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Background: The development of prognostic models for the identification of 
high-risk myocardial infarction (MI) patients is a crucial step toward personalized 
medicine. Genetic factors are known to be associated with an increased risk 
of cardiovascular diseases; however, little is known about whether they can 
be used to predict major adverse cardiac events (MACEs) for MI patients. This 
study aimed to build a machine learning (ML) model to predict MACEs in MI 
patients based on clinical, imaging, laboratory, and genetic features and to 
assess the influence of genetics on the prognostic power of the model.

Methods: We analyzed the data from 218 MI patients admitted to the emergency 
department at the Surgut District Center for Diagnostics and Cardiovascular 
Surgery, Russia. Upon admission, standard clinical measurements and imaging 
data were collected for each patient. Additionally, patients were genotyped for 
VEGFR-2 variation rs2305948 (C/C, C/T, T/T genotypes with T being the minor 
risk allele). The study included a 9-year follow-up period during which major 
ischemic events were recorded. We trained and evaluated various ML models, 
including Gradient Boosting, Random Forest, Logistic Regression, and AutoML. 
For feature importance analysis, we  applied the sequential feature selection 
(SFS) and Shapley’s scheme of additive explanation (SHAP) methods.

Results: The CatBoost algorithm, with features selected using the SFS method, 
showed the best performance on the test cohort, achieving a ROC AUC of 
0.813. Feature importance analysis identified the dose of statins as the most 
important factor, with the VEGFR-2 genotype among the top  5. The other 
important features are coronary artery lesions (coronary artery stenoses ≥70%), 
left ventricular (LV) parameters such as lateral LV wall and LV mass, diabetes, type 
of revascularization (CABG or PCI), and age. We also showed that contributions 
are additive and that high risk can be determined by cumulative negative effects 
from different prognostic factors.

Conclusion: Our ML-based approach demonstrated that the VEGFR-2 genotype 
is associated with an increased risk of MACEs in MI patients. However, the risk 
can be significantly reduced by high-dose statins and positive factors such as 
the absence of coronary artery lesions, absence of diabetes, and younger age.
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1 Introduction

Despite significant advances in cardiovascular surgery, 
interventional procedures, and pharmacotherapy, the in-hospital and 
long-term rates of major adverse cardiac events (MACEs)—including 
death, recurrent acute coronary syndrome (ACS), stroke, and 
myocardial revascularization—remain high worldwide among 
myocardial infarction (MI) patients (1, 2).

Secondary prevention programs for these individuals are based on 
identification of high-risk patients using models that focus on clinical 
features of MI (ST-segment deviation, left ventricular ejection fraction 
(LVEF), Killip class, and coronary artery lesions) and conventional 
risk factors (hypertension, diabetes, chronic kidney disease, 
dyslipidemia, and smoking) that worsen cardiac outcomes (3, 4).

Identifying patients at high risk of MACEs is crucial. Various 
clinical scores, such as GRACE, ACEF, CADILLAC, TIMI, PROCAM, 
PREDICT, PURSUIT, DAPT, and PRECISE-DAPT are available, 
These scores, primarily based on regression models using clinical 
parameters, estimate cardiovascular (CV) risk over a 1- to 3-year 
period after an index MI. Nevertheless, modern personalized 
approaches to the treatment of post-MI individuals already require 
more precise clinical scoring systems incorporating biomarkers and 
genetics data (5, 6).

The pathological basis of coronary artery disease (CAD) and acute 
coronary syndrome (ACS) is atherosclerosis. Factors such as lipid 
metabolism disorders, vascular endothelial cell damage, inflammation, 
and immune dysfunction can promote the development and 
progression of coronary atherosclerosis, potentially leading to CAD 
and ACS. The vascular endothelial growth factor (VEGF) family is 
involved in angiogenesis, inflammation, oxidative stress, and lipid 
metabolism, presenting potential therapeutic and prognostic value for 
ACS and MI (7, 8).

