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Vascular adhesion protein-1 (VAP-1) is a type 2 transmembrane sialoglycoprotein 
with oxidative deamination functionality, encoded by the amine oxidase copper-
containing 3 (AOC3) gene. VAP-1 is widely expressed across various tissues, 
particularly in highly vascularized tissues and organs essential for lymphocyte 
circulation. In the vascular system, VAP-1 is predominantly found in vascular 
smooth muscle cells and endothelial cells, with higher expression levels in 
vascular smooth muscle cells. Under inflammatory conditions, VAP-1 rapidly 
translocates to the endothelial cell surface, facilitating leukocyte adhesion and 
migration through interactions with specific ligands, such as sialic acid-binding 
immunoglobulin-type lectins (Siglec)-9 on neutrophils and monocytes, and 
Siglec-10 on B cells, monocytes, and eosinophils. This interaction is crucial for 
leukocyte transmigration into inflamed tissues. Furthermore, VAP-1’s enzymatic 
activity generates hydrogen peroxide and advanced glycation end-products, 
contributing to cytotoxic damage and vascular inflammation. In this context, the 
soluble form of VAP-1 (sVAP-1), produced by matrix metalloproteinase cleavage 
from its membrane-bound counterpart, also significantly influences leukocyte 
migration. This review aims to elucidate the multifaceted pathophysiological 
roles of VAP-1 in vascular inflammation, particularly in giant cell arteritis (GCA) 
and associated polymyalgia rheumatica (PMR). By exploring its involvement in 
immune cell adhesion, migration, and its enzymatic contributions to oxidative 
stress and tissue damage, we  investigate the importance of VAP-1  in GCA. 
Additionally, we discuss recent advancements in imaging techniques targeting 
VAP-1, such as [68Ga]Ga-DOTA-Siglec-9 PET/CT, which have provided new 
insights into VAP-1’s role in GCA and PMR. Overall, understanding VAP-1’s 
comprehensive roles could pave the way for improved strategies in managing 
these conditions.
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Introduction

Giant cell arteritis (GCA) is an immune-mediated vasculitis that affects large and medium-
sized vessels, predominantly in individuals over 50 years of age. It is the most prevalent form 
of vasculitis in Western populations. GCA can lead to vascular changes and occlusion due to 
severe vascular inflammation, neoangiogenesis, and remodeling. Additionally, GCA is closely 
associated with polymyalgia rheumatica (PMR), which is characterized by inflammation in 
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periarticular structures. PMR may precede, coincide with, or follow 
the onset of GCA. Thus, subclinical GCA can be detected in 22–23% 
of PMR patients (1, 2). However, in some studies, the incidence of 
large vessel vasculitis detected by positron emission tomography–
computed tomography (PET/CT) in patients with PMR can reach up 
to 60%, particularly in those presenting with inflammatory low back 
pain, pelvic girdle pain, and diffuse lower limb pain (3, 4).

Despite advances in understanding the pathophysiology of GCA, 
the innate and adaptive immune mechanisms involved remain only 
partially understood. Initial hypotheses primarily attributed the 
immune response in GCA to TH1 cells, driven by the activation of the 
Janus kinase (JAK) and Signal Transducers and Activators of 
Transcription (STAT) signaling pathways (5). It has been demonstrated 
that IFN-γ plays a significant role in mediating chemotaxis through 
CXCL9, CXCL10, and CXCL11 in the arterial wall of GCA patients via 
the JAK-STAT1 pathway (6, 7). Moreover, functional polymorphisms 
of IFN-γ were associated with the development of severe ischemic 
complications of the disease (8). Recent findings, however, suggest that 
cytokines beyond the STAT signaling pathway may also significantly 
influence inflammation in GCA (5). Various mechanisms involving 
both TH1 and TH17 cells have been recognized, including the 
recruitment of T-cells within the vascular wall facilitated by vascular 
dendritic cells (9). These cells are responsible not only for chemotaxis 
and cytokine release but also for the differentiation of TH1/TH17 cells 
via vasculitogenic T-effector cells (9). A chemokine-mediated link 
involving IFN-γ, Interleukin (IL)-17, and IL-21 fosters an inflammatory 
environment (10, 11). Monocytes also significantly contribute to the 
differentiation of TH1 and TH17 cells via the production of cytokines 
such as IL-12p35 (promoting TH1) and IL-1β, IL-6, and IL-23p19 
(promoting TH17) (12). Activated TH1/TH17 cells not only sustain 
the initial immune response by producing key cytokines (IFN-γ/IL-17) 
but also exacerbate inflammation by recruiting cytotoxic CD8 cells and 
monocytic precursor cells, which evolve into macrophages leading to 
vascular damage and remodeling (9).

