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Coexisting metabolic
dysfunction-associated steatotic
liver disease exacerbates
in-hospital outcomes in patients
with heat stroke
Ping Zhang†, Guo Tang†, Hongguang Gao, Tianshan Zhang,
Sha Yang, Tao Cheng and Rong Yao*

Emergency Department of West China Hospital, Sichuan University, Chengdu, Sichuan, China

Purpose: This study aimed to investigate the impact of coexisting metabolic

dysfunction-associated steatotic liver disease (MASLD) on in-hospital mortality

and organ injury markers in patients with heat stroke (HS).

Approach: HS patients were retrospectively identified between July 1, 2022

and September 30, 2023 at West China Hospital, Sichuan University. Baseline

characteristics, such as demographics, initial vital signs, and organ functional

indicators were collected. Outcome events included organ injury and in-hospital

mortality. The Least Absolute Shrinkage and Selection Operator (Lasso) method

was employed to identify the optimal predictors for in-hospital mortality in HS

patients. Subsequently, multivariable logistic regression analysis was performed

to assess the relationship between the presence of MASLD and in-hospital

mortality as well as organ function indicators.

Findings: A total of 112 patients were included in the study, in which 27

(24.1%) had coexisting MASLD. Compared to those without MASLD, patients

with MASLD had higher levels of various organ injury markers such as

aspartate aminotransferase, urea nitrogen, serum cystatin C, creatinine, uric acid,

myoglobin, creatine kinase and its isoenzymes upon admission (P < 0.05). The

multivariable Logistic regression analysis indicated that the presence of MASLD

is an independent risk factor for in-hospital mortality in HS patients.

Conclusion: This study firstly indicated that coexisting MASLD may exacerbate

organ injury in HS patients and serve as an independent risk factor for in-

hospital mortality.
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1 Introduction

As global temperatures rise, heat-related illnesses (HRI) are gaining more attention
(1). Heat stroke (HS) is the most severe form of HRI, characterized by high fever, altered
consciousness levels, and dysfunction of multiple organs, leading to a life-threatening
condition (2, 3). The liver is significantly impacted in HS, with severe hepatic injury often
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contributing directly to patient mortality. Various factors, including
direct heat injury, reduced blood flow to the viscera, and
the development of systemic inflammatory response syndrome
(SIRS), can contribute to liver injury in HS (4, 5). The systemic
immune response to HS has been linked to intestinal cellular
dysfunction, causing the gastrointestinal tract to become leaky,
allowing endotoxins to enter the bloodstream. With liver injury,
the liver’s ability to clear gut-derived endotoxins weakened, further
increasing endotoxin concentrations in the blood, leading to
tissue damage and more severe inflammation. Moreover, the
translocation of bacteria and endotoxins can activate the liver’s
defense mechanisms, particularly Kupffer cells, initiating a series
of inflammatory responses and the release of substantial cytokines,
which can lead to SIRS and further exacerbate multi-organ injury
(6, 7). Ultimately, the liver plays a crucial role in the pathogenesis
of HS and contributes significantly to the progression of the disease
(8).

Excessive oxidative stress in liver cells is a major factor in
the abnormal death of hepatocytes and liver injury caused by
HS (9). The liver, being the primary organ for fat synthesis,
contains high levels of oxygen and lipids, making it particularly
vulnerable to oxidative stress and lipid peroxidative damage (10).
A key question arises: does fatty fill in the whole liver, as seen in
metabolic dysfunction-associated steatotic liver disease (MASLD)
or previously known as non-alcoholic fatty liver disease (NAFLD),
increase its susceptibility to heat-induced injury? (11).

MASLD is the most prevalent chronic liver condition, affecting
approximately 26–30% in Asian health checkup population (12).
It’s common for individuals to suffer from metabolic diseases.
Despite this, there is a lack of published research examining the
influence of concurrent MASLD on the prognosis of HS. This study
aims to explore the impact of MASLD on organ dysfunction and
prognostic outcomes in HS patients, with the goal of enhancing
treatment strategies and ultimately improving clinical outcomes
for these patients.

2 Materials and methods

2.1 Study design and participants

This research is a retrospective observational analysis, enrolling
adult HS patients admitted to the emergency department (ED) of
West China Hospital, Sichuan University between July 1, 2022,
and September 30, 2023. The diagnosis of HS based primarily on
the triad of hyperthermia, neurologic abnormalities, and recent
exposure to hot weather (in the classic form) or physical exertion
(in the exertional form). tachypnea, and hypotension are common
(13). Exclusion criteria include: (1) age less than 18 years; (2)
incomplete or missing medical histories; (3) a history of long-term
alcohol use; (4) concurrent chronic liver disease other than fatty
liver; (5) other etiologies causing liver injury, such as infectious,
pharmacological, or toxic; (6) lack of abdominal imaging studies
(ultrasound, CT).

