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Purpose: The aim of this study is to develop and validate a novel multivariable 
prediction model capable of accurately estimating the probability of cataract 
development, utilizing parameters such as blood biochemical markers and age.

Design: This population-based cross-sectional study comprised 9,566 
participants drawn from the National Health and Nutrition Examination Survey 
(NHANES) across the 2005–2008 cycles.

Methods: Demographic information and laboratory test results from the patients 
were collected and analyzed using LASSO regression and multivariate logistic 
regression to accurately capture the influence of biochemical indicators on 
the outcomes. The SHAP (Shapley Additive Explanations) scale was employed 
to assess the importance of each clinical feature, excluding age. A multivariate 
logistic regression model was then developed and visualized as a nomogram. 
To assess the model’s performance, its discrimination, calibration, and clinical 
utility were evaluated using receiver operating characteristic (ROC) curves, 10-
fold cross-validation, Hosmer-Lemeshow calibration curves, and decision curve 
analysis (DCA), respectively.

Results: Logistic regression analysis identified age, erythrocyte folate (nmol/L), 
blood glucose (mmol/L), and blood urea nitrogen (mmol/L) as independent risk 
factors for cataract, and these variables were incorporated into a multivariate 
logistic regression-based nomogram for cataract risk prediction. The area 
under the receiver operating characteristic (ROC) curve (AUC) for cataract risk 
prediction was 0.917 (95% CI: 0.9067–0.9273) in the training cohort, and 0.9148 
(95% CI: 0.8979–0.9316) in the validation cohort. The Hosmer-Lemeshow 
calibration curve demonstrated a good fit, indicating strong model calibration. 
Ten-fold cross-validation confirmed the logistic regression model’s robust 
predictive performance and stability during internal validation. Decision curve 
analysis (DCA) demonstrated that the nomogram prediction model provided 
greater clinical benefit for predicting cataract risk when the patient’s threshold 
probability ranged from 0.10 to 0.90.

Conclusion: This study identified blood urea nitrogen (mmol/L), serum glucose 
(mmol/L), and erythrocyte folate (mmol/L) as significant risk factors for cataract. 
A risk prediction model was developed, demonstrating strong predictive 
accuracy and clinical utility, offering clinicians a reliable tool for early and 
effective diagnosis. Cataract development may be delayed by reducing levels 
of blood urea nitrogen, serum glucose, and erythrocyte folate through lifestyle 
improvements and dietary modifications.
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1 Introduction

Cataracts, characterized by the clouding of the lens, are a leading 
cause of vision impairment and blindness among older adults 
worldwide (1). In China, the prevalence of cataracts among 
individuals aged 45–89 exceeds 22% (2). Further research indicates 
that the cataract prevalence among individuals aged 60 and older 
ranges between 53 and 58% (3). With population growth and aging, 
the incidence of cataracts and the demand for cataract surgeries are 
expected to rise steadily (4). Although cataract surgery significantly 
improves vision, it remains prohibitively expensive, and many 
low-income countries face a shortage of skilled surgeons (5). 
Reducing cataract incidence is essential. Cataracts are associated with 
multiple factors, including smoking, diabetes, UV exposure, and 
blood metabolites (6). Identifying and targeting modifiable risk 
factors can substantially reduce the health and economic burden 
of cataracts.

Aging is the predominant factor influencing cataract development; 
however, additional factors also contribute to their onset (7). 
Numerous researchers have explored the impact of nutritional status 
on cataract formation and the potential use of biochemical markers to 
assess the risk of cataractogenesis, as these parameters can be modified 
by lifestyle changes (8, 9). Blood biochemical markers serve as key 
indicators of the body’s overall metabolic state (10). Therefore, we aim 
to develop a logistic regression model incorporating blood 
biochemical markers and age to visualize the components contributing 
to cataract risk via a nomogram. However, to the best of our 
knowledge, no existing model currently predicts cataracts based on 
blood biochemical markers and age.

This article presents the findings of a cross-sectional study using 
data from the National Health and Nutrition Examination Survey 
(NHANES) conducted between 2005 and 2008. The aim of our study 
was to develop and validate a novel multivariate predictive model to 
accurately assess the probability of cataract onset based on blood 
biochemical markers and age. Additionally, we sought to explore the 
potential causes of cataracts.

2 Materials and methods

2.1 Data source and study population

NHANES is an extensive nationwide survey conducted by the 
National Center for Health Statistics. Its purpose is to evaluate the 
health and nutritional condition of the American people. It is a 
department of the U.S. Centers for Disease Control and Prevention. 
The survey data in NHANES were organized in a biennial style. 
We utilized data from two consecutive survey cycles (2005–2006 and 
2007–2008) about cataracts. Of all 20,497 participants in NHANES 
2005–2008, we excluded those without complete information on 
cataracts (n = 9,592). Further, we  excluded participants under 
20 years old without complete information on other covariates 

(n = 1,339). Finally, 9,566 subjects were included in the analytic 
population. The process of participant selection is summarized in 
Figure 1.