The close connection between PMR and GCA has led to joint 
investigations into their disease mechanisms. In PMR, similar to GCA, 
Treg, TH1, and TH17-associated inflammatory processes, along with 
their key cytokines, are crucial (13–15). Moreover, IL-6, along with 
IL-1 and ICAM-1, is significantly implicated in the pathophysiology of 
PMR, influencing the likelihood of future relapses in patients (14–17). 
While ICAM-1 polymorphisms alone do not appear to be associated 
with disease severity in isolated PMR, the presence of homozygosity 
for both the HLA-DRB1*0401 allele and the 241 GG codon of ICAM-1 
is significantly correlated with an increased risk of relapses in these 
patients (18). A major distinction in the immune response between 
PMR and GCA is the absence of a strong IFN-γ response in PMR (19).

While the understanding of immunological and 
pathophysiological aspects of GCA and PMR is evolving, significant 
gaps remain, particularly in linking immunological processes with 
disease manifestations. This emphasizes the need for a better 
understanding of these diseases.

Structure and function of 
vascular-adhesion protein 1

Vascular adhesion protein-1 (VAP-1) is a type 2 transmembrane 
sialoglycoprotein, encoded by the amine oxidase copper-containing 3 

(AOC3) gene. It forms a 180 kDa homodimer consisting of three 
distinct domains (D2-D4), capable of catalyzing oxidative deamination 
reactions (20–24). This enzymatic activity can be  inhibited by 
semicarbazide, classifying VAP-1 within the semicarbazide-sensitive 
amine oxidase (SSAO) family (25). To clearly differentiate VAP-1-like 
SSAOs (topaquinone-containing amine oxidases) from other 
members of the SSAO family, they have been renamed as primary 
amine oxidases (26). Other SSAOs belong to the lysyl oxidase family, 
characterized by the presence of lysine tyrosyl quinone, rather than 
topaquinone, at their catalytic sites (26).

VAP-1 is expressed by various cell types, including vascular cells, 
pericytes on the outer surfaces of blood vessels, adipocytes, 
chondrocytes, follicular dendritic cells, and liver cells (26–30). Its 
expression is particularly prominent in tissues with high 
vascularization, such as blood vessels, muscle, cerebrovascular tissue, 
heart, liver, kidney, retina, intestine, lung, and adipose tissue. 
Moreover, VAP-1 is significantly expressed in organs involved in 
lymphocyte recirculation and homing, including the vessels of the 
spleen, thymic cortex, and lymph nodes (31–34).

In the vascular system, the expression of VAP-1 is predominantly 
observed in vascular smooth muscle cells (VSMC) and endothelial 
cells. VSMC, located in the medial layer of the vascular wall, exhibit 
higher expression and activity levels of VAP-1 compared to endothelial 
cells (26, 35, 36). VSMC are pivotal in producing the extracellular 
matrix, which is essential for the arterial wall’s resilience against blood 
circulation pressure and exhibit significant plasticity (37, 38). Under 
external stimuli, VSMC can migrate and proliferate from the medial 
to the intimal layer, contributing to intimal hyperplasia (38). VAP-1 in 
VSMC is specifically localized within the caveolae of the plasma 
membrane (39), yet the regulation of VAP-1 in these cells, as well as 
its physiological functions within them, remains less understood (26). 
Although VAP-1 in VSMC does not facilitate lymphocyte binding in 
vitro (39), it is implicated in critical processes such as vascular tone 
regulation, cell differentiation, and extracellular matrix organization 
(22, 40, 41). An increase in VAP-1 activity can generate reactive 
oxygen species, leading to VSMC death and potentially contributing 
to atherosclerosis (37, 38, 42).

Conversely, VAP-1 is present in all three types of endothelial cells, 
continuous, fenestrated, and sinusoidal (34). Its role varies across 
different tissue types and (patho-)physiological conditions. In specific 
endothelial cells, like liver sinusoidal endothelium and the specialized 
high endothelial venules in peripheral lymph nodes, VAP-1 is 
constitutively expressed on the cell surface (43, 44). In all other 
endothelial cells, VAP-1 resides within intracellular vesicles, absent 
from the cell surface. However, during inflammatory conditions, 
stimuli such as tumor necrosis factor-alpha, interferon-gamma, 
lipopolysaccharide, and interleukin-1ß trigger its rapid relocation to 
the surface of endothelial cells (26, 45–47) (Figure 1).