The primary outcomes in-hospital mortality was defined as
death of a patient that occurs during their stay in the hospital.
Regarding relative indicators, the proposed criteria for a positive
diagnosis of MASLD are based on histological (biopsy), imaging

or blood biomarker evidence of fat accumulation in the liver
(hepatic steatosis) in addition to one of the following three criteria,
namely overweight/obesity, presence of type 2 diabetes mellitus
(T2DM), or evidence of metabolic dysregulation (14). We take the
imaging criteria in this study. Kidney injury was assessed using the
KDIGO (Kidney Disease: Improving Global Outcomes) criteria,
which rely on serum creatinine levels and urine output (15). The
diagnosis of acute liver injury (ALI) is primarily based on liver
function tests, with a focus on serum alanine aminotransferase
(ALT) levels. A key diagnostic criterion is a marked elevation in
ALT, typically exceeding 5–10 times the upper limit of normal,
indicating significant hepatocellular damage (16, 17). Our study
uses the ESC Clinical Practice Guidelines, with the primary basis
for diagnosing myocardial injury being elevated cardiac troponin
levels (18).

Outcomes in the study were measured using standardized
protocols and objective clinical criteria, including pre-specified
cutoffs for laboratory values and diagnostic tools such as imaging
and scoring systems. To minimize bias, outcome assessors were
blinded to the study groups, and independent reviews were
conducted when necessary. In cases where subjective interpretation
was possible, predefined scoring systems (e.g., SOFA score) were
used, and all cases were adjudicated by multiple blinded assessors
to ensure objectivity and consistency.

The research strictly adhered to the ethical guidelines for
human medical research outlined in the Declaration of Helsinki.
Since the study was retrospective and patient identifiers were
anonymized during data collection, participant consent was not
necessary. Approval for the project was obtained from the
Ethical Committee of West China Hospital, Sichuan University
(Ethical Approval No.: 2022-1591). The research also followed the
Transparent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis (TRIPAD) guidelines (19).

2.2 Data collection

Patient demographic and clinical data upon admission
were retrospectively retrieved from the electronic medical
records, comprising gender, age, HS classification, pulse,
respiratory rate, systolic and diastolic blood pressures, total
bilirubin, alanine aminotransferase, aspartate aminotransferase,
blood urea nitrogen, serum creatinine, cystatin C, uric acid,
creatine kinase, creatine kinase isoenzymes, myoglobin, troponin,
prothrombin time, international normalized ratio, activated
partial thromboplastin time (APTT), thrombin time, fibrinogen,
D-dimer, Sequential Organ Failure Assessment (SOFA) score,
Glasgow Coma Scale (GCS) score were calculated for all
patients on admission. The main results, survival condition
at discharge were analyzed.

2.3 Statistical analysis methods

Statistical analysis was performed using R 4.3.1 software.
For missing data, multiple imputation was applied using the
"mice" package in R, ensuring that missing values were filled by
generating multiple datasets, each with different plausible values.
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These imputed datasets were then pooled for subsequent analyses
to account for uncertainty due to missing data. Outcomes that
obey normal distribution are expressed as (x ± s), and the t-test
is used for comparison between groups. Skewed distribution data
were expressed as M (QR), and the Mann-Whitney U test was
used for comparison between groups. Count data were expressed
as n (%), and comparisons between groups were performed using
the chi-square test or Fisher’s exact probability method. Least
absolute shrinkage and selection operator (Lasso) regression was
used to screen the best predictor variables of in-hospital death in
HS patients, followed by multivariate logistic regression analysis to
evaluate the correlation between combined MASLD and in-hospital
death in HS patients. Additionally, the correlation between MASLD
and organ function indicators in patients with HS was explored.

3 Results

3.1 Baseline characteristics

A total of 112 patients were included in this study, with
27 (24.1%) diagnosed with MASLD. Pulse rate in Patients with
MASLD were higher than those in surviving non-MASLD patients
(P < 0.05). No significant differences were observed in other
vital signs, proportion of exertional HS, gender, age, or other
indicators between the two groups at the time of consultation
(Table 1).

