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Objective: Establishing a convolutional neural network model for the 
recognition of characteristic raw electroencephalogram (EEG) signals is crucial 
for monitoring consciousness levels and guiding anesthetic drug administration.

Methods: This trial was conducted from December 2023 to March 2024. A 
total of 40 surgery patients were randomly divided into either a propofol group 
(1% propofol injection, 10  mL: 100  mg) (P group) or a propofol-etomidate 
combination group (1% propofol injection, 10  mL: 100  mg, and 0.2% etomidate 
injection, 10  mL: 20  mg, mixed at a 2:1 volume ratio) (EP group). In the P group, 
target-controlled infusion (TCI) was employed for sedation induction, with an 
initial effect site concentration set at 5–6  μg/mL. The EP group received an 
intravenous push with a dosage of 0.2  mL/kg. Six consciousness-related EEG 
features were extracted from both groups and analyzed using four prediction 
models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial 
neural network (ANN), and one-dimensional convolutional neural network 
(1D CNN). The performance of the models was evaluated based on accuracy, 
precision, recall, and F1-score.

Results: The power spectral density (94%) and alpha/beta ratio (72%) 
demonstrated higher accuracy as indicators for assessing consciousness. 
The classification accuracy of the 1D CNN model for anesthesia-induced 
unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN 
(83%) models, with a significance level of p  <  0.05. Furthermore, the mean and 
mean difference  ±  standard error of the primary power values for the EP and 
P groups during the induced period were as follows: delta (23.85 and 16.79, 
7.055  ±  0.817, p  <  0.001), theta (10.74 and 8.743, 1.995  ±  0.7045, p  <  0.02), and 
total power (24.31 and 19.72, 4.588  ±  0.7107, p  <  0.001).

Conclusion: Large slow-wave oscillations, power spectral density, and the alpha/
beta ratio are effective indicators of changes in consciousness during intravenous 
anesthesia with a propofol-etomidate combination. These indicators can aid 
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anesthesiologists in evaluating the depth of anesthesia and adjusting dosages 
accordingly. The 1D CNN model, which incorporates consciousness-related 
EEG features, represents a promising tool for assessing the depth of anesthesia.

Clinical Trial Registration: https://www.chictr.org.cn/index.html.
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1 Introduction

General anesthesia is employed to induce a reversible loss of 
consciousness, followed by recovery. Variability in individual 
pharmacokinetics of intravenous anesthetics can lead to insufficient 
depth of anesthesia. Electroencephalogram (EEG) monitoring is 
extensively utilized for perioperative brain function assessment (1). 
Research (2) indicates that the combination of propofol and etomidate 
can mitigate intravenous pain, decrease the incidence of nausea, 
vomiting, and myoclonus, maintain hemodynamic stability during the 
induction of general anesthesia, and enhance cerebral oxygen 
metabolism. The loss of consciousness induced by the commonly used 
anesthetic drug propofol is characterized by an increase in 
low-frequency electroencephalogram (EEG) power (< 4 Hz) and the 
emergence of frontal alpha (8–12 Hz) oscillations (3, 4). However, the 
EEG characteristics of intravenous anesthesia with a propofol-
etomidate combination are unknown, and changes in the state of 
consciousness after anaesthesia with this drug have not been reported.

Processed EEG indices (5–7), such as the Bispectral Index (BIS), 
Patient State Index (PSI), and Narcotrend, can monitor levels of 
consciousness. However, these indices may not accurately reflect the 
state of unconsciousness induced by all anesthetic drugs (8, 9). 
Consequently, tracking raw EEG changes has emerged as a research 
focus for anesthesiologists aiming to monitor consciousness levels (10, 
11). To enhance the accuracy of anesthesia consciousness assessment, 
machine learning, and deep learning algorithms are increasingly 
employed in clinical EEG research (12–14). By extracting a large 
number of quantitative EEG features and combining them with 
machine learning, sedation levels can be predicted independently of 
the selected anesthetic drug (15). Among deep learning models, 
one-dimensional convolutional neural networks (1D CNNs) (16) are 
frequently utilized to process one-dimensional sequence data, 
including audio, text, and time series data such as electrocardiograms 
and electroencephalograms. These models are characterized by low 
computational requirements and are widely adopted in medical 
technology (17, 18). Therefore, employing 1D CNNs to identify and 
analyze features in raw EEG data is essential for enhancing the 
accuracy and convenience of assessing anesthesia awareness.