Pathophysiological role of 
vascular-adhesion protein 1

VAP-1 plays a critical role in immune cell adhesion and migration, 
particularly facilitating the transmigration of leukocytes from the 
bloodstream into inflamed tissues. This process involves VAP-1’s dual 
function: its enzymatic activity catalyzes the oxidative deamination of 
primary amines (48), a key mechanism behind most of VAP-1’s 
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pathophysiological effects, and its role as a membrane-bound 
endothelial adhesion molecule that supports enzyme-independent 
leukocyte binding (31). Under inflammatory conditions, VAP-1 
therefore acts as an ectoenzyme with a catalytically active domain 
external to the cell membrane, amplifying its role in immune 
responses (38).

On endothelial cells, VAP-1 engages with leukocytes via specific 
ligands, including sialic acid-binding immunoglobulin-type lectins 
(Siglec)-9, predominantly found on neutrophils and monocytes, and 
Siglec-10, identified on B cells, monocytes, and eosinophils (48–51). 
Siglec-10 further acts as a substrate for VAP-1, a function not 
demonstrated for Siglec-9. Additionally, VAP-1 engages with CD16+ 
natural killer cells, although the precise mechanism of this interaction 
is not well understood (26, 45, 50–53).

Inflammatory stimuli lead to the rapid up-regulation of Siglec-9 
and Siglec-10 on leukocytes, enhancing their interaction with 
endothelial VAP-1 (54, 55). This interaction fosters a transient 
adhesive bond, where primary amines on leukocytes serve as 
substrates for oxidative deamination by VAP-1’s catalytic site (50, 56). 
This two-step oxidative deamination process, converting methylamine 
to formaldehyde and aminoacetone to methylglyoxal, with subsequent 
production of hydrogen peroxide and ammonia contributing to 
advanced glycation end-products (AGE) formation and increased 
oxidative stress, inflicts cytotoxic damage on endothelial cells (56–58). 
This can result in vascular damage and potential vascular 
complications like atherosclerosis (26, 29, 31, 57, 59–61).

The generation of VAP-1-derived hydrogen peroxide, a powerful 
signaling molecule at low concentrations, plays an essential role 
in local inflammatory responses (26). The catalytic activity of VAP-1 
induces the expression of various endothelial adhesion molecules, 
such as ICAM-1, MadCAM-1, E-selectin, and P-selectin, and 
promotes the secretion of the chemokine CXCL8 (44, 62–65). It also 
activates key transcription factors, facilitating the engagement of 
multiple signaling pathways, including PI3K, MAPK, and NF-κB, 

thereby fostering an inflammatory milieu beneficial to leukocyte 
extravasation (24, 56). This complex process encompasses leukocyte 
tethering and rolling along the endothelium, culminating in the 
extravasation cascade, essential for immune cell migration to sites of 
inflammation (24, 26, 27, 56, 66–68). Real-time imaging studies have 
underscored VAP-1’s facilitation of leukocyte slow rolling, firm 
adhesion, and subsequent migration within blood vessels, particularly 
at lymphoid tissues and inflamed sites (69). Notably, the interaction of 
various immune cells, including CD4+ helper T cells, T-regulatory 
cells, Th17 cells, CD8+ cytotoxic T cells, B lymphocytes, CD16+ 
monocytes, and granulocytes with high endothelial venules and flat-
walled vessels, has been shown to be modulated, at least in part, by 
VAP-1 expression levels (34, 43, 52, 68, 70–76). This underscores 
VAP-1’s vital role in mediating immune surveillance and response, 
highlighting its importance in the immune system’s functionality.

While membrane-bound VAP-1 serves as a transmembrane 
glycoprotein within the vascular wall, soluble VAP-1 (sVAP-1) arises 
from the proteolytic cleavage of its membrane-bound form by matrix 
metalloproteinases, releasing it into circulation (26, 27, 59, 69). This 
allows VAP-1 to influence leukocyte migration in both transmembrane 
and soluble form, with sVAP-1 contributing significantly to the 
circulating monoamine oxidase activity in human blood (77). High 
concentrations of sVAP-1, often originating from high endothelial 
venules in lymphatic organs, play a crucial role in facilitating 
transendothelial migration of lymphocytes (78–80). In healthy 
individuals, sVAP-1 levels in the serum are typically low and stable, 
modulating the adhesive activity of its membrane-bound counterpart 
and enhancing leukocyte adhesion (26, 31, 79, 80).