3.2 Organ injury and in-hospital mortality

Compared with patient in non-MASLD group, patients with
MASLD had higher levels of aspartate aminotransferase, urea
nitrogen, serum cystatin C, creatinine, uric acid, myoglobin,
creatine kinase (P < 0.05). However, there were no significant
differences in total bilirubin, troponin, platelet count, coagulation-
related indexes, and fibrinogen-related indexes between the
two groups. Additionally, the in-hospital mortality rate was
significantly higher in the MASLD group compared to the non-
MASLD group (10% vs 0%, P < 0.001) (Table 2).

3.3 Prognostic factors of mortality

10 patients (9%) passed away in hospital, all of whom
belonged to the MASLD group. The in-hospital mortality rate
for patients with MASLD was notably higher compared to those
without MASLD (10% vs. 0%, P < 0.001). In the non-survivor
group, patients had significantly higher proportions of MASLD,
pulse at presentation, SOFA score, urea nitrogen, serum cystatin
C, creatinine, uric acid, myoglobin, creatine kinase, fibrinogen
degradation products, and D-dimer compared to those in the
surviving group (P < 0.05) (Table 3).

Lasso regression was utilized to identify MASLD, APTT
and D-dimer levels at admission as risk factors for non-
survivor patients with HS (Figures 1A,B). These indicators were
subsequently incorporated into a multivariate logistic regression
analysis, using the forward stepwise regression method. Finally,

two independent risk factors were identified as independent risk
factors for in-hospital mortality, including prevalence of MASLD
comorbidity and increased D-Dimer levels at admission, while the
APTT failed to show significant impact on survival (Table 4).

4 Discussion

The study firstly reported the potential effects of MASLD
comorbidity on the outcomes of HS patients. We discovered
significant information in in-hospital mortality, liver function
indicators, renal function levels, and muscle enzyme levels
between patients with or without MASLD, indicating that
the presence of MASLD could intensify organ dysfunction
in HS patients. Multivariate logistic regression analysis
demonstrated that coexisting MASLD independently increases
the risk of in-hospital mortality among HS patients. As
the global incidence of HS continues to rise, and MASLD
emerges as the most common chronic liver disease, the
results of this study offer valuable insights for assessing
and treating HS.

Prevalence data from 245 studies, encompassing a total of
2,699,627 individuals, were analyzed using a hierarchical Bayesian
model to project the future prevalence of MASLD through 2040.
Projections indicate that, by 2040, more than half of the adult
population will be affected by MASLD around the world. The global
burden of liver fibrosis associated with MASLD is expected to rise
two- to three-fold over the next decade (20). Previous studies have
shown a strong link between MASLD and metabolic conditions
like obesity, insulin resistance, hypertension, and dyslipidemia (21).
Liver injury caused by MASLD involves a complex interaction of
multiple critical mechanisms. Initially, insulin resistance induces
the buildup of lipids in liver cells, resulting in hepatic steatosis.
Adipocytes and immune cells release pro-inflammatory cytokines,
resulting in long-term chronic inflammation of the liver, steatosis,
hepatocyte mitochondrial dysfunction, and increased production
of reactive oxygen species (ROS). This oxidative stress and
endoplasmic reticulum (ER) stress can contribute to liver disease,
causing cell damage and apoptosis (22). MASLD is associated with
dysregulated lipid metabolism, which includes increased de novo
lipogenesis and decreased fatty acid oxidation. This imbalance
leads to the accumulation of lipids in the liver and cellular
stress. Research indicates that genetic predisposition and epigenetic
changes play a role in the development and progression of MASLD
(23). The intricate interaction of these mechanisms highlights the
progressive aspect of MASLD and underscores the importance of
a multifaceted therapeutic approach aimed at various pathways
to alleviate liver injury and prevent the advancement of the
disease.

The liver is a major target organ for HS, as highlighted
by Savioli et al. (8). Their research indicates that the liver
not only sustains significant damage during HS, but also
plays a crucial role in the development of HS. This study
investigating the relationship between HS and MASLD, clinical
data from MASLD and non-MASLD groups of HS patients
were analyzed. Although no statistical difference was observed,
a higher proportion of exertional fever in the MASLD group
suggests that these patients may have lower tolerance to physical
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TABLE 1 Comparison of initial clinical characteristics of HS patients with and without MASLD at admission.