The prognostic performance of VEGF serum levels following 
cardiac ischemia shortly after MI was previously investigated in the 
Coronary Disease Cohort Study. VEGFs primarily bind to three 
tyrosine kinase receptors (VEGFR-1, VEGFR-2, and VEGFR-3) with 
different affinities. Single nucleotide polymorphisms (SNPs) from 
VEGFR-2 are associated with the development of cardiovascular 
disease (7). Moreover, three SNPs of the VEGFR-2 gene were identified 
and significantly associated with coronary atherosclerosis: +1192C > T 
(rs2305948), −604 T > C (rs2071559), and + 1719A > T (rs1870377) 
(9–13). Consequently, VEGFR-2 gene allelic variants have the 
potential to be evaluated as prognostic markers in MI (14).

Recently, machine learning (ML) approaches have proven efficient 
in predicting patient outcomes based on clinical, imaging, and 
biomarker data. The largest study, based on the clinical data including 
23,000 patients in the BleeMACS and RENAMI registries, showed that 
ML models can predict all-cause death, recurrent MI, and major 
bleeding after ACS (15) using 25 clinical features. Other approaches, 
based on considerably smaller datasets, have also proven the efficacy 
of ML models for cardiovascular outcomes research (16–20). One 

advantage of ML modeling is its ability to perform feature importance 
analysis and rank features according to their contribution to model 
performance. This not only reveals the most important features but 
also helps to select a minimal set that can reduce overfitting and 
improve the accuracy of the model. Additionally, an ML model with 
a small set of features can be easily applied in practice. Thus, ML 
models have shown that serum creatinine and LVEF alone can predict 
all-cause death (16). In another study (21), an ML model trained to 
predict all-cause death reduced the feature space from 430 to 25. 
Other models provide evidence of the predictive power of ML models 
and present the most important features. These include models for 
prognosis of post-thrombotic syndrome (22), prognostication of the 
time to death of patients in the Coronary Care Unit (23), prediction 
of mortality and heart failure (HF) hospitalization in patients with 
preserved LVEF (17), prediction of long-term risk of MI and cardiac 
death (24), and in-hospital all-cause mortality in HF patients (20). All 
the aforementioned ML models were trained using clinical features 
routinely measured at hospital admission. In some studies, these 
features were complemented by demographic and social characteristics.

All proposed prognostic ML models do not have high-
performance metrics with ROC AUC lying in the interval of 70–80%. 
One way to improve ML model prediction power is to include more 
information about patient status, with genetic markers potentially 
serving a key role. Adding genetic markers as features to an ML model 
does not mean that clinical features are not prognostic or that, in the 
future, they are supposed to be replaced with genetic markers only. 
However, genetic markers can significantly improve patient risk 
assessment when taken together with other clinical characteristics. 
This kind of model is limited due to the high-cost genetic testing, and 
most MI patient clinical datasets do not contain genetic information. 
Here, for the first time, we incorporate genetic information into an ML 
model to predict MACEs in MI patients.

2 Methods

2.1 Clinical data collection

The prospective observational study consecutively included 218 
patients with acute MI who were admitted to the Surgut District 
Cardiology Clinic of the Center for Diagnostics and Cardiovascular 
Surgery. This study was approved by the local ethics committee at 
the clinic. During the initial admission to the emergency 
department, medical researchers (cardiologists) explained the main 
points of the study protocol to the patients and obtained their 
informed consent to participate. Then, the patients were transported 
to the operating unit to undergo emergent coronary angiography 
(CAG). Significant lesions (stenoses) in the coronary arteries were 
considered present when the lumen was narrowed by more than 
70%. For the left main coronary artery (LMCA), significant stenosis 
was considered present when the lumen was narrowed by more than 
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50%. Based on the CAG results, balloon angioplasty and stenting or 
coronary artery bypass grafting (CABG) were performed. Standard 
transthoracic echocardiography was also performed during 
in-hospital treatment.

All patients received guideline-based therapy, including RAAS-
blockers, beta-blockers, statins, and dual antiplatelet therapy. High-
dose statin therapy was defined as atorvastatin 40–80 mg and 
rosuvastatin 20–40 mg daily, whereas low-dose statin therapy was 
defined as atorvastatin 10–20 mg and rosuvastatin 5–10 mg daily, for 
at least 12 months post-MI.