We constructed four models to assess the state of anesthesia 
consciousness using better-performing SVM, Gaussian Bayes (GNB), 
ANN, and self-developed 1D CNN architecture. Using EEG features 
relevant to distinguish between awake and sleeping states (19); i.e., the 
power spectral density (PSD), the fast and slow wave ratios (delta/
beta, alpha/beta), the beta ratio, and phase-amplitude coupling (PAC) 
that allowed accurate tracking of changes in propofol anesthetic 
consciousness (3) and computationally efficient and artifact-resistant 

permutation entropy (20). The power spectral density shows the 
distribution of signal power per unit frequency range. A total of six 
EEG features were employed as the inputs of the neural network, with 
the output being a classification of three anesthesia stages: induction 
sedation, maintenance, and before extubation. In this study, induction 
sedation was defined as when the patient moved from wakefulness to 
a state of loss of consciousness, and the PSI value fell to 20–40 after 
intravenous infusion of propofol or propofol-etomidate combination. 
Anesthesia maintenance refers to the period between the infusion of 
intraoperative anesthesia drugs after tracheal intubation and the 
cessation of all anesthetic drug infusion. Before extubation refered to 
the period of time after stopping the anesthetic drug infusion, when 
the patient was resuscitated from anesthesia until he was awake for 
extubation. We compared the performance of our self-constructed 1D 
CNN model with the other three models and identified characteristic 
EEG signals that reflected changes in awareness induced by the two 
drugs. Furthermore, we utilized the 1D CNN to accurately classify 
anesthesia stages, thereby providing a mechanism for pharmaceutical 
robots to achieve targeted controlled anesthesia through EEG features.

2 Materials and methods

2.1 Study design and population

This study was registered with the Chinese Clinical Trial Registration 
Center (number: ChiCTR2300078715). All participants signed informed 
consent from December 2023 to March 2024. This trial enrolled 46 
patients aged 18–40 years, who were scheduled to undergo maxillofacial 
surgery under general anesthesia, to participate in this prospective, 
observational, single-center study, in which the operation time was 
limited to 3 h. Subjects included in the study must have met the American 
Society of Anesthesiology (ASA) Class I physical condition, had a body 
mass index of 20–30 kg/m2, no long-term use of sedatives or psychotropic 
drugs, no history of alcohol abuse, and no stroke, epilepsy, brain damage 
or other brain complications.

2.2 Study procedures and data collection

The researchers employed computer-generated random numbers 
to randomly assign all subjects into two groups: a propofol group (1% 
propofol injection, 10 mL: 100 mg) (P group) and a propofol-
etomidate group (1% propofol injection, 10 mL: 100 mg, and 0.2% 
etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP 
group). eTable 1 summarizes the intravenous anesthesia regimen for 
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both patient groups. During the operation, blood pressure was 
maintained within 20% of the baseline value. Sufentanil and 
cisatracurium were administered as appropriate by the anesthesiologist 
based on the procedure being performed. If intravenous anesthesia 
did not achieve the required depth of surgical anesthesia, sevoflurane 
inhalation anesthesia was introduced. All subjects were required to 
fast for 8 h before surgery. The EEG was continuously recorded using 
a Sedline Brain Function Monitor (Masimo Corporation) throughout 
the anesthesia process, from the time the patient entered the operating 
room until their exit. The monitoring electrodes included Fp1, Fp2, 
F7, F8, and the ground electrode Fpz, which were positioned to ensure 
an impedance of ≤5 kΩ, an amplitude of 5 μV/mm, a rolling speed of 
30 mm/s, and a signal sampling rate of 179 Hz. The PSI (ranging from 
0 to 100, where 100 indicates “fully awake” and 0 indicates 
“isoelectricity”), automatically generated by Sedline, served as an 
indicator of consciousness during anesthesia and provided an 
alternative to the BIS (21). The intraoperative depth of anesthesia was 
maintained at a PSI value between 25 and 50. Additionally, an 
electrocardiogram monitor was utilized to continuously track the 
patient’s vital signs, including non-invasive mean arterial pressure 
(MAP), heart rate (HR), electrocardiogram (ECG), respiratory rate, 
and peripheral blood oxygen saturation (SPO2). Intraoperative 
awareness was assessed using the modified Brice assessment (22).