2.2 Cataract assessment

Consistent with other epidemiological research, a cataract 
operation was used as a surrogate for a cataract (11). The occurrence 
of a cataract operation was ascertained by inquiring participants about 
their history of undergoing a cataract operation. (VIQ071), with 
responses limited to “yes” or “no.” If the response was affirmative, the 
subject was diagnosed with a cataract (12).

2.3 Covariates assessment

According to previous epidemiological studies concerning cataracts 
(13), potential confounding factors studied in the current work included 
sociodemographic factors (gender, age, race) and blood biochemical 
parameters. The sociodemographic characteristics were obtained using 
self-reported questionnaires, which included information on gender 
(male or female), age (continuous), and race (non-Hispanic white, 
non-Hispanic black, Mexican American, etc.). The source of the blood 
biochemical parameter specimen is serum. The serum specimens 
undergo processing, storage, and shipment to the Collaborative 
Laboratory Services for analysis. The NHANES Laboratory/Medical 
Technologists Procedures Manual (LPM) provides in-depth instructions 
on how to collect and prepare specimens. The NHANES QA/QC 
processes adhere to the requirements set by the 1988 Clinical Laboratory 
Improvement Act. The NHANES Laboratory/Medical Technologists 
Procedures Manual (LPM) provides comprehensive guidance for 
quality assurance and quality control (QA/QC) procedures. Refer to the 
General Documentation of the Laboratory Data file for comprehensive 
quality assurance and quality control techniques.

The subsequent blood biochemical values were gathered from 
patients with cataracts for further study. The laboratory examined 
the following values: albumin (g/L), alanine aminotransferase (ALT) 
(U/L), aspartate aminotransferase (AST) (U/L), alkaline phosphatase 
(U/L), and blood urea nitrogen (mmol/L). Blood calcium 
concentrations were measured in millimoles per liter (mmol/L), 
cholesterol levels in millimoles per liter (mmol/L), and bicarbonate, 
creatinine, and gamma glutamyltransferase concentrations in 
millimoles per liter (mmol/L), micromoles per liter (μmol/L), and 
units per liter (U/L), respectively. The serum’s glucose concentration 
was measured in millimoles per liter (mmol/L), while the iron 
content was measured in micromoles per liter (umol/L) and needed 
to be kept in a refrigerator. The concentration of bilirubin in the 
blood is measured in micromoles per liter (umol/L). The following 
measurements are provided in the given units: total protein 
concentration (g/L), triglycerides (mmol/L), uric acid (mmol/L), 
sodium (mmol/L), potassium (mmol/L), chloride (mmol/L), 
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osmolality (mmol/kg), globulins (g/L), C-reactive proteins (mg/dL), 
erythrocyte folate (mmol/L), serum folate (mmol/L), and glycated 
hemoglobin (%).

3 Statistical analysis

The median (interquartile range) was employed to represent 
continuous data, while categorical data were expressed as number 
(percentage) (14, 15). Comparisons between cataract and 
non-cataract groups were conducted using statistical tests such as the 
unpaired t-test, Wilcoxon rank-sum test, Pearson Chi-square test, or 
Fisher’s exact test, as appropriate. Cases from the NHANES dataset 
were randomly allocated into a training set (n = 6,696) and a 
validation set (n = 2,870) in a 7:3 ratio. The outcome variable for this 
study was cataract status. To manage data dimensionality and 
predictor selection, the researchers employed the least absolute 
shrinkage and selection operator (LASSO) regression and 
multivariable logistic regression (16). Multivariable logistic regression 
analysis was used to develop a predictive model and a nomogram of 
cataract (17). The model’s discriminative ability was assessed by 
calculating the area under the curve (AUC) (18). To enhance the 
estimation of model performance, 10-fold cross-validation was 
employed for evaluation. The model’s calibration was assessed using 
the Hosmer-Lemeshow test and calibration curve, while its clinical 
utility was evaluated through decision curve analysis (DCA) (19). All 
statistical analyses were performed using R software (version 4.3.2; R 
Foundation for Statistical Computing, Vienna, Austria) and Python 
(version 3.12). A significance threshold of p < 0.05 was applied to 
determine statistical significance.

LASSO regression (Least Absolute Shrinkage and Selection 
Operator) efficiently integrates variable selection with regularization, 
enhancing both the predictive accuracy and interpretability of 
statistical models. Through the introduction of an L1 penalty, LASSO 

reduces specific coefficients to zero, thus enabling efficient variable 
selection. The optimal lambda (λ) is typically determined via 10-fold 
cross-validation, aiming to minimize prediction error while balancing 
model complexity and fit. In this study, 20-fold cross-validation was 
employed, which, despite the higher computational costs, produces 
more stable and accurate model evaluations.