The inclusion criteria were as follows: acute myocardial infarction 
with or without ST-segment elevation and age range of 30–70 years. 
The exclusion criteria were as follows: contraindications to the use of 
statins; pregnancy and lactation; advanced tumor disease; HIV; and 
patient’s refusal to participate in the study.

During the laboratory stage, DNA was isolated from the leukocyte 
rings in the collected blood samples and then frozen at −80°C for 
future genetic testing. VEGFR-2 (rs2305948) genotypes (C/C, C/T, 
T/T) were determined by real-time polymerase chain reaction (PCR) 
using a Real-Time CFX96 Touch device (Bio-Rad Laboratories, 
United States). The T-allele of VEGFR-2 (rs2305948) is commonly 
regarded as a risk allele for unfavorable ischemic post-MI outcomes. 
Glomerular filtration rate (GFR) was assessed using a CKD-EPI 
calculator to classify chronic kidney disease. Major ischemic events 
(cardiovascular death, recurrent ACS, stroke, and myocardial 
revascularization) were registered based on the results of clinical 
observation between 9 and years (2015–2024) after the indexed 
MI. The information was collected from in-hospital medical records 
of patients who were re-admitted to the clinic after the index 
MI. Additionally, patients were contacted by phone, and the fact of 
hospital treatment for ischemic events in other medical organizations 
was confirmed by requesting corresponding medical records. Cases of 
death in the post-infarction period were recorded in the health 
insurance policy database, while cardiovascular (ischemic) causes of 
death were specified by clinical autopsy services based on the patient’s 
residence. Basic statistics analysis was performed in the SPSS 23.0 
software package.

2.2 Data preprocessing

For logistic regression, all non-categorical features were 
normalized using Standard Scaler. For tree-based models that do not 
require normalization, data transformation was not performed. There 
was no additional preprocessing of categorical features as all 
categorical features were either binary or ordered.

For data imputation, we  used the Multivariate Imputation by 
Chained Equations (MICE) method (25). A Linear Regression model 
with default parameters was used as an estimator for MICE with 100 
iterations for numerical data. For categorical and binary features, 
we used the logistic regression model with a ‘liblinear’ solver as the 
default estimator for MICE with 100 iterations.

The dataset was randomly split in a 75:25 ratio into training 
(n = 163) and test (n = 55) sets respectively, to develop and validate the 
models. Data imputation and scaling, hyperparameter tuning, feature 
selection, and the final model training were performed on the training 
set. Evaluation of metrics of the developed models was performed on 
the test set.

2.3 Machine learning models

We built machine learning models based on Gradient Boosting 
(Catboost and LightGBM), Random Forest, and Logistic Regression 
algorithms with hyperparameter tuning using 10-fold cross-validation 
on the training dataset. For the AutoML approach, we used FLAML 
(26), a Python package for automatic machine learning that automates 
the process of model selection, hyperparameter tuning, and 
feature construction.

To optimize model performance, we  used Optuna (27), a 
Python package that automates hyperparameter tuning using 
Bayesian optimization algorithms. We utilized a tree-structured 
Parzen Estimator with 10 startup trials as our search algorithm and 
used 10-fold cross-validation during the optimization process to 
obtain a robust estimate of the ROC AUC metric. The sequential 
forward selection (SFS) method was used to determine the optimal 
number of training features. During the feature selection cycle, 
we used 5-fold cross-validation and used the mean ROC AUC as 
the evaluation metric. The model with the best average metric was 
chosen as the baseline model for the feature selection procedure. 
We added one feature at a time until we explored all the features and 
then selected the subset with the best metric as the final 
feature subset.

Feature importance analysis was performed using Shapley’s 
scheme of additive explanation (SHAP) (28). SHAP provided 
visualization of the feature importance for the selected model and 
individual contributions of features to the predictive power of the 
model. Additionally, we constructed partial dependence plots (PDP) 
and individual conditional expectation (ICE) (29) plots.