2.3 Assessment of consciousness level

The Expert assessment of consciousness level (EACL) (23) 
represents the average anesthesia depth scores assigned by six 
experienced anesthesiologists, each possessing over 10  years of 
experience in the field. These scores were derived from both anesthesia 
records and the anesthesiologists’ professional judgment, establishing 
the EACL as a gold standard for assessing levels of consciousness. 
We used it as a reference standard for the output of machine learning 
models. In the context of general anesthesia, which encompasses 
induction, maintenance, and recovery phases, the depth of anesthesia 
transitions from shallow to deep and back to shallow. The EACL 
values obtained range from 0 to 100, akin to the Bispectral Index (BIS).

2.4 EEG preprocessing and feature 
extraction

The native EEG signal was resampled to 200 Hz, and EEG signals 
were preprocessed using MNE tool (24). A bandpass filter (0.5–40 Hz) 
as well as a Notch filter (50 Hz) were employed to remove baseline 
drift and wire noise interference. To further remove artifacts, 
researchers with experience in EEG recognition used a Python 
program written to graphically and manually cut EEG signals, 
discarding the highly intrusive portions and leaving clean EEG signals 
selectively. For each patient’s EEG, 2-min EEG segments were selected 
at each of the three anesthetic stages. Detailed information on EEG 
data was provided in eTable 2.

In this study, the PSD of the EEG signals was calculated using the 
Welch method, and the average absolute power of the signals in each 
frequency band [delta (0.5–5 Hz), theta (5–8 Hz), alpha (8–13 Hz), beta 
(13–26 Hz), and gamma (26–40 Hz)] were calculated according to the 
PSD. The YASA software library (25) was used to calculate the 
spectrogram features of the EEG signal with a sliding window of 2 s 

without overlap. A total of six EEG features were extracted in this study, 
where the beta ratio was defined as the ratio of the high-frequency band 
power (30–37 Hz) to the low-frequency band power (11–20 Hz), and 
permutation entropy was used as a typical nonlinear analytical method 
for measuring EEG signals during anesthesia and coma (20, 26). The 
PAC of delta to alpha was such that the phase of the low-frequency 
rhythmic delta modulated the amplitude of the high-frequency alpha 
wave oscillations, allowing for a more accurate assessment of arousal and 
anesthesia statuses. The modulation index (MI) was ideal for detecting 
PAC between two target frequency ranges. The detailed formulae for 
calculating the relevant values are shown in eAppendix 1.

2.5 Machine learning models and 
evaluation metrics

We selected four commonly used machine learning models: SVM 
(27), GNB (28), ANN (29), and our own constructed 1D CNN model. 
Neural networks have been extensively studied for EEG classification 
tasks (30–32). The first three models utilized the Scikit-learn machine 
learning library (33) for training and evaluation. Convolutional 
networks emphasize the extraction of local features and require less 
computational power, enabling them to learn EEG signals end-to-end 
from both the time and frequency domains (34). Gu et al. (32) argue 
that manual feature extraction is superior to directly inputting raw 
EEG data into the network for end-to-end learning. Consequently, 
we intentionally developed a more complex and effective 1D CNN 
model capable of accepting manually extracted EEG features. The 
proposed one-dimensional CNN model comprises five distinct types 
of layers: convolutional layers for feature extraction, pooling layers to 
reduce computational workload, batch normalization layers to 
stabilize model parameter learning, dropout layers to mitigate 
overfitting, and fully connected layers for classifying model outputs. 
In addition to the input layer, there are a total of four layers. The first 
three are feature extraction layers, all of which are one-dimensional 
convolutional layers, while the final output layer is a linear layer with 
three categories. For further details on the features and network 
structure, please refer to Table in eAppendix 1.