Variable Non-MASLD group
(N = 85)

MASLD group
(N = 27)

P-value

Exertion-induced HS (%) 43 (50.6%) 17 (63.0%) 0.367

Gender (male) (%) 51 (60.0%) 19 (70.4%) 0.458

Age (years) 57 [42.0, 70.0] 65 [50.5, 74.5] 0.290

Temperature (◦C) 37.9 [36.8, 39.0] 38.1 [37.1, 39.5] 0.310

Heart rate (beat/min) 98 [85, 113] 108 [93, 132] 0.049

Respiratory rate (beats/min) 20 [20, 23] 22 [20, 30] 0.149

Systolic blood pressure (mmHg) 123 [106, 140] 116 [100, 132] 0.324

Diastolic blood pressure (mmHg) 73 [64, 86] 65 [56, 79] 0.157

Peripheral oxygen saturation (%) 97 [95, 99] 96 [95, 99] 0.954

HS, heat stroke; MASLD, metabolic dysfunction-associated steatotic liver disease.

TABLE 2 Comparison of organ dysfunction markers and in-hospital mortality between MASLD and non-MASLD HS patients.

Variable Non-MASLD group
(N = 85)

MASLD group
(N = 27)

P-value

Total bilirubin (µmol/l) 21.3 [13.9, 36.2] 22.5 [15.3, 34.5] 0.598

Alanine aminotransferase (IU/L) 68 [39, 155] 125 [57, 342] 0.137

Aspartate aminotransferase (IU/L) 96 [48, 249] 216 [71.5, 860] 0.049

Urea nitrogen (mmol/L) 7.50 [5.40, 11.2] 12.4 [7.40, 17.6] 0.013

Cystatin C (mg/L) 1.11 [0.93, 1.52] 1.81 [1.09, 2.57] 0.006

Serum creatinine (µmol/L) 86 [68, 153] 183 [85, 270] 0.014

Uric acid (mmol/L) 287 [185, 378] 436 [277, 598] 0.004

Myoglobin (ng/ml) 681 [162, 1859] 2267 [411, 3000] 0.028

Creatine kinase (ng/ml) 768 [274, 2830] 2097 [555, 5836] 0.049

Creatine kinase-MB (ng/ml) 9.31 [3.91, 26.10] 25.6 [5.50, 85.60] 0.047

Troponin I (ng/L) 68.6 [22, 381] 112 [27.2, 246] 0.716

Platelet count (10ˆ9/L) 93 [42.0, 143] 63 [29.5, 118] 0.134

Prothrombin time (s) 12.5 [11.5, 15.7] 14.1 [11.9, 23.4] 0.099

International normalized ratio 1.16 [1.06, 1.42] 1.38 [1.10, 2.17] 0.054

APTT (s) 30.9 [27.7, 36.1] 28.2 [26.9, 53.0] 0.688

Thrombin time (s) 17.8 [16.6, 20.1] 18.4 [17.4, 30.6] 0.093

Fibrinogen (g/L) 2.69 [1.79, 3.60] 2.11 [1.20, 3.23] 0.194

Fibrinogen degradation products (mg/L) 12.0 [5.70, 23.5] 20.7 [7.15, 30.0] 0.190

D-Dimer (mg/L FEU) 4.47 [2.02, 13.3] 8.00 [3.20, 15.1] 0.198

Outcome (death) (%) 0 (0%) 10 (37.0%) <0.001

HS, heat stroke; MASLD, metabolic dysfunction-associated steatotic liver disease; APTT, activated partial thromboplastin time.

labor in high-temperature environments. This intolerance may
be linked to metabolic disorders and reduced heat tolerance in
MASLD patients. Research suggests that MASLD may result in
diminished heat tolerance, potentially due to decreased expression
of heat shock protein 72 (HSP72) and heightened activation
of c-Jun N-terminal kinase (JNK) (24–27). Heat resistance, or
the heat shock response, is a protective defense mechanism
against thermal stress, characterized by the increased production
of heat shock proteins, particularly HSP72 (24). HSP72 exerts
its anti-inflammatory effects by inhibiting the activation of
JNK, a key negative regulator in insulin signaling (21). In

MASLD, the increased activation of JNK leads to inhibitory
phosphorylation of insulin receptor substrate 1, resulting in
insulin resistance and hyperinsulinemia (26). These metabolic
disturbances impact various physiological processes and contribute
to the progression of MASLD. Furthermore, JNK can also
stimulate the production of reactive oxygen species by inhibiting
mitochondrial respiration, which in turn triggers cell apoptosis and
mitochondrial dysfunction (27).