To evaluate the predictive performance of the developed models, 
we scored data samples from the test set. Specifically, we generated 
1,000 bootstrap samples of the initial test sample size to obtain the 
distribution of PR AUC and ROC AUC. By averaging the metrics 
across all iterations, we obtained the average PR AUC and ROC AUC 
as the final evaluation metrics.

3 Results

3.1 Characteristics of MI patients

The dataset used in this study included 218 patients admitted to 
the emergency department at the Surgut District Center for 
Diagnostics and Cardiovascular Surgery, Russia, with MI. For each 
patient, standard clinical measurements, including laboratory tests 
and imaging indices were selected for inclusion in the model (Table 1). 
Additionally, each patient was genotyped for VEGFR-2 variation, 
rs2305948 which includes the C/C, C/T, and T/T genotypes.

3.2 Machine learning models

The data underwent imputation and preprocessing and were split 
into training and test sets in a 75–25% ratio for training and validation. 
In order to choose the best model, we trained and tested the following 
ML algorithms: Gradient Boosting (CatBoost and LightGBM), 
Random Forest, Logistic Regression, and AutoML approach (see 
Methods section for details). For model performance metrics, we took 
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TABLE 1 (Continued)

Characteristics N

VEGFR-2 genotypes (rs2305948), n (%)

  C/C—wild type—homozygous for major allele 142 (65)

  C/T—heterozygote (major allele + minor allele) 75 (34)

  T/T—homozygous for minor allele 1 (1)

C, cytosine—major allele (wild); T, thymine—minor allele with atherothrombotic risk.

an average ROC AUC calculated on the bootstrap samples from the 
test set. Model performance comparison is presented in Figure 1A, 
and the best metric was obtained for the CatBoost model (ROC AUC 
of 0.787), which was significantly better than the second-best Random 
Forest (p < 1e−03, t-test) (Figure 1A). The CatBoost ROC curves for 
training and test sets are given in Supplementary Figure S1. We chose 
the CatBoost model for feature selection and feature 
importance analysis.

3.3 Feature selection to find the best model

The initial ML models were trained on 39 features (Table  2). 
We explored the contribution of each feature to model performance 
using the forward sequential feature selection (SFS) method (see 
Figure  2). We  chose the SFS method due to its balance between 
computational efficiency and robustness. SFS directly evaluates the 
contribution of each feature to model performance using cross-
validation at each step, ensuring a resilient and accurate feature 
selection process. This avoids potential inaccuracies associated with 
heuristic methods like feature importance in tree-based methods or 
feature imputation, which can be misleading, especially with high 
cardinality features. Thus, SFS is a simple and straightforward method 
for the selection of a minimal set of features that provide maximal 
precision of an ML model.

Since CatBoost showed the best performance with 39 features, it 
was used as the baseline model for SFS. The model’s performance 
increased gradually with the addition of the first nine features, but 
then began to decline as additional features were included. These first 
nine features (presented in Figure 3) were selected for retraining the 
CatBoost model (Supplementary Table S1). The CatBoost model 
trained on the nine selected features showed statistically significant 
improvement in the model’s performance compared to the CatBoost 
model trained on 39 features (ROC AUC of 0.813 vs. 0.787, p = 5e−19, 
t-test) (Figure 1B and Supplementary Figure S2). Thus, the CatBoost 
model trained on nine features was chosen for further analysis of 
MI patients.

3.4 Feature importance analysis

For feature importance analysis, we  chose SHAP because it 
estimates the contribution of the selected features to the model 
performance, and it considers the cooperative effect of other 
features. SHAP values can be added to show the joint contribution 
of several features to a final ML model prediction. This helps to 
understand the combined effect of multiple features on 
risk assessment.

TABLE 1 Clinical and imaging characteristics, laboratory, and genetic 
testing of patients with MI (n  =  218).