Increased sVAP-1 expression is prevalent in various chronic 
inflammatory conditions (26, 81) with notable elevations in patients 
with type 1 diabetes and chronic liver diseases (80), as well as those 
suffering from skin inflammation (psoriasis), synovitis, active 
relapsing–remitting multiple sclerosis (RR-MS), and systemic lupus 
erythematosus (47, 79, 82–85). Furthermore, elevated serum VAP-1 

FIGURE 1

Pathophysiologal role of Vascular-adhesion protein 1. Depicts the endothelial translocation of membrane-bound vascular-adhesion protein 1 (VAP-1) 
from intracellular vesicles to the cell surface in response to inflammatory stimuli. Translocation facilitates the interaction of VAP-1 with circulating 
neutrophils and monocytes through the Siglec-9 ligand. This initiates oxidative deamination, leading to cytotoxic damage to endothelial cells and 
promoting an inflammatory response. Secretion of chemokines, activation of transcription factors, and expression of matrix metalloproteinases 
enhance leukocyte rolling, tethering, and migration. Finally, soluble VAP-1 (sVAP-1) is generated through the cleavage of membrane-bound VAP-1 by 
matrix metalloproteinases, releasing it into the circulation and significantly contributing to the monoamine oxidase activity in human blood. VAP-1, 
vascular-adhesion protein 1; sVAP-1, soluble vascular-adhesion protein 1. Created with BioRender.com.
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activity is linked to vascular disorders including diabetes mellitus 
complications (86, 87), hypertension (56), congestive heart failure 
(88), multiple cerebral infarctions (89), Alzheimer’s disease (90), 
and atherosclerosis (91), where sVAP-1 levels correlate with intima-
media thickness and the presence of carotid plaques (92, 93). 
Additionally, s VAP-1 concentrations can predict major adverse 
cardiovascular events and mortality (93, 94). These sVAP-1 
increases are often associated with tissue-bound VAP-1 
overexpression (60, 95). However, despite these associations, 
sVAP-1 can not be considered as a general inflammation marker 
due to the lack of consistent correlation with C-reactive protein 
levels (93).

The increasing recognition of VAP-1’s role in inflammation and 
its involvement in exacerbating local lesion formation has led to a 
growing body of research exploring its role across a spectrum of 
inflammatory conditions.

Vascular-adhesion protein 1 in large 
vessel vasculitis and polymyalgia 
rheumatica

VAP-1’s pathophysiological role, along with the potential 
inflammatory and oxidative stress-inducing effects of its catalytic 
products, indicate its involvement in the pathogenesis of vascular 
inflammatory disorders. The specific localization of VAP-1 on the 
surface of blood vessel cells further corroborates its involvement in 
these diseases. This has prompted further investigations using imaging 
techniques targeting VAP-1 or its ligands. Recent advancements 
include the introduction of a novel inflammation-specific radiotracer, 
[68Ga]Ga-DOTA-Siglec-9, for evaluating inflammatory vascular 
diseases (50).

A recently presented studies demonstrated that [68Ga]Ga-DOTA-
Siglec-9 PET/CT can detect vascular inflammation during relapses in 
GCA, revealing increased localized tracer uptake in regions such as 
the aorta and subclavian arteries (96, 97). Additionally, prednisolone 
treatment significantly influenced endothelial VAP-1 expression, 
suggesting a rapid, therapy-induced reduction of VAP-1. No 
significant association was found between C-reactive protein levels 
and tracer uptake, aligning with previous research in other diseases 
where no correlation could be  found (93). Beyond its role as an 
endothelial adhesion molecule, elevated sVAP-1 has emerged as a 
potential biomarker for disease activity in GCA, with levels exceeding 
those in healthy controls (96). However, further studies are needed 
to confirm this finding. Comparably, in PMR, which is frequently 
associated with GCA, [68Ga]Ga-DOTA-Siglec-9 PET/CT has 
indicated involvement of VAP-1 (98). In a cohort of PMR patients, 
increased tracer uptake was observed in the shoulder and pelvic 
girdle regions, with a significant negative correlation between 
prednisolone intake and tracer uptake in the shoulder, further 
supporting the hypothesis that VAP-1 is rapidly eliminated following 
prednisolone exposure.

Currently, the precise mechanism of VAP-1 involvement in the 
pathogenesis and pathophysiology of GCA and PMR remains at least 
partly speculative. However, its role has been elucidated in other 
(autoimmune) diseases with vascular inflammation, suggesting 
potential parallels with the pathophysiology of GCA and PMR.