The analysis commenced with data preprocessing, wherein 
categorical variables such as sex, diagnosis, and race were 
transformed into factor variables to ensure appropriate handling 
during modeling. Numerical variables were subsequently normalized 
using a min-max scaling function, which transformed each variable 
into a range of [0,1]. This normalization is critical in LASSO 
regression, as the model is sensitive to the scale of the input variables. 
The transformation was applied to all numeric variables within the 
dataset using the mutate_if function within a pipeline, and the 
resultant dataset was converted into a data frame for further 
processing. To ensure reproducibility, a random seed was set [set.
seed (123)], and the preprocessed data was partitioned into a matrix 
of predictors (x) and a response vector (y). The response vector y was 
further converted to numeric form to be  compatible with the 
modeling functions. The LASSO regression was executed using the 
glmnet function, specifying a binomial family to accommodate the 
binary nature of the outcome variable. The function was configured 
to evaluate 1,000 distinct values of the regularization parameter 
lambda (n lambda = 1,000), enabling the model to thoroughly 
explore the regularization path. This extensive range of lambda 
values ensures that the model can identify the optimal level of 
penalization, balancing model complexity with predictive 
performance. Following the initial fitting of the LASSO model, the 
regularization path was visualized using a plot of the model 
coefficients against the logarithm of lambda. This plot facilitates 
understanding of how the coefficients shrink as the penalization 
increases, and which variables remain significant across varying 
levels of lambda. To validate the model and prevent overfitting, a 
20-fold cross-validation was conducted using the cv. glmnet 
function. This process involves partitioning the data into 20 subsets, 
fitting the model on 19 subsets, and validating it on the remaining 
one. This procedure is repeated 20 times, ensuring that each subset 
serves as a validation set once. The cross-validation results were 
plotted to visualize the relationship between lambda and the cross-
validated error, aiding in the selection of the most appropriate 
lambda value. Two key lambda values were identified from the cross-
validation results: Lambda. min: The lambda value that minimizes 
the cross-validated mean squared error (MSE), representing the 
point at which the model achieves the best predictive accuracy. 
Lambda.1se: The lambda value that is one standard error above the 
minimum MSE. This value typically results in a more parsimonious 
model, as it provides a simpler model with fewer predictors, while 
still maintaining a reasonable level of accuracy. Finally, the model 
coefficients corresponding to lambda. 1se were extracted using the 
coef function. These coefficients indicate which variables are most 
influential in predicting the outcome, offering insights into the 
underlying relationships within the data.

For multivariable logistic regression:variable selection criteria 
are based on significance testing (p  < 0.05). LASSO-screened 
variables were included in the multivariable logistic regression, 
and variables with p less than 0.05 were selected for the 
prediction model.

FIGURE 1

Flow chart of the study population.
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4 Results

4.1 Patient characteristics

Out of the individuals involved in the study, 9.4% (899 out of 9,556) 
were diagnosed with cataracts. Table 1 displays the demographic and 
clinical characteristics of the individuals who participated in the study. 
Out of the 30 variables obtained from patients, 5 were chosen based on 
non-zero coefficients produced by LASSO regression analysis (Figure 2).

4.2 Identification of the risk factors for 
cataract

The variables consisted of blood urea nitrogen (mmol/L), blood 
glucose (mmol/L), erythrocyte folate (mmol/L), serum folate (mmol/L), 
and age. The logistic regression prediction model was created using a 
multivariable method, incorporating the five factors chosen by LASSO 
regression as independent variables. The research’s findings demonstrate 
that blood urea nitrogen (mmol/L), glucose (mmol/L), serum 

TABLE 1 Demographic and clinical characteristics of study participants.

Characteristic Total 
(n  =  9,566)

Cataract 
(n  =  899)

Non-cataract 
(n  =  8,667)

p

Gender, n (%) 0.089

Male 4,637 (48) 411 (46) 4,226 (49)

Female 4,929 (52) 488 (54) 4,441 (51)

Age, Median (Q1,Q3) 48 (34, 64) 78 (70, 80) 46 (33, 61) < 0.001

Ethnicity, n (%) < 0.001

Mexican American 1821 (19) 72 (8) 1749 (20)

Other Hispanic 719 (8) 56 (6) 663 (8)

Non-Hispanic White 4,678 (49) 633 (70) 4,045 (47)

Non-Hispanic Black 1957 (20) 112 (12) 1845 (21)

Other Race - Including Multi-Racial 391 (4) 26 (3) 365 (4)

Albumin (g/L), Median (Q1,Q3) 42 (40, 44) 41 (39, 44) 42 (40, 44) < 0.001

alanine aminotransferase (ALT) (U/L), Median (Q1,Q3) 21 (16, 28) 19 (15, 24) 21 (17, 29) < 0.001