The deep learning framework used in the experiments was 
Pytorch (35). The common evaluation metrics of machine learning 
used in this study were accuracy, precision, recall, and the F1 score. 
Their formulas are detailed in eAppendix 1. We  apply Gradient 
Weighted Class Activation Mapping (Grad-CAM) (36) to 1D CNNs 
to better account for the classification accuracy associated with the 
model features in Supplement 2.

2.6 Statistical methods

Previous relevant exploratory studies (32, 37) provided a sample 
size of approximately 20 cases and obtained stable dose estimates. This 
cohort study ultimately included 40 patients. Statistical analyses were 
performed using GraphPad Prism software version 10.0, and all data 
were subjected to the Shapiro–Wilk test to assess data normality, with 
normally distributed values expressed as the mean ± standard error or 
standard deviation, else as the interquartile range. Categorical 
variables are expressed as percentages. For basic information and 
anesthesia characteristics of univariate variables, an unpaired t-test 
was used to analyze normally distributed variables, the 
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Mann–Whitney U-test for non-normal variables, and Fisher’s exact 
test for categorical variables. To analyze the impact of two anesthetic 
drugs on EEG characteristics and vital sign values at different stages 
of anesthesia, we  conducted a two-factor analysis of variance 
(Two-way ANOVA), in which the comparison of the two types of 
drugs was between groups, and the comparison of each stage of 
anesthesia was within groups. The comparison between groups and 
within-group comparisons were performed using the Bonferroni 
correction and Tukey’s multiple comparisons test, respectively. The 
performance of the four model classification methods was compared 
using the non-parametric Wilcoxon signed-rank test. Statistical 
significance was considered to be  achieved when the p-value 
was <0.05.

3 Results

3.1 Primary outcome

3.1.1 Clinical characteristics of patients and 
machine learning

Four cases were excluded from the study, and there were two 
instances of intravenous anesthesia failure. In total, clinical 
characteristics from 40 young patients undergoing intravenous general 
anesthesia were analyzed (refer to eTable  3 and eFigure  1 for the 
grouping flowchart and clinical characteristics). All patients completed 
the entire anesthesia process, resulting in a sample size ratio of 40:40:40 
across the three stages of anesthesia. We extracted 2-min artifact-free 
EEG segments for periodic analysis, yielding a total of 644 2-min EEG 
segments spanning the three stages of anesthesia. We calculated the 

EEG features using a sliding window of 2 s without overlapping. All 
feature information were flattened into one-dimensional features and 
stitched together. The ratio of the training set to the test set was 
established at 7:3, and 40-fold cross-validation was conducted on a 
random sample from the dataset. Figure 1 illustrates the flowchart of 
machine learning EEG features for classifying anesthesia awareness.

3.1.2 Machine learning classification assessment
To identify significant EEG characteristic signals associated with 

consciousness, we individually combined each feature within the 1D 
CNN model, with the results presented in Table 1. The PSD showed 
higher accuracy (94%), followed by the alpha/beta ratio (72%), and 
the lowest accuracy was the PAC (53%). When all features were 
aggregated in the 1D CNN model, the classification accuracy 
increased to 97%. The inclusion of the PAC increased model accuracy 
from 94 to 97%, suggesting that the PAC was important for monitoring 
changes in levels of consciousness. Furthermore, we compared the 
performance of the 1D CNN models against the SVM, GNB, and 
ANN models, with the results detailed in Table  2. The precision, 
F1-score and classification accuracy of the CNN model across the 
three anesthesia stages surpassed those of the other three models. 
Statistical analyses indicated that the differences between the CNN 
and the other models were significant (p < 0.05).