Characteristics N

Clinical and imaging characteristics

Sex, n (%)

  Male 169 (78)

  Female 49 (22)

Age, years, M ± SD 58 ± 10

BMI, kg/m2, Me [25%; 75%] 29 [26; 33]

ECG ST—segment deviation, n (%)

  Elevation 74 (34)

  Non-elevation 144 (66)

Infarcted walls of LV, n (%)

  Anterior wall 95 (44)

  Posterior wall 97 (45)

  Lateral wall 79 (36)

Killip class, n (%)

  I–II 213 (98)

  III–IV 5 (2)

LV EF

  < 40% 16 (7)

  ≥ 40% 202 (93)

Hypertension, n (%) 179 (82)

Diabetes mellitus type 2, n (%) 52 (24)

Chronic kidney disease ≥ C2, n (%) 74 (34)

Family history of CVD 35 (16)

Stenotic lesions of coronary arteries, n (%)

  Left main coronary artery 14 (7)

  One vessel 79 (36)

  Two vessels 63 (29)

   ≥ 3 vessels 72 (33)

Duration of angina from the onset of acute MI, n (%)

  1–3 h 167 (77)

  3–12 h 9 (4)

  > 12 h 42 (19)

Myocardial revascularization, n (%)

  PCI 207 (95)

  CABG 11 (5)

Statins (atorvastatin, rosuvastatin)

  High doses 117 (54)

  Low doses 101 (46)

Laboratory and genetic testing

High-sensitive troponin T, ng/L, Me [25%; 75%] 110 [45; 408]

LDL cholesterol, mmol/L, M ± SD 3 ± 1

Hemoglobin, g/L, Me [25%; 75%] 139 [128; 149]

Glucose, mmol/L, Me [25%; 75%] 6 [5; 8]

Creatinine, μmol/L, Me [25%; 75%] 83 [72; 95]

(Continued)
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We applied the SHAP method using the best CatBoost model with 
the nine features selected by the SFS method (Figure 3). The nine 
features are ranked from the most important (top) to the least 
important (bottom). A higher SHAP value for a feature indicates a 
greater risk of MACEs. Feature values are color-coded, with red 
representing higher values and blue representing lower values. We can 
see from the SHAP plot that the most important feature is the dose of 
statins with low values of the dose corresponding to a high risk of 
MACEs. Interestingly, the VEGFR-2 genotypes appeared to be the 
fourth top important feature with the risk T-allele corresponding to 
higher risk of MACEs. The other important features are comorbidity 
index, coronary artery lesions, LV parameters, such as lateral LV wall, 
CABG or PCI, body mass index (BMI), and sex (see Figure 3).

Additionally, we constructed partial dependence plots (PDP) and 
individual conditional expectation (ICE) plots for key features to 
provide a more intuitive understanding of their impact on predictions 
(Supplementary Figure S3). PDP shows the average effect of a feature 
on the predicted outcome, whereas ICE plots illustrate the impact of 
a feature at the individual observation level, highlighting variability 
across different data points. The provided PDP and ICE curves offer a 
detailed visualization of how individual features influence the 
predicted risk of MACEs in MI patients. PDP graphs depict the 
marginal effect of each feature, whereas the ICE curves illustrate the 
variability in predictions across different patients.

For continuous variables, the plots revealed the following trends: 
an increased BMI and a higher comorbidity index are associated with 
a greater risk, while a higher statin dosage is linked to a reduced risk. 
Similarly, greater severity in coronary artery lesions and left main 
coronary artery lesions leads to an increased risk. The average effect is 
represented by the orange dashed line, and individual patient 
trajectories are shown in blue (Supplementary Figure S3).

For categorical features, the bar plots highlight distinct differences 
in risk levels: male sex, undergoing PCI instead of CABG, lateral LV wall 
involvement in MI, and the presence of the risk T-allele in the VEGFR2 
genotype—all correspond to a greater risk. These visualizations 
underscore the importance of considering both average trends and 
individual variances in the assessment of ML model predictive power.

We built the ML model based on only two features: the most 
important feature—a dose of statins and the genetics—VEGFR2 
genotype, and the model performance reached 0.80 ROC AUC, which 

is only 0.013 less than the best model (Figure 1B). This means that 
these two predictors can serve as markers in assessing the risk of 
MACEs in MI patients.

3.5 Model risk assessment for individual 
patients

With SHAP methods, one can evaluate the contributions of each 
parameter to the individual risk of a patient. The ML model risk 
assessment for high- and low-risk patients with corresponding SHAP 
values is presented in Figures 4, 5.