Asparate aminotransferase (AST) (U/L), Median (Q1,Q3) 23 (20, 28) 24 (21, 28) 23 (20, 28) 0.001

Alkaline phosphotase (U/L), Median (Q1,Q3) 67 (55, 82) 71 (59, 86) 67 (55, 82) < 0.001

Blood urea nitrogen (mmol/L), Median (Q1,Q3) 4.28 (3.21, 5.36) 6.07 (4.28, 7.85) 4.28 (3.21, 5.36) < 0.001

Total calcium (mmol/L), Median (Q1,Q3) 2.35 (2.3, 2.42) 2.35 (2.3, 2.42) 2.35 (2.3, 2.42) 0.319

Cholesterol (mmol/L), Median (Q1,Q3) 5.04 (4.37, 5.82) 4.89 (4.19, 5.77) 5.07 (4.4, 5.82) < 0.001

Bicarbonate (mmol/L), Median (Q1,Q3) 25 (23, 26) 25 (24, 27) 25 (23, 26) < 0.001

Creatinine (μmol/L), Median (Q1,Q3) 76.91 (63.65, 89.28) 88.4 (72.49, 106.08) 74.26 (63.65, 88.4) < 0.001

Gamma glutamyl transferase (U/L), Median (Q1,Q3) 21 (15, 32) 20 (15, 30) 21 (15, 32) 0.18

Glucose, serum (mmol/L), Median (Q1,Q3) 5.16 (4.72, 5.77) 5.61 (5, 6.61) 5.11 (4.66, 5.72) < 0.001

Iron, refigerated (umol/L), Median (Q1,Q3) 14.3 (10.7, 18.75) 13.6 (10.6, 18.1) 14.5 (10.7, 18.8) 0.003

Lactate dehydrogenase LDH (U/L), Median (Q1,Q3) 128 (113, 146) 140 (122, 160) 127 (112, 144) < 0.001

Phosphorus (mmol/L), Median (Q1,Q3) 1.23 (1.1, 1.32) 1.23 (1.1, 1.32) 1.23 (1.1, 1.32) 0.595

Bilirubin, total (umol/L)(umol/L), Median (Q1,Q3) 11.97 (8.55, 15.39) 11.97 (10.26, 15.39) 11.97 (8.55, 15.39) < 0.001

Total protein (g/L), Median (Q1,Q3) 71 (68, 74) 70 (68, 74) 71 (68, 75) < 0.001

Triglycerides (mmol/L), Median (Q1,Q3) 1.42 (0.94, 2.2) 1.55 (1.05, 2.23) 1.41 (0.93, 2.2) < 0.001

Uric acid (umol/L), Median (Q1,Q3) 315.2 (261.7, 374.7) 333.1 (279.6, 395.55) 315.2 (261.7, 374.7) < 0.001

Sodium (mmol/L), Median (Q1,Q3) 139 (138, 141) 140 (138, 141) 139 (138, 140) < 0.001

Potassium (mmol/L), Median (Q1,Q3) 3.95 (3.7, 4.2) 4.1 (3.8, 4.3) 3.9 (3.7, 4.1) < 0.001

Chloride (mmol/L), Median (Q1,Q3) 104 (102, 106) 104 (101, 105) 104 (102, 106) < 0.001

Osmolality (mmol/Kg), Median (Q1,Q3) 278 (275, 281) 281 (277, 284) 278 (275, 281) < 0.001

Globulin (g/L), Median (Q1,Q3) 29 (26, 32) 29 (26, 32) 29 (27, 32) 0.125

C-reactive protein(mg/dL), Median (Q1,Q3) 0.21 (0.08, 0.49) 0.25 (0.1, 0.56) 0.21 (0.08, 0.49) < 0.001

RBC folate (nmol/L), Median (Q1,Q3) 840.3 (586.6, 1,220) 1112.1 (758.8, 1,620) 820 (576, 1184.6) < 0.001

Serum folate (nmol/L), Median (Q1,Q3) 31.5 (21.5, 45.9) 43.9 (29.5, 71.05) 30.6 (21, 44) < 0.001

Glycohemoglobin (%), Median (Q1,Q3) 5.4 (5.2, 5.8) 5.7 (5.4, 6.2) 5.4 (5.1, 5.7) < 0.001
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(mmol/L), erythrocyte folate (nmol/L), and age have been identified as 
risk factors for cataract. These results are presented in Table 2.

4.3 Comparison of predictive influence

It is crucial to compare the impact of biochemical indicators with 
the influence of age, given that age remains the most significant 
predictor of cataracts. When age was used as the sole predictor in this 
study’s dataset, the area under the ROC curve (AUC) was 0.9167 (95% 
CI: 0.9066–0.9267) in the training set and 0.904 (95% CI: 0.8853–
0.9228) in the validation set. While age alone demonstrated robust 
predictive performance, incorporating models identified through 
LASSO and multivariate logistic regression further enhanced 
predictive accuracy. In this study, the AUC for the training set was 
0.917 (95% CI: 0.9067–0.9273), and for the validation set, the AUC 
was 0.9148 (95% CI: 0.8979–0.9316).