3.2 Exploratory outcomes

3.2.1 Power spectrum analysis
The spectrograms (Figures  2A,B) and raw EEG waves 

(Figures 3A,B) of both groups exhibited similar oscillations in the 

FIGURE 1

Flowchart of machine learning EEG features for classification of anesthesia awareness. EEG, electroencephalogram; DBR, delta/beta ratio; ABR, alpha/
beta ratio; PSD, power spectral density; PAC, phase amplitude coupling; SVM, support vector machine; GNB, Gaussian Bayes; ANN, artificial neural 
network; CNN, convolutional neural network.
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delta, theta, and alpha bands during the maintenance period; both 
groups showed a “zip” opening pattern with beta-gamma oscillations 
during the pre-extubation period. Notably, the EP group displayed 
higher power in the delta and theta frequency ranges during the 
induction period in Figures 2C–E.

In Figures 3C–H, the statistical analysis of grouped histograms 
reveals significant differences. During the anesthesia induction and 
sedation period, the delta, theta and total power values of the EP 
group were notably higher than those of the P group. The between-
group analysis indicated that, during the induction period, the means 
and mean differences ± standard errors for the power values of the EP 
group and the P group were as follows: delta (23.85 and 16.79, 
7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, 
p < 0.02), beta (5.842 and 9.825, −3.983 ± 1.008, p < 0.001), and total 
power values (24.31 and 19.72, 4.59 ± 0.711, p < 0.001), respectively. No 
significant differences were observed in the power values of the 
frequency bands between the two groups during the anesthetic 
maintenance period and the pre-extubation period. In the two-group 
analysis, the delta, theta, and total power values of the EP group were 
highest during the induction phase, followed by the maintenance 
phase, with the lowest values observed before extubation. The 
differences in delta power were 6.469 (induction vs. maintenance) and 
7.835 (maintenance vs. before extubation). The differences in theta 
power were 4.081 (induction vs. maintenance) and 3.839 (maintenance 
vs. before extubation). Additionally, the differences in total power 
values were 4.395 (induction vs. maintenance) and 6.101 (maintenance 
vs. before extubation). The mean differences in alpha values were 
6.191 (maintenance vs. induction) and 6.677 (maintenance vs. before 
extubation), with all p-values being <0.001. Similarly, the alpha and 

theta power values of the P group exhibited significant differences 
across the three phases. The differences in alpha power were 5.115 
(maintenance vs. induction) and 3.907 (induction vs. before 
extubation), while the differences in theta power were 3.175 (induction 
vs. maintenance) and 4.401 (maintenance vs. before extubation), with 
all p-values also <0.001.

3.2.2 PAC
As illustrated in Figures  4A–F, the right comodulograms 

demonstrated that the modulation intensity of the delta phase on 
alpha oscillation in the EP and P groups was greater during the 
maintenance stage compared to the other two stages. Additionally, the 
left PAC graphs (Figures 4C,D) indicated that the average amplitude 
of the alpha band during the maintenance period was unevenly 
distributed within the delta phase [Statistical results: p < 0.001, test 
stationarity, Tensorpac tool (38)]. The coupling between the delta 
phase and alpha oscillation amplitude in both groups was further 
quantified using the MI value presented in Figure 4G. The statistical 
analysis revealed that the MI value for the EP group was notably 
higher during the maintenance period (maintenance vs. sedation, the 
mean difference was 0.0002, p < 0.05); however, no statistically 
significant differences were observed in MI values between the EP and 
P groups. Therefore, alpha-delta PAC was found to be stronger in both 
the EP and P groups during the anesthesia maintenance period.