The liver, serving as a key metabolic organ, participates
in processes such as glucose and lipid metabolism. When HS
occurs, metabolic disorders like insulin resistance, elevated
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TABLE 3 Comparison of baseline characteristics between in-hospital mortality and survival groups in HS patients.

Variable Surviving group
(N = 102)

Non-survivor group
(N = 10) P-value

Prevalence of MASLD comorbidity (%) 17 (16.7%) 10 (100%) <0.001

Exertion-induced HS (%) 55 (53.9%) 5 (50.0%) 1.000

Gender (male) (%) 63 (61.8%) 7 (70.0%) 0.741

Age (years) 57.5 [44.5, 69.8] 73.5 [59.5, 74.8] 0.183

Temperature (◦C) 38.0 [36.8, 39.0] 37.6 [36.7, 39.4] 0.951

Heart rate (beat/min) 99 [86, 113] 129 [103, 140] 0.040

Respiratory rate (beats/min) 21 [20, 24] 21 [18.5, 28] 0.963

Systolic blood pressure (mmHg) 124 [105, 139] 115 [100, 134] 0.551

Diastolic blood pressure (mmHg) 72.5 [60.5, 83.0] 62.5 [54.5, 78.8] 0.337

Peripheral oxygen saturation (%) 97.0 [95.0, 99.0] 96 [92.8, 96.8] 0.299

GCS score 6.00 [3.00, 13.00] 4.00 [3.00, 5.75] 0.058

SOFA score 7.00 [4.00, 10.00] 9.50 [8.25, 12.50] 0.030

Total bilirubin (µmol/l) 15.9 [12.0, 25.9] 18.0 [16.7, 19.8] 0.717

Alanine aminotransferase (IU/L) 52.0 [23.0, 86.8] 94.0 [39.5, 200.0] 0.175

Aspartate aminotransferase (IU/L) 67.5 [36.0, 164.0] 218 [48.2, 455.0] 0.105

Urea nitrogen (mmol/L) 6.50 [4.80, 10.20] 10.40 [8.88, 12.60] 0.012

Cystatin C (mg/L) 1.00 [0.80, 1.41] 1.51 [1.14, 1.79] 0.023

Serum creatinine (µmol/L) 85.5 [65, 152] 185 [138, 252] 0.012

Uric acid (mmol/L) 269 [174, 353] 416 [337, 538] 0.036

Myoglobin (ng/ml) 560 [114, 1943] 3000 [766, 3000] 0.015

Creatine kinase (ng/ml) 512 [153, 2220] 2030 [548, 11481] 0.022

Creatine kinase-MB (ng/ml) 6.28 [1.94, 20.30] 21.9 [2.90, 170.0] 0.209

Troponin I (ng/L) 58.0 [20.6, 225.0] 171 [63.1, 535.0] 0.054

Platelet count (10ˆ9/L) 130 [73.8, 198] 105 [57.5, 160] 0.606

Prothrombin time (s) 12.1 [11.1, 14.2] 14.4 [12.0, 23.0] 0.100

International normalized ratio 1.13 [1.03, 1.32] 1.33 [1.08, 2.15] 0.101

APTT (s) 27.8 [25.6, 32.1] 31.4 [27.7, 53.7] 0.040

Thrombin Time (s) 17.7 [16.4, 19.6] 18.4 [16.5, 36.4] 0.400

Fibrinogen (g/L) 2.81 [1.87, 4.12] 2.09 [1.24, 3.51] 0.268

Fibrinogen degradation products (mg/L) 8.00 [4.53, 18.50] 28.40 [17.50, 53.80] 0.006

D-Dimer (mg/L FEU) 2.55 [1.38, 8.70] 16.30 [6.86, 32.60] 0.004

MASLD, metabolic dysfunction-associated steatotic liver disease; HS, heat stroke; SOFA, Sequential Organ Failure Assessment; GCS, Glasgow Coma Scale; APTT, activated partial
thromboplastin time.

blood glucose levels, and lipid abnormalities can worsen
the tissue damage induced by heat stress. Thermal shock
induces a systemic inflammatory response by prompting
the release of pro-inflammatory cytokines like interleukin-
6 (IL-6) and tumor necrosis factor-α (TNF-α) from tissues
and organs. The liver, being a primary site for cytokine
production and immune regulation, is closely linked to the
intensity and duration of systemic inflammation. Recognition
and response to danger signals such as pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) lead to the production of pro-inflammatory
cytokines like IL-6 and TNF-α, which drive systemic

inflammatory responses. Over time, multiple inflammatory
factors contribute to the gradual progression of systemic
inflammation and organ dysfunction in HS (28–32). Some
studies suggest that MASLD greatly elevates the risk of
cardiovascular disease through the promotion of atherosclerosis,
endothelial dysfunction, and inflammatory pathways (33).
Additionally, MASLD is linked independently to a higher
risk of chronic kidney disease (34). Currently, there is a lack
of research on how MASLD impacts the pathophysiological
mechanisms of organ function damage in HS patients.
Future studies are needed to explore this further, with the
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FIGURE 1