4.4 Utilizing SHAP to highlight variable 
importance

To facilitate the visual interpretation of the selected variables, we 
employed SHAP (20) to elucidate the specific contributions of these 
variables to the model’s prediction of cataract formation. Figure 8 
highlights the 19 most significant features in the logistic regression 
model, which was developed using 29 variables. Each feature’s 
contribution to the outcome is represented by colored dots along the 
significance line, with red indicating high-risk values and blue 
representing low-risk values. Among the top five features, elevated 
levels of blood urea nitrogen, serum folate, erythrocyte folate, 

osmolality, and potassium were associated with an increased risk of 
age-related cataract formation. Figure 9 presents the ranking of the 19 
risk factors, evaluated by the mean absolute SHAP value, with the 
SHAP value on the X-axis reflecting each factor’s importance in the 
predictive model. Without variable screening, the ROC curve for the 
test set was 0.8 when all variables were included in the model, and 0.73 
when only blood urea nitrogen was included. After applying the 
stacked formula sequentially, model performance did not improve 
with the inclusion of the third variable, erythrocyte folate. The area 
under the ROC curve for the test set was 0.77, decreasing slightly to 
0.76 following the inclusion of erythrocyte folate. Two variables, blood 
urea nitrogen and erythrocyte folate, were consistently selected 
through LASSO and multivariate logistic regression screening, 
indicating their significant impact on cataract prognosis. However, 
based on the SHAP scores, blood urea nitrogen, serum folate, and 
erythrocyte folate were ranked 1st, 2nd, and 3rd, respectively, while 
serum glucose was ranked 11th in terms of importance. In summary, 
the model constructed using variables identified through LASSO and 
multivariate logistic regression screening proved to be feasible.

4.5 Construction of predictive model for 
cataract

Based on the four variables indicated above that were chosen 
using the LASSO regression approach and the logistic regression 
technique, multivariable logistic regression analysis was carried out to 
create a predictive model for cataract. The differentiation of the 
cataract risk prediction model was assessed using the ROC curve. The 
training group’s AUC was 0.917 (95%CI = 0.9067–0.9273) and the 
validation group’s was 0.9148 (95%CI = 0.8979–0.9316), according to 

FIGURE 2

Predictor selection using the LASSO regression analysis with twenty fold cross-validation. (A) Tuning parameter (lambda) selection of deviance in the 
LASSO regression based on the minimum criteria (left dotted line) and the 1-SE criteria (right dotted line). (B) A coefficient profile plot was created 
against the log (lambda) sequence. In the present study, predictor’s selection was according to the 1-SE criteria (right dotted line), where 5 nonzero 
coefficients were selected. LASSO, least absolute shrinkage and selection operator; SE, standard error.
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the data (Figure 4). A nomogram was created in order to depict the 
predictive model, offering a useful customized tool for assessing the 
probability of cataract development (Figure 5). The suggested model 
(Figure 6) has good calibration. For the Hosmer-Lemeshow test, a 
p-value of less than 0.05 is typically seen as indicating a poor model 
fit and a significant discrepancy between the predicted and true 
values. However, this study’s huge sample size is associated with the 
HL test results (21). With bigger and larger sample sizes, it is more 
likely that simply uncorrelated disparities between estimated and true 
probability will result in the rejection of the perfect fit hypothesis since 
the power of classic goodness-of-fit tests grows with sample size (22). 
As a result, an HL test p-value of less than 0.05 does not always signify 
a poor model fit. In this study, the relatively small deviation of the 
calibration curves from the reference line indicates that the fit between 
predicted and observed values is not statistically significantly biased 
and is therefore highly credible. To further assess model calibration, 
we computed the Brier score (23), a metric that evaluates the accuracy 
of probabilistic predictions, particularly for binary outcomes. A Brier 
score of 0.057 in the training set indicates strong model calibration, 
reflecting the model’s accurate probabilistic performance. We utilized 
10-fold cross-validation for model evaluation, and the resulting 
performance metrics are presented in Figure 7. Based on these results, 
our 10-fold cross-validation analysis confirms that the logistic 
regression model exhibits moderate-to-strong predictive ability and is 
likely to perform robustly in external validation studies.