4 Discussion

This study employed deep learning techniques to categorize 
anesthesia-induced unconsciousness based on frontal 
electroencephalogram features in young patients receiving intravenous 
anesthesia with either propofol or a propofol-etomidate combination. 
Six types of EEG signals, associated with two drug groups and different 
states of consciousness, were extracted for model input. The developed 
1D CNN model was compared against SVM, GNB, and ANN 
regarding their accuracy in classifying the three anesthesia states. All 
four models effectively identified the three anesthesia states, with the 
CNN model exhibiting the highest accuracy. The various EEG signals, 
as well as the alpha/beta ratios and power spectrum features, exhibited 
high accuracy. These findings suggest that the power spectrum and 
alpha/beta ratio can serve as straightforward and interpretable 
methods for predicting patient consciousness during anesthesia in 
clinical practice. Our 1D CNN model shows promising advantages in 
predicting the consciousness state during propofol intravenous 
anesthesia. Additionally, the study revealed marked differences in EEG 
patterns between the two groups during induced sedation. The P 
group initially displayed prominent beta and alpha oscillations, 

TABLE 1 The results of 1D CNN learning single feature and multiple 
features.

Single 
feature

Classification 
accuracy

All 
features

Classification 
accuracy

Delta/Beta 58% Include PAC 

diagram

97%

Alpha/Beta 72% Not include 

PAC diagram

94%

Beta ratio (BR) 64%

Permutation 

entropy

69%

PSD 94%

PAC diagram 53%

PAC, Phase amplitude coupling; CNN, Convolutional neural networks; PSD, Power spectral 
density.

TABLE 2 Comparison of four models for anesthesia classification of EEG features.

Precision 
induction

F1-score 
induction

Precision 
maintenance

F1-score 
maintenance

Precision before 
extubation

F1-score before 
extubation

Accuracy

CNN 100% 100% 100% 95% 94% 97% 97%

SVM 91% 80% 83% 91% 77% 80% 83%

GNB 90% 75% 77% 87% 77% 80% 81%

ANN 92% 85% 75% 82% 83% 83% 83%

CNN, Convolutional neural networks; SVM, Support vector machine; GNB, Gaussian naive Bayes; ANN, Artificial neural networks; EEG, electroencephalogram.
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transitioning to delta and theta oscillations. In contrast, the EP group 
exhibited substantial high-amplitude delta and theta oscillations, 
along with reduced alpha oscillations, and higher total power. 
Interestingly, EEG patterns in the EP group resembled those of the P 
group during the maintenance and before extubation periods.

Our research demonstrates that various EEG features associated 
with consciousness, including frequency domain features, entropy 
features, and phase-amplitude coupling features, serve as inputs to our 
model. By categorizing three stages of anesthesia—induction, 
maintenance, and before extubation—as outputs, our CNN model 
achieves superior accuracy in classifying anesthesia states compared 
to traditional machine learning methods. We employed a tailored 
4-layer 1D CNN architecture designed to decode band power 
characteristics (39). Previous studies (40, 41) have utilized CNNs for 
classification learning. The computational demand is minimal, as the 
convolutional layer effectively extracts local features while the pooling 
layer reduces data dimensionality. We implemented Dropout layers, 
BatchNorm layers, and the Adamw (42) optimization method, along 
with 40-fold cross-validation, to effectively mitigate model overfitting. 
Additionally, our Grad-CAM technique provided further evidence of 
the 1D CNNs model’s proficiency in recognizing input features.