A high-risk patient with a 92% risk (Figure 4) has the following top 
five major contributors: high comorbidity index (score = 4; red arrow 
in Figure 4) with a 7.9% contribution, followed by the critical left main 
coronary artery lesion (>50%) with a 7% contribution, low dosage of 
statins with a 5.5% contribution, risk T-allele with a 5.2% contribution, 
and multivessel coronary artery lesion with a 4% contribution. 
Additionally, lateral LV wall involvement, PCI, and a BMI of 32 kg/m2 
contribute to the risk by 3.9, 1.3, and 1.1%, respectively.

An example of a patient with a low risk of MACEs among the 
investigated patients (15% risk) shows that all features contribute 
positively (indicated by blue arrows) to reducing the total risk 
(Figure 5). The first risk-reducing parameter is CABG followed by the 
absence of coronary artery lesion. However, left coronary artery 
lesions increase the risk by almost 7% (indicated by the red arrow in 
Figure 5). A low comorbidity index and high statin dosage reduce the 
risk by 6.6 and 5.9%, respectively. Other factors such as normal body 
weight, non-risk genetics, non-involved lateral LV walk, and sex 
further reduce the risk cumulatively by 8%.

4 Discussion

Several studies have shown strong associations between VEGFs, 
VEGFRs serum levels, and other growth factors with clinical 
characteristics and prognosis in ACS (30). VEGFR-2 SNPs have 
previously been shown to be  associated with the development of 
CVDs such as CAD, ACS, and Kawasaki disease (11) and have also 
been evaluated as prognostic markers in stroke and ACS. Thus, in the 

FIGURE 1

ML model performance comparison based on ROC AUC metrics for 1,000 bootstrapped test sets. (A) ML models trained on 39 features. (B) ML models 
trained on various number of features.
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meta-analysis of Qui et al. (10), VEGFR-2 rs2305948 and rs1870377 
(both found in exon regions of VEGF receptor-2 and lead to 
aminoacidic substitutions that reduce the binding affinity of VEGF to 
VEGF receptor-2), but not rs2071559, were associated with an 
increased risk of stroke. In another meta-analysis, Wang et al. (31) 
proved that VEGFR2 polymorphisms (rs1870377, rs2071559, and 
rs2305948) could be  used to identify individuals with increased 

susceptibility to atherosclerotic cardiovascular disease. In another 
study, based on the Nanjing Stroke Registry, rs1870377 could predict 
the 3-month outcome of patients with large artery atherosclerotic 
stroke (32). Marks et al. showed that none of the VEGFR-2 SNPs 
(rs1870377, rs2071559, and rs2305948) were associated with mortality 
in 2067 ACS patients of the New Zealand Coronary Disease Cohort 
Study (14). We, for the first time, included the VEGFR-2 genotype as 
a feature in the prognostic model for MI patients’ outcomes and found 
that the genetic factor is included in the top five most 
important features.

We also evaluated the impact of various factors—clinical, imaging, 
genetic, and treatment-related—on risk prognosis. Using the 
developed ML approach, we demonstrated a sufficient negative impact 
of various factors on combined clinical endpoints, including 
cardiovascular death, recurrent ACS, stroke, and myocardial 
revascularization. The key factors are as follows: clinical factors—male 
sex, high body mass index, and complex comorbidity; imaging 
factors—multivessel coronary lesions and LV lateral wall involvement; 
genetic factors—minor allelic variants of VEGFR-2 rs2305948; and 
treatment factors—PCI only for the infarct-related coronary artery 
instead of CABG in cases of multivessel coronary artery disease, and 
low-intensity statin dosage. At the same time, high versus low doses 
of statins and CABG versus PCI in the study cohort of MI patients 
showed significant benefits in reducing MACEs during the 9-year 
follow-up.

