interest in exploring the integration

of CT perinodular features from the surrounding parenchyma for
lung nodule classification. Dilger et al. (15) showcased the potential
of perinodular parenchymal signals manually segmented from CT
data to enhance lung nodular classification in a cohort of 50
subjects. They found that nodule-only features achieved an AUC
of 0.918 (including nodule size) and 0.872 (excluding nodule size),
the inclusion of parenchymal features led to improved performance
(AUC of 0.938). Although these results supported the hypothesis
of differential influence of malignant versus benign nodules on
perinodular pulmonary parenchyma, they lacked an independent
validation set. Similarly, Beig et al. (11) demonstrated that
incorporating perinodular radiomic features from the immediate
vicinity of 5 mm outside the lung nodule to intranodular features
in CT imaging enhanced the predictive ability of distinguishing
adenocarcinomas from granulomas, yielding an AUC of 0.80.
They further correlated histologic features of adenocarcinoma
and granuloma with radiomic features to gain insight into the
biological underpinnings of their findings. Perinodular regions may
serve as the tumor microenvironment, which plays a critical role
in defining biological behavior such as aggressiveness, metastatic
potential, and therapy response in oncology. Building upon the
tumor microenvironment concept, Beig et al. proposed that
the perinodular zone or habitat of a malignant lesion may
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FIGURE 3

Area under the receiver operating characteristic (ROC) curve of the models in the training cohort [(A) Intranodular and perinodular models,
(B) Intranodular and total models and in the validation cohort (C) Intranodular and perinodular models, (D) Intranodular and total models].

exhibit distinct molecular, cellular, or radiological alterations
compared to a benign lesion. Histologically, densely packed tumor-
infiltrating lymphocytes and tumor-associated macrophages were
observed around adenocarcinomas, whereas giant cells comprising
histiocytes and macrophages were noted at the interface of
granuloma and normal lung tissue, potentially explaining the
diverse machine-extracted radiomic features between the two
diseases. However, it is noteworthy that their study solely extracted
two-dimensional features from a single representative slice, and the
utilization of different types of CT scanners with varying section
thicknesses and reconstruction methods may have limited the
robustness of the results.

Our study extracts three-dimensional radiomic features
of nodules/masses and perinodular region from volumetric
segmentation, also takes PET-based radiomic features into account,

resulting in improved diagnostic performance with higher AUC
values. Previous investigations (26) have established that the
heterogeneity of FDG uptake on PET images reflects the
distribution of various tissue components within the primary
tumor, such as cell infiltration, abnormal angiogenesis, myxoid
changes, and necrosis. Peritumoral tissues may indeed harbor
infiltrative tumor cells or lymphocytes, which manifest as FDG
uptake on PET images. Additionally, slight FDG uptake in the
perinodular region might arise from the partial volume effect (27).
The partial volume effect, particularly concerning small nodules,
can significantly impact the accuracy of PET measurements by
causing underestimation of radiotracer uptake in small lesions due
to limited spatial resolution. In this study, except for one patient
with a pulmonary nodule diameter of 8 mm, all other lesions were
over 1 cm in size. The partial volume effect had a relatively small
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impact on the measurement of glucose uptake in the lesions and
the establishment of radiomics models.

In most previous studies, the region of interest used in the
perinodular zone segmentation algorithms was defined with a
fixed size. Uthoff et al. (14) investigated the utility of machine
learning tools incorporating perinodular parenchymal features
(parenchyma quartile bands: 25, 50, 75, and 100% of the maximum
in-plane diameter of the nodule) for distinguishing between
malignant and benign lung nodules. Their results demonstrated
that the four machine learning tools incorporating parenchymal
signals outperformed exclusively nodular features, with no
statistical difference observed between the tools including
parenchymal features. Similarly, our study evaluated the
significance of radiomic features from different areas surrounding
pulmonary nodules. We found that the inclusion of perinodular
features from the region immediately adjacent to the nodule up
to 2 voxels (approximately 6.5 mm) distance exhibited superior
performance compared to nodular-only features. The discrepancies
in results may be attributed to differences in segmentation methods
for the surrounding area of the nodule and the integration of
PET image information. The areas yielding the most meaningful
perinodular features extracted in our study align with findings
reported by Beig et al. (11) and Lin et al. (16) (morphological
expansion of 5 mm).

In our study, the semi-automatic delineation of VOI for
intranodular and perinodular regions serves to reduce the workload
of radiologists, enhancing reproducibility and stability compared to
manual delineation methods.

However, it is important to acknowledge several limitations
in our study. Firstly, the cohort comprised 228 patients with
an imbalanced ratio of adenocarcinomas to granulomas, nearly
2:1. It is plausible that with a more balanced dataset including
a greater number of benign nodules, the performance could be
improved. Secondly, our study may have been underpowered to
demonstrate statistically significant improvements in the resulting
AUC values of the total model, due to the limited number
of representative examples, and its single-center retrospective
design. A prospective study involving larger multi-center patient
cohorts is warranted to further validate the reproducibility and
reliability of machine learning models, thereby facilitating the
integration of this noninvasive and convenient method into
clinical practice. Furthermore, it is imperative to investigate
intra- and inter-observer variabilities of the features in future
studies to ensure the generalizability of the model. Finally, we
intend to augment the machine learning model by incorporating
clinical features and subjective radiological features to enhance the
accuracy of the model.

5 Conclusion

Our study demonstrates that combining intranodular and
perinodular radiomic features extracted from the immediate
vicinity of the nodule/mass up to 2 voxels distance on 18F-
FDG PET/CT imaging leads to improve the performance in
distinguishing between lung adenocarcinomas and granulomas.
These findings underscore the significance of incorporating
perinodular features in the classification of solid pulmonary

nodules/masses. The proposed model offers a noninvasive and
promising auxiliary diagnostic tool that holds potential for
integration into routine clinical practice in the future, so that
minimizing the need for repeated CT or PET/CT imaging and
reducing radiation exposure for benign nodules, and accelerating
the treatment process for malignant nodules.
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