Compared to previous studies employing machine learning to 
monitor states of consciousness, our model performed well. Two 

recent studies (15, 43) conducted machine learning on EEG signals 
of healthy volunteers under sedation with multiple anesthetic drugs. 
These models, which selected multiple quantitative EEG features to 
track propofol-induced unconsciousness, achieved an average area 
under the curve (AUC) exceeding 0.95. However, these studies 
focused solely on sedation and did not encompass deep anesthesia. 
In contrast, our study involved the classification of conscious states 
during anesthesia throughout surgical procedures. Furthermore, an 
evaluation of consciousness state classification based on four types 
of EEG features combined with ANN and SVM models (32) revealed 
relatively low classification accuracy for propofol intravenous 
anesthesia (ANN: 79.1%, SVM: 76.7%), thereby underscoring the 
superiority of our model. Dubost et al. (19) identified that the frontal 
lobe channel F8 and the temporal lobe channel T7 are optimal for 
detecting anesthesia depth, with the prefrontal cortex serving as a 
crucial node in the arousal circuit (44). The selection of 10 spectral 
features that effectively distinguish between awake and sleeping 
states better predicted anesthesia depth. Our study’s results further 
indicate that PSD derived from frontal lobe EEG monitoring, 
utilized as input for the 1D CNN model, can more accurately classify 
anesthesia consciousness. Additionally, the accuracy is expected to 
improve further by integrating various consciousness-related 
EEG signals.

FIGURE 2

Spectrograms and spectral analysis of EP group and P group. (A,B) Spectrograms of EP group and P group in three stages; (C–E) Spectral analysis of EP 
group (Blue line, median; shaded area, 25th–75th percentiles) and P group (yellow line, median; shaded area, 25th–75th percentile) in three stages. 
During the induction period, the original EEG of the EP group showed alpha oscillations and significant data and theta oscillations, without obvious fast 
wave oscillations (13–40  Hz), while the original EEG of the P group showed beta, alpha, delta, and theta oscillations. The two black horizontal lines in 
(C) pointed out the spectral differences between the two groups of drugs in fast and slow wave oscillations. The data, theta, and total power values of 
both groups decreased after induction, while the alpha power value increased.
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The EEG features of propofol-etomidate and propofol 
administration are associated with gamma-aminobutyric acid type A 
(GABAA) receptors in the central nervous system. The sedative effect 
of propofol is related to the GABAA receptor subtype and the 
position of the β1, β2, and β3 subunits of the transmembrane domain 
(45). Etomidate regulates and activates the β2 and β3 subunits of the 
transmembrane domain by acting on the GABAA receptor, while 
exerting minimal influence on the β1-containing receptor (46). The 
distinct binding sites for etomidate and propofol at the GABA 
receptor elucidate the basis for their differing affinities. Therefore, 
propofol-etomidate operates similarly to propofol (47, 48), as both 
agents inhibit neuronal firing in the cortex, thalamus, and reticular 
formation (49), and induce highly structured thalamocortical 
oscillations alongside slow oscillations that contribute to 
fragmentation of cortical activity (3, 4). Our experiments 
preliminarily show that this large-amplitude slow oscillation mode 
can be  used as the EEG characteristic of propofol-etomidate 
administration resulting in loss of consciousness under general 
anesthesia. Additionally, we observed quantitative differences in the 
EEG power spectra between the two drugs. This observation aligns 
with Lei Zhang’s experimental findings (50), which suggest that the 
neural circuit mechanisms underlying etomidate-induced loss of 
consciousness are closely associated with the enhancement of 
coherence in delta, alpha, and theta waves, resulting in an increased 
total power spectrum value. A study (49) comparing intravenous 

anesthesia using propofol alone versus etomidate found that both 
drugs induced peak EEG power in the 12 to 13 Hz range. However, 
etomidate anesthesia also exhibited oscillations in the 7 to 8 Hz band, 
indicating more pronounced EEG changes compared to propofol. 
Our study results suggest that etomidate may alter EEG characteristics 
following propofol anesthesia, particularly with high doses 
administered over a short duration. Specifically, the combination of 
high doses of propofol and etomidate during the induction phase of 
anesthesia resulted in a low-frequency, high-amplitude EEG pattern. 
In contrast, the dose of etomidate during the maintenance and 
recovery phases did not significantly impact propofol-induced EEG 
characteristics. Future research could explore the specific etomidate 
dosage or concentration that could affect propofol’s EEG signal. These 
drug-induced EEG patterns associated with consciousness, such as 
delta waves and power spectral density, were utilized as model 
features to enhance model performance.