Identification of risk factors for in-hospital mortality in heat stroke patients using Lasso regression with admission indices. (A) The best penalty
coefficient λ for Lasso regression is ascertained through 10-fold cross-validation and the one standard error (1SE) rule. (B) The Lasso regression
coefficient plot for clinical features.

potential to enhance early detection and ultimately improve
patient outcomes.

In light of the higher prevalence of MASLD comorbidity in
this study, baseline characteristics indicated that non-survivors
exhibited poorer renal function, heart function, coagulation
disorders, and higher heart rates, SOFA scores, and a greater
tendency toward disseminated intravascular coagulation (DIC)

compared to the surviving group. Increased heart rate and
elevated SOFA score upon admission (35), elevated Troponin I
levels (36), as well as hepatic dysfunction and renal insufficiency
(37, 38) have been consistently linked to poor prognoses;
however, robust conclusions remain elusive due to small sample
sizes and great heterogeneity among studies. While most
variables were excluded by Lasso regression, leaving only

Frontiers in Medicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2024.1451133
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1451133 November 8, 2024 Time: 13:20 # 7

Zhang et al. 10.3389/fmed.2024.1451133

TABLE 4 Multivariable logistic regression analysis for in-hospital mortality risk factors in HS patients.

Variable crude OR (95% CI) adj.OR (95% CI) P (Wald’s test) P (LR-test)

Prevalence of MASLD comorbidity (%) 502667899.6 (0, Inf) 3953722479.54 (0, Inf) 0.994 <0.001

D-dimer (mg/L FEU) 1.07 (1.02, 1.12) 1.14 (1.02, 1.28) 0.025 0.003

APTT (s) 1.02 (1.00, 1.04) 1.04 (0.92, 1.17) 0.520 0.167

HS, heat stroke; adj.OR, adjusted odds ratio; LR-test, likelihood ratio-test; APTT, activated partial thromboplastin time.

MASLD comorbidity, APTT, and D-dimer to be identified
as the best predictors, the possibility remained that some
meaningful risk factors were unintentionally excluded, potentially
due to the small sample size. Furthermore, despite a futile
APTT, elevated D-dimer levels was also demonstrated to
be significantly associated with in-hospital mortality by a
subsequent multivariate logistic regression analysis. Another
Chinese study showed that combined APTT and D-dimer
levels could serve as reliable biomarkers to predict the severity
of HS, providing crucial insights into patient prognosis (39).
Elevated D-dimer levels usually linked to multiple organ damage,
DIC, and other serious conditions (40), thus exacerbating the
risk of death in HS.

The retrospective design of this study introduces potential
limitations, such as data incompleteness and inherent biases,
which may affect the accuracy of the findings. For example, we
did not consider the severity of HS in our study. Meanwhile,
the exclusion of patients lacking abdominal imaging or with
other forms of chronic liver disease could introduce selection
bias, potentially impacting the study’s results. Additionally, the
relatively small sample size limits the generalizability and external
validity of the findings. The geographic and population-specific
nature of the study may also restrict the applicability of its
conclusions to broader populations or regions. Furthermore,
the analysis was confined to in-hospital outcomes without
long-term follow-up for survival and prognosis after discharge,
which could influence the overall interpretation of patient
outcomes. Lastly, other metabolic dysfunction-associated illnesses
like hyperlipidemia and insulin resistance may influence MASLD
and in-hospital mortality, but their roles were not fully clarified
because of their difficulties in diagnosis when patients were
in acute phase of HS. To enhance the robustness of future
research, we recommend including larger cohorts in prospective
studies and extending the follow-up period to better assess long-
term outcomes.

5 Conclusion

This study is the first to find that combined MASLD is
an independent risk factor for in-hospital death in HS patients
and exacerbates organ function damage in these patients. These
findings offer a fresh insight into the clinical management of HS
and underscore the significance of preventing HS and providing
timely treatment for MASLD patients. Future research should
delve deeper into the interaction mechanism between MASLD
and HS to enhance treatment strategies and lower the mortality
rate of HS patients.
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