Advanced age, female sex at menopause (33), and comorbidities 
such as diabetes, obesity, and dyslipidemia are well-known 
conventional risk factors for MACEs (recurrent ACS, stroke, and 
death) in MI patients. A dramatic shift has been observed over the last 
25 years in the epidemiology of cardiovascular events. The incidence 
of MI and ischemic stroke has decreased 3- to 4-fold, which can 
be  attributed to major changes in population risk factors with 
substantial decreases in systolic blood pressure, cholesterol 
concentrations, and smoking rates, although this has been offset by 
increases in body mass index, diabetes, and other comorbidities 
prevalence. Additionally, a positive impact has been made by the 
wider post-MI use of cardioprotective medications, such as high-dose 
statins, P2Y12-platelet inhibitors, beta-blockers, and newer drugs in 
real clinical practice (34–37). Involvement of the lateral LV wall in MI 
is a negative prognostic marker of maladaptive cardiac remodeling, 
often requiring more advanced treatment options (e.g., surgical 
ventricular restoration) to prevent the development of congestive 
heart failure (38). During the last two decades, the role of multivessel 
cardiac disease (including the left main coronary artery lesions) has 
been actively discussed in the prognosis of MI patients (39, 40). 
According to data from the SWEDEHEART registry, CABG in 
patients with LMCA disease is associated with lower mortality and 
fewer MACEs compared to PCI (41). Complete PCI revascularization 
following MI reduces all-cause mortality, cardiovascular mortality, 
recurrent ACS, and repeat symptom-driven revascularization. 
Immediate complete PCI or CABG revascularization in MI may 
be  equally beneficial, but it requires additional head-to-head 
trials (42).

Comparison to other ML prognostic models revealed similarities 
in our findings with respect to clinical and imaging factors. In the 
study (15), feature importance analysis revealed LVEF, age, diabetes, 
estimated GFR, multivessel disease, peripheral artery disease, 
complete revascularization, hemoglobin level, previous bleeding, 

TABLE 2 List of 39 features initially included in the model.

1. Age

2. Anterior LV wall

3. Atrial fibrillation

4. BMI

5. BMS or DES

6. Comorbidity Index

7. Coronary artery lesion

8. Creatinine

9. Diabetes

10. Duration of pain

11. Sex

12. Glucose

13. Heart rate

14. Hemoglobin

15. Family history of CVD

16. Hypertension

17. Infarct-related artery

18. Killip class

19. LV EDV

20. LV EF

21. LV ESV

22. LV infarct size

23. LV mass

24. Lateral LV wall

25. Left atrium

26. Left main coronary artery lesion

27. Multifocal atherosclerosis

28. PCI or CABG

29. Post-MI

30. Post-stent

31. Post-stroke

32. ST segment

33. Statin dosage

34. Systolic BP

35. TIMI grade in infarct-related artery

36. TnT PO

37. Total cholesterol

38. VEGFR2 genotype

39. eGFR EPI

Highlighted are nine features selected by the SFS method.

https://doi.org/10.3389/fmed.2024.1452239
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kirdeev et al. 10.3389/fmed.2024.1452239

Frontiers in Medicine 07 frontiersin.org

malignancy, ACE inhibitors or ARB at discharge, and statin therapy 
at discharge as the most important features to predict all-cause death 
and recurrent MI. Similar to our results, significant risk factors of 
MACEs included comorbidities (age, multivessel disease, diabetes, 
chronic kidney disease, and malignancies), complete myocardial 
revascularization, and in-hospital and post-discharge high-intensity 
statin usage.

ML models for predicting all-cause death at 3-year follow-up, 
based on clinical data from the nationwide perspective registry of 
AMI in Korea (n = 13,104) (43), identified the following top  10 
predictors: statin use at discharge, sex, body mass index, use of 
glycoprotein IIb/IIIa inhibitors, in-hospital duration, coronary lesion 
classification, NT-proBNP, total cholesterol, door-to-balloon time, and 

peak troponin I. The majority of the predictors were also shown as 
significant for the Russian MI population in our prognostic model for 
the combined end-point. Specifically, the top important features 
include: coronary lesions, (high-intensity dose) statin use at discharge, 
sex, and body mass index. Wang et al. (44) presented the ML risk 
model including 21 patient characteristic variables for a 6-month 
prediction of MACEs for 1,004 Chinese patients who had undergone 
coronary revascularization. The model also found age and CABG as 
the top important factors.