DCA was also carried out to evaluate its clinical utility 
(Figure 3). In decision curve analysis (DCA), the model optimizes 
true positive rates while minimizing false positives, confirming its 
capacity to improve clinical decision-making by delivering 
considerable net benefit across a range of threshold probabilities. 
The decision curve consistently remains above the “None” line 
(representing no intervention) across a broad spectrum of 
threshold probabilities, demonstrating a positive net benefit. This 
illustrates the model’s clinical utility in identifying high-risk 
patients likely to benefit from intervention. Conversely, red and 
blue curves falling below the “None” line at higher threshold 
probabilities suggest that treating all patients results in 
unnecessary interventions, thereby diminishing net benefit.

Decision curve analysis demonstrates that the nomogram 
provides optimal predictive performance for cataract risk within high-
risk thresholds of 0.10 to 0.90, delivering superior net benefit 
compared to treating all patients or none. At a threshold of 0.4, where 
patients with a 40% predicted probability are classified as high-risk 
and receive treatment, the model yields a net benefit of 0.2. This 
signifies that 20 out of every 100 patients benefit from treatment 
without undergoing unnecessary interventions. At a threshold of 0.5, 
the net benefit decreases to 0.15, indicating that 15 out of every 100 
patients benefit from the model’s recommendations.

5 Discussion

This study employed LASSO regression alongside multivariate 
logistic regression to identify key factors associated with cataract risk 
and to construct a predictive model. Four predictors were evaluated: 
age, erythrocyte folate (nmol/L), blood glucose (mmol/L), and blood 
urea nitrogen (mmol/L). Additionally, a logistic regression model was 
developed using the identified factors. The predictive model 
demonstrated excellent discriminatory power, calibration, and clinical 
utility, and was visualized through a nomogram, allowing easy 
interpretation of the predicted probability.

The LASSO regression technique was used to select independent 
risk factors for the purpose of modeling and predicting variables of 
various types. The application of penalized regression reduced the 
coefficients of less significant independent variables to zero, thereby 
enhancing model stability. Numerous studies have also employed 
machine learning techniques to improve and train nomogram-based 
prediction models for accurately predicting the survival outcomes 
of patients with breast and colon cancer (24, 25). Multiple factors 
have been reported to influence cataract development, including 
socio-demographic and lifestyle factors (4), nutrient intake (12), 
blood components (26), and genetic predispositions (27). The 
primary objective of this study was to investigate the influence of 

TABLE 2 Multivariate logistic regression was used to analyze the influencing factors of cataract.

variable β SE z value OR 2.5–97.5%CI p value

Blood urea nitrogen (mmol/L) 0.041 0.016 2.563 1.042 1.009–1.074 <0.001

Glucose, serum (mmol/L) 0.069 0.017 4.168 1.072 1.036–1.107 0.01

RBC folate (nmol/L) 0.0003 0 3.281 1 1.0001–1.0004 <0.001

Serum folate (nmol/L) 0.0016 0.001 1.054 1.002 0.998–1.004 0.291

Age 0.134 0.005 28.811 1.143 1.133–1.152 <0.001

FIGURE 3

The benefit curve represented by the prediction model. The y-axis 
indicates the overall net benefit, which is calculated by summing the 
benefits (true positive results) and subtracting the harms (false 
positive results). The x-axis indicates the threshold that used to 
decide whether it is high risk to have cataracts. All: net benefit curve 
when all cataract patients are treated. None: net benefit curve when 
all cataract patients are not treated.
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blood components and age on cataract formation, visualizing the 
results through a nomogram. To our knowledge, this is the first 
study to utilize a nomogram to illustrate cataract risk. Multivariate 
logistic regression analysis in this study revealed statistically 
significant differences across four variables: blood urea nitrogen 
(mmol/L), serum glucose (mmol/L), RBC folate (nmol/L), and age. 
Each of these factors will be discussed in detail in the subsequent 
sections. The study by C. Y. Huan et  al. identified a significant 
correlation between chronic kidney disease (CKD) and an increased 
incidence of both prevalent and incident cataracts (28). B. E. Klein 
et al. suggested that elevated serum blood urea nitrogen (BUN) and 
creatinine levels are associated with the development of posterior 
subcapsular cataracts in continuous models (29). These findings, 

consistent with those of the present study, suggest that elevated 
blood urea nitrogen is a risk factor for cataract development, with 
an odds ratio of 1.042 and a 95% confidence interval of 1.009–1.074. 
Several potential mechanisms are outlined below. The initial 
hypothesis suggests that chronic hypocalcemia in patients with 
chronic kidney disease may disrupt glucose metabolism in the lens 
(30). The interplay between calcium levels, glucose metabolism, and 
lens health is complex. Nevertheless, in this study, blood urea 
nitrogen exerted a more pronounced influence on cataract formation 
compared to calcium and glucose, likely due to its impact on lens 
osmolarity, thus promoting cataract development. The second 
hypothesis proposes that elevated blood urea nitrogen levels disrupt 
enzymes critical to lens metabolism. Oxidative stress is widely 

FIGURE 4

The predictive model’s performance was assessed using ROC curves for both the training (A) and validation (B) groups, yielding AUC values of 0.917 
and 0.9148, respectively. These results demonstrate good discriminative capacity and excellent generalizability.