Studies have identified delta oscillations, spectral slope changes, 
and increases in alpha power associated with propofol anesthesia 
(51–53) as potential biomarkers for loss of consciousness. Specifically, 
Purdon et al. (3) found that GABA-type general anesthetics modulate 
the PAC of the alpha amplitude through a low-frequency phase, 
disrupting thalamocortical neuron transmission and thereby 
inhibiting the spread of information within the brain. This 
mechanism is also implicated in the loss of consciousness. Our study 
demonstrated that both treatment groups maintained a robust 

FIGURE 3

Raw EEG waveforms and five frequency band powers in the EP group and P group. (A,B) Raw EEG waveforms of the unprocessed Fp2 channel in the 
EP group and P group during the three stages of induction, maintenance, and before extubation. During the induction period, the distribution of red 
markers and green markers represent the difference between the two groups of slow-wave oscillations and fast-wave oscillations; (C–H) The power of 
each frequency band in the EP group and P group in the three stages vary within groups and between groups. Statistical significance is expressed as: 
*p  <  0.033, **p  <  0.002, ***p  <  0.001.
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coupling of the delta phase to the alpha amplitude following 
intravenous anesthesia, with the anesthesia maintenance phase 
exhibiting significantly stronger coupling than both the induction 
and recovery phases. This finding may serve as an indicator for 
assessing the depth of anesthesia. The spectrogram and PAC observed 
in our study align with previous research findings (54). The 
mechanism of the effect of the two drugs on the PAC of neural 
activity in human cortical and subcortical regions remains to 
be  unequivocally elucidated (54). Helfrich et  al. (55) found that 
weakened or decoupled PAC is related to brain atrophy and cognitive 
function impairment. Therefore, PAC can not only track the state of 
anesthesia but also reflect the degree of brain health, providing 
valuable insights for predicting the impact of anesthetic drugs on 
cognitive impairment. Although PAC demonstrated a relatively low 

classification accuracy (53%) in this study’s model, its inclusion 
among multiple EEG feature inputs enhanced the model’s 
classification accuracy from 94 to 97%.

Our experimental approach had several limitations. Firstly, the 
training sample size was relatively small, and the test population 
comprised young and healthy patients undergoing oral and 
maxillofacial surgery. Consequently, our findings cannot 
be generalized to other age groups, individuals with frail health, or 
different types of surgeries; thus, larger and more diverse cohort 
studies are necessary. Secondly, the applicability of our 1D CNN 
model to other types of anesthetic drugs necessitates further 
validation. Furthermore, although we enhanced the interpretability 
of the model by optimizing feature extraction, streamlining the 
model structure, utilizing appropriate evaluation performance 

FIGURE 4

Phase-amplitude coupling patterns of patients in the EP group and P group. (A,C,E) represents the EP group. (B,D,F) represents the P group. The green 
picture on the right is the prefrontal cortex comodulograms, showing the modulation intensity of delta phase to high-frequency alpha band oscillation 
in various stages of anesthesia. Whether the average amplitude distribution of the phase-amplitude coupling diagram on the left is even or not 
represents whether the phase-amplitude coupling is missing; (G) The delta phase to alpha amplitude MI of patients in EP and P groups were compared 
during the three stages of anesthesia.
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metrics, and employing heat maps generated by Grad-CAM, 
additional clinical test sets and other interpretability tools are 
required for further validation.

5 Conclusion

In summary, the machine learning model based on a 1D CNN can 
more effectively leverage original EEG signals for automated analysis, 
positioning it as an innovative tool for evaluating anesthesia depth. 
Notably, the observation of significant slow-wave oscillations, changes 
in power spectral density, and variations in the alpha/beta ratio can 
provide anesthesiologists with a straightforward and practical method 
to assess alterations in consciousness levels induced by intravenous 
anesthetic agents.
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