In another large prospective study (45) based on the UK Biobank 
cohort, the authors revealed 10 predictors for 473,611 CVD-free 
participants, namely age, sex, cholesterol and blood pressure 
medications, cholesterol ratio (total/high-density lipoprotein), systolic 

FIGURE 2

Sequential forward feature selection for the model with the best performance on all features (CatBoost).

FIGURE 3

SHAP feature importance plot for Catboost model built on 9 SFS-selected features.
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blood pressure, previous angina or heart disease, number of 
medications taken, cystatin C, chest pain, and pack-years of smoking. 
Direct comparison is difficult due to different cohorts (CVD-free 
participants or post-MI patients); however, cholesterol medications, 
age, coronary artery disease, and comorbidities (such as diabetes) 
were also detected as top important factors.

As for the best model performance, the initial model selection was 
guided by an AutoML framework (FLAML) that evaluated multiple 
algorithms, including Random Forest, CatBoost, and LightGBM. The 
AutoML process identified CatBoost as the optimal base estimator, 
highlighting its balance between accuracy and generalization. 
Although Random Forest showed higher performance metrics on the 
test dataset, this can be attributed to overfitting as indicated by its 
exceptionally high results. CatBoost, on the other hand, demonstrated 
performance without overfitting, making it a more reliable choice for 
our clinical application. Boosting algorithms, in general, are well-
documented for providing state-of-the-art performance for tabular 
data. In particular, CatBoost with hyperparameter tuning has been 
shown to be the best-performing model on average as detailed in (46). 
This consistency in performance underscores the reliability of 
CatBoost for our study. Ultimately, CatBoost showed superior 
performance on the test dataset, reinforcing its suitability as the 
primary algorithm.

The present study demonstrates that VEGFR-2 genotypes can 
be  used as a predictor of MACEs. While these findings might 
be  specific to the study population due to the lack of external 
validation, the results provide a solid foundation for conducting larger 
studies. Such research could lead to the development of a universal 
prognostic tool for MACEs using this genetic biomarker.

To our knowledge, genetic factors have not previously been used 
in ML models for predicting MACEs in MI patients, mostly due to the 
fact that sequencing or even single nucleotide genotyping is not 
routinely performed in hospitals. In this respect, this study is 
pioneering in showing that the risk allele of the VEGFR-2 variant is 
among the top 5 most important factors for predicting long-term 
outcomes in MI patients.

We see a large potential for integration of the model into current 
clinical practice. Patient MACE risk assessment can be integrated into 
telemedicine service and automatically assessed based on patients’ 
clinical and genetic data. Telemedicine service will provide feedback 
on patient status and facilitate corrections to the model, thereby 
improving the prognostic accuracy of the model.

Directions for future research include the improvement of the ML 
model by training on a larger dataset, performing external validation, 
and investigating other genetic markers known to be associated with 
the risk of MACEs. The latter is the subject of extensive research 

FIGURE 4

ML model risk assessment for a high-risk patient.

FIGURE 5

ML model risk assessment for a low-risk patient.
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worldwide, and patient genetic information will help to improve 
personalized treatment strategies.

5 Conclusion

We developed an ML model that can predict long-term (9 years) 
ischemic outcomes in MI patients with ROC AUC of 0.813, based on 
nine features selected from an initial set of 39. For the first time, 
we included genetic factors in the ML predictive model for assessing 
the risk of MI patients from a long-term perspective. VEGFR-2 
rs2305948 (C/C, C/T, T/T) genotypes showed high predictive power 
with risk T-allele increasing the risk of MACEs. Additionally, 
we demonstrated that high-dose statin therapy for 12 months post-MI, 
along with other factors, can minimize cardiac risk for patients 
carrying the risk T-allele.

Integration of VEGFR-2 genotypes in MACE prediction models 
requires a larger study. However, we find this model suitable for the 
risk assessment for patients at the Surgut District Cardiology Clinic. 
Immediate integration of this model into clinical practice requires an 
easy-to-use risk assessment application.
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