In granulomatosis with polyangiitis, VAP-1 is strongly expressed 
in the renal endothelium during active disease, indicating its 
potential role in glomerular endothelial cell injury and altered 
barrier function, thereby contributing to disease pathogenesis 
(99, 100).

Similarly, in neuronal in vitro endothelial cell models of the 
blood–brain barrier, a link has been identified between VAP-1 
expression and endothelial cell activation. This relationship involves 
the altered release of pro-inflammatory and pro-angiogenic cytokines, 
along with subsequent activation of signaling cascades, that also have 
been shown to significantly contribute to pathogenesis of GCA. Thus, 
it has been shown that cells expressing human VAP-1 overproduce 
various cytokines related to inflammation in GCA [e.g., IL-6 (101, 
102), IL-8 (103, 104), ICAM (102), VCAM (105, 106)] and trophic 
factors [e.g. VEGF (10, 107), NGF (108)] (109). The signaling 
pathways of VEGF and IL-8 are particularly implicated in activating 
the VEGFR2 molecular pathway, leading to increased endothelial 
permeability (109). Moreover, VEGF and VAP-1 (110) can 
be upregulated in response to hypoxia, suggesting that polymorphisms 
affecting VEGF may also impact processes involving VAP-1. These 
polymorphisms could potentially affect VAP-1 levels or activity, 
thereby modulating the extent and nature of inflammatory responses 
and the development of severe ischemic complications in GCA. In this 
context, VEGF-induced angiogenesis may contribute to GCA 
associated inflammation (111).

IL-6 signaling has also been explored as a potential driver of 
VAP-1-associated endothelial alterations in the blood–brain barrier 
model, with the STAT3 pathway, which is known to significantly 
contribute to the pathogenesis of GCA (5, 102), being notably more 
activated in endothelial cells expressing VAP-1. The significance of 
the IL-6-activated STAT3 pathway in these alterations was further 
demonstrated by the application of an IL-6 blocking antibody, which 
negated the permeability changes induced by VAP-1 conditioned 
media in wild-type cells (109). This may help explain the successful 
application of the Interleukin 6 receptor inhibitor Tocilizumab (112).

VAP-1 may also be  a potential explanation for the successful 
treatment of GCA with methotrexate, which has shown efficacy in 
GCA (113) and PMR (114) and is currently under investigation for 
remission maintenance therapy in GCA (115). Studies in tumor 
necrosis factor-α-treated human umbilical vein endothelial cell lines 
have shown that methotrexate can downregulate pro-inflammatory 
genes, including VAP-1, highlighting endothelium-protective and 
anti-inflammatory effects of methotrexat (116).

Furthermore, VAP-1 has been recognized as significant in 
cerebral ischemic processes, offering a potential explanation for 
GCA-associated ischemic complications. In animal models with 
intracerebral hemorrhage-induced brain damage, VAP-1 inhibition 
downregulated the adhesion molecule ICAM-1 and diminished the 
infiltration of systemic immune cells, particularly neutrophils, to the 
injury site (117). This reduction in immune cell accumulation was 
accompanied by decreased pro-inflammatory cytokines, including 
TNF-α and MCP-1, and reduced activation of microglia/
macrophages. Consequently, inhibiting VAP-1 curtailed the local 
inflammatory process, potentially reducing cerebral edema and 
enhancing neurobehavioral functions (117). Finally, in diabetic 
vascular complications, enhanced interactions between endothelial 
cells and lymphocytes mediated by VAP-1 (118) and the subsequent 
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transmigration and recruitment of endothelial inflammatory 
mediators, are central to the activation and progression of various 
inflammatory pathways (31). Formaldehyde, methylglyoxal, and 
advanced glycation end-products may contribute to these 
complications in diabetes (63, 119).

In conclusion, VAP-1 has emerged as a pivotal factor in the 
pathogenesis and pathophysiology of various vascular inflammatory 
disorders, including GCA and PMR. The introduction of [68Ga]
Ga-DOTA-Siglec-9 PET/CT has provided valuable insights, 
demonstrating VAP-1’s role in detecting vascular inflammation 
during GCA relapses and PMR diagnosis, while also highlighting 
the significant influence of prednisolone treatment on VAP-1 
expression. Elevated VAP-1 levels further underscore its potential 
as a biomarker for disease activity in GCA, although additional 
studies are necessary to confirm these findings. Overall, the new 
understanding of VAP-1’s role in GCA and PMR underscores the 
necessity for continued research to further elucidate its mechanisms, 
paving the way for improved disease management of 
these conditions.
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