FIGURE 5

Nomogram for predicting cataract risk and its algorithm. First, a point was found for each variable of a people who may have cataracts on the 
uppermost rule; then all scores were added together and the total number of points were collected. Finally, the corresponding predicted probability of 
people who may have cataracts was found on the lowest rule.
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acknowledged as a major contributor to cataract formation, with 
antioxidant enzymes like glutathione synthase, thioredoxin 
reductase, glutathione reductase, and thioltransferase playing pivotal 
roles in slowing cataract progression (31). Elevated blood urea 
nitrogen may impair the activity of these antioxidant enzymes, 
thereby accelerating cataract progression. These potential 
mechanisms require experimental validation. Kang K H, Shin D, Ryu 
I  H, et  al. found that fatty liver disease (FLD) may serve as an 
independent risk factor for cataracts (32), likely due to its role in 
systemic metabolic disorders. These systemic disorders, often 
resulting from dyslipidaemia and chronic inflammation linked to 
FLD, can disrupt metabolic processes throughout the body. One 
such disruption involves altered biochemical indices, including 
elevated blood urea nitrogen (BUN) (33). Elevated BUN levels may 
indicate impaired renal function or increased protein catabolism, 
both of which could contribute to cataract pathophysiology by 
promoting oxidative stress and osmotic imbalances in the lens. 
Therefore, our findings suggest that the heightened risk of cataracts 
observed in patients with FLD may be mediated, at least in part, by 

elevated blood urea nitrogen levels. This underscores the need for 
further investigation into the specific mechanisms connecting FLD, 
abnormal biochemical markers, and cataract formation, as well as 
the potential for targeted interventions to mitigate these metabolic 
disruptions. L. Li et  al. identified a significant increase in the 
likelihood of cataract development among individuals diagnosed 
with type 2 diabetes mellitus (34). According to this study, elevated 
glucose levels were associated with an increased likelihood of 
cataract development. The role of folic acid as a risk factor for 
cataracts remains debatable. A. Tan et al. showed the 5-year PSC 
incidence with no significant associations with homocysteine, B12, 
and folate (35). But C. Ma et al. showed lower serum folate levels in 
cataract patients compared to controls (36). In addition, W. G. et al. 
found that in a randomized, double-masked, placebo-controlled 
trial, combined folic acid, vitamin B6, and vitamin B12 
supplementation may increase the risk of cataract extraction surgery 
(37). The results of W. G. et  al. are similar to ours in that folate 
(nmol/L) was higher in cataract patients compared to non-cataracts, 
and higher RBC folate (nmol/L) may be a risk factor for cataracts, 

FIGURE 6

The calibration curve of predictive nomograms for predicting cataracts. The nomogram shows the predicted probability on the x-axis and the actual 
probability on the y-axis.

FIGURE 7

Provides a summary of the results from 10-fold cross-validation.
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but to a lesser extent with an OR close to one. Among the previous 
studies, folic acid supplementation was considered protective against 
cataracts (38). Tan, A. and colleagues utilized posterior subcapsular 
cataract (PSC) as the outcome measure in a 5-year follow-up study, 
revealing that elevated homocysteine levels (per SD; OR 1.17; 95% 
CI 1.00–1.37) and reduced folic acid levels (per SD; OR 1.24; 95% CI 
0.99–1.56) were associated with a higher prevalence of PSC36. Ma, 
C., Liu, Z., Yao, S., Hei, L., and Guo, W. prospectively recruited 60 
patients with senile cataracts and 58 age-matched healthy controls, 
finding that blood folate levels were significantly lower in cataract 
patients than in healthy controls. Kuzniarz, M. and Mitchell, 
P. conducted a cross-sectional study with 2,873 participants, 
categorizing cataract types and concluding that folic acid 
supplementation had a protective effect against cortical cataracts. 
Despite differences in methodology, all three research teams 
consistently found that cataract patients had lower folic acid levels 
and that folic acid supplementation may confer a protective effect 
against cataracts. However, the findings of Christen, W. G. and 
colleagues were unexpected. In contrast to the previous three 
studies, Christen, W. G. and colleagues conducted a randomized, 
double-blind, placebo-controlled trial under more stringent 
conditions, involving 3,925 participants and yielding more robust 
results over a follow-up period of up to 7.3 years. In this large-scale 
randomized trial of women at high risk for cardiovascular disease, 
daily supplementation with folic acid, vitamin B6, and vitamin B12 
had no significant impact on cataract incidence but may have 
increased the risk of cataract extraction. The findings of Christen, 
W. G. and colleagues, which aligned with our results that also 
focused on cataract removal, indicated a facilitating effect of folic 

acid with an OR close to 1 (95% CI 1.0001–1.0004). The 
aforementioned studies varied considerably in design, encompassing 
both observational studies and randomized controlled trials (RCTs). 
The study populations also differed in demographics, baseline health 
conditions, and genetic predispositions, all of which may have 
influenced the observed association between folic acid levels and 
cataract risk. For example, both this study and the work by C. Ma 
et al., which used cataract surgery as the outcome measure, reached 
the same conclusion: higher folic acid levels increased the risk of 
cataract extraction. These findings underscore the need for 
longitudinal studies with extended follow-up periods to 
comprehensively assess the role of folic acid in cataract development. 
Given the findings of this study, we recommend exercising caution 
when considering folic acid supplementation as a means to delay the 
onset of cataracts. It is well established that age is a major 
determinant of cataract development and requires little further 
discussion (6).

This study has several limitations. In the absence of direct lens 
assessments in the NHANES dataset, cataract surgery was used as a 
surrogate marker for cataract occurrence. A similar approach has 
been employed in previous epidemiological studies11. However, the 
distinctions between the two approaches should not be overlooked. 
The decision to undergo cataract surgery is influenced by a multitude 
of factors, including cataract severity, visual acuity, ocular 
measurements, the surgeon’s clinical expertise, and patient 
preferences (39). The decision to opt for cataract surgery is heavily 
contingent upon financial resources (40), which also shape health 
literacy and behavioral patterns, subsequently influencing blood 
biochemical markers (41). When cataract surgery is employed as an 
outcome measure, this economic disparity introduces significant 
selection bias (42). Individuals with higher disposable income and 
better access to healthcare are more likely to undergo regular 
ophthalmologic evaluations, facilitating early cataract detection and 
timely intervention. Conversely, individuals from lower 
socioeconomic backgrounds frequently delay or forgo surgery due 
to financial barriers, leading to pronounced disparities in health 
outcomes. Furthermore, health literacy—the capacity to access, 
interpret, and comprehend essential health information—tends to 
be  higher in wealthier populations. Wealthier individuals are 
generally more proactive in managing their health, frequently 
engaging in preventive behaviors such as regular medical check-ups 
and strict adherence to medical advice. This often results in more 
favorable biochemical profiles (e.g., better glycemic control), 
potentially influencing study outcomes. The direct correlation 
between socioeconomic status and improved access to nutrition, 
healthcare, and healthier lifestyles is well-documented (43). 
Populations of lower socioeconomic status typically present with 
more abnormal biochemical markers and a higher prevalence of 
severe cataracts (44). Failure to account for these socioeconomic 
factors may lead to an overestimation of the impact of biochemical 
markers on cataract risk. This overestimation may partly arise from 
the fact that individuals of lower socioeconomic status are more 
likely to adopt unhealthy lifestyles, such as poor diets and lack of 
exercise, and face limited access to quality healthcare. Consequently, 
the observed association between biochemical indicators and 
cataract risk may be  confounded by underlying socioeconomic 
conditions. Additionally, cataract surgery reflects a relatively 
advanced stage of the disease, and the relationship between early 

FIGURE 8

Feature contributions in SHAP: each line represents a feature, with 
the SHAP value plotted on the x-axis. Red dots indicate higher 
feature values, while blue dots indicate lower feature values. The 
spread of the dots along the x-axis illustrates the impact of each 
feature on the model’s prediction.
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lens opacity and biochemical markers could not be assessed using 
NHANES data. Furthermore, the data derived from cataract surgery 
do not allow for differentiation between distinct types of cataracts in 
individual patients.

Nevertheless, several limitations exist in this study. The risk factor 
analysis did not account for potential variables such as patients’ daily 
living environments and dietary habits, which were not integrated into 
the predictive model. Incorporating these factors would likely enhance 
the model’s predictive accuracy and overall performance. This study 
was conducted retrospectively at a single center, and the predictive 
validity of the model was not assessed through external validation. 
This study was a retrospective analysis conducted at a single center. 
The predictive validity of the model was established using internal 
validation methods; however, external validation was not performed. 
It is important to note that while the model shows promise based on 
its internal validation, the lack of external validation limits our ability 
to generalize the findings to other settings or populations. Future 
research will focus on validating the model using large datasets from 
multiple regions and centers to enhance its predictive accuracy and 
broader applicability.

6 Conclusion

This study identified blood urea nitrogen (mmol/l), serum 
glucose (mmol/l), erythrocyte folate (mmol/l), and age as significant 
risk factors for cataracts, and subsequently developed a cataract risk 

prediction model. This model demonstrated strong predictive 
accuracy and clinical applicability, offering clinicians a valuable tool 
for early and accurate diagnosis. Cataract progression may 
be delayed by lowering blood urea nitrogen, serum glucose, and 
erythrocyte folate levels through lifestyle modifications and 
dietary improvements.
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