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CAR-T therapy has demonstrated great success in treating hematological malignancies, 
which has led to further research into its potential in treating other diseases. 
Autoimmune diseases have great potential to be treated with this therapy due 
to the possibility of specific targeting of pathological immune cells and cells that 
produce autoantibodies, which could lead to permanent healing and restoration 
of immunological tolerance. Several approaches are currently under investigation, 
including targeting and depleting B cells via CD19 in the early stages of the disease, 
simultaneously targeting B cells and memory plasma cells in later stages and 
refractory states, as well as targeting specific autoantigens through the chimeric 
autoantibody receptor (CAAR). Additionally, CAR-engineered T regulatory cells 
can be modified to specifically target the autoimmune niche and modulate the 
pathological immune response. The encouraging results from preclinical studies have 
led to the first successful use of CAR-T therapy in humans to treat autoimmunity. 
This paved the way for further clinical studies, aiming to evaluate the long-term 
safety and efficacy of these therapies, potentially revolutionizing clinical use.
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1 Introduction

Autoimmune diseases encompass a heterogeneous group of conditions that can be manifested 
in a particular organ or at the systemic level. Despite their diversity, they share common 
immunopathogenic mechanisms involving dysregulated T and B cell responses. A combination 
of factors such as genetic predisposition and environmental triggers mainly influences the 
development of autoimmune disorders, leading to the breakdown of self-tolerance and pathological 
immune reactions, causing tissue destruction (1). T and B lymphocytes play crucial roles in the 
immune system, acting as the main drivers of adaptive immunity. CD4+ T lymphocytes orchestrate 
immune responses by releasing cytokines and activating other immune cells (2). When CD4+ T 
lymphocytes malfunction, autoreactive T cells can be generated, leading to persistent inflammation 
and tissue damage. Similarly, when B lymphocytes are not appropriately regulated, they can start 
producing autoantibodies that target self-antigens, contributing to tissue damage (1, 3, 4). An 
in-depth understanding of these processes is essential for developing precisely targeted 
interventions without damaging healthy tissue.

Ensuring the desired immune response is crucial to re-establishing immune tolerance and 
effectively mitigating the consequences of the disease. Conventional treatments for these diseases 
tend to focus on symptom management, often resulting in undesirable side effects and limited 
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effectiveness. However, a more effective strategy would involve treatments 
that focus on the root cause of the disease, such as chimeric antigen 
receptor T (CAR-T) cell therapy. Recent advancements in CAR-T therapy 
hold promise in treating autoimmune diseases.

CAR-T therapy involves genetically engineering a patient’s T cells to 
express chimeric antigen receptors (CARs) that target specific antigens. 
CD19 is the most investigated target for CAR-based therapy. It is 
expressed in normal and neoplastic B cells and maintained at a high level 
during all stages of B-cell development (5, 6). CD19+ malignancies were 
the first cancers to be eliminated by CAR-engineered human T cells 
administered intravenously to mice (7). Various CD19 CARs successfully 
eliminated B cell tumors, resulting in ongoing clinical trials and FDA 
approval (8, 9). Similarly, B-cell depletion could also be a promising 
therapeutic strategy for treating autoimmune diseases. Moreover, other 
strategies are under investigation, such as restricted B cell depletion by 
targeting autoantigens, dual targeting, and engineering regulatory T cells 
(Tregs), which will be further reviewed (Figure 1).

1.1 Chimeric antigen receptor 
characteristics, design, and manufacturing

Chimeric antigen receptors (CARs) are modified receptors that alter 
the specificity and activity of T lymphocytes and other immune cells, by 
bringing together the variable regions of high affinity monoclonal 
antibodies with intracellular signaling components of the T-cell receptor 
(TCR) complex. Their modulatory structure consists of four domains: 
ligand-binding, spacer, transmembrane, and cytoplasmic domains (10). 
CARs bind to antigens through an extracellular portion composed of a 
ligand-binding domain and spacer, typically constructed using single-
chain variable fragments (scFv) derived from antibodies, Fab fragments 
from libraries, or natural ligands. Most commonly used, scFvs can 
function autonomously or as modular units for CAR-T cell therapies, 
determining the ability of modified T cells to recognize and target desired 
antigens (11). CAR-mediated recognition is MHC-independent, allowing 
it to overcome tolerance to self-antigens and target any chosen antigen 

expressed on the cell surface (12, 13). CARs also control T cell growth 
and persistence, impacting both efficacy and safety. Associating CARs 
with costimulatory ligands, chimeric costimulatory receptors, or 
cytokines can improve T cell efficacy, specificity, and safety (11, 14, 15).

T cells that express first-generation CARs lacking a co-stimulatory 
domain are insufficient for T cell activation and show limited in vivo 
effectiveness (16, 17). The second-generation CARs were developed 
to address this issue by adding a co-stimulatory domain, commonly 
CD28 and 4-1BB (CD137). Co-stimulatory domains provide 
additional signals upon antigen recognition, which is crucial for 
enhanced proliferation, cytokine release, cytotoxic activity, memory 
formation, and persistence of T cells (18). CAR-T cells with the CD28 
intracellular co-stimulatory domain demonstrated significantly 
increased proliferation and persistence compared to those without a 
co-stimulatory domain (19). Moreover, CAR-T cells containing the 
CD28 domain showed better early growth and cytotoxic activity than 
those containing the 41BB costimulatory domain, which showed 
better long-term survival (20). Following, the third-generation of 
CARs incorporates multiple co-stimulatory domains, while fourth-
generation CARs are engineered to express additional inducible 
transgenic elements, typically for inducible cytokine secretion, to 
improve T cell function and reduce off-target toxicity (14, 21, 22).

The process of CAR-T cell manufacturing begins with harvesting 
specific T cell subsets from patients via leukapheresis, washing them, 
and enriching them for specific subsets. Subsequently, T cells undergo 
activation to ensure adequate transduction of CAR cDNA. CAR gene 
delivery relies on viral and non-viral gene transfer systems. Following 
transduction, modified T cells are expanded and, after final 
concentration, ready to give back to patients (23).

2 CD19-targeted CAR-T cell therapy 
for autoimmune diseases

Systemic lupus erythematosus (SLE) is a systemic autoimmune 
disease affecting various organs and tissues. A key role in SLE 

FIGURE 1

Overview of the various strategies employed in engineering CAR-T cells to tackle autoimmune diseases. These innovative approaches encompass 
(from left to right) universal targeting of all B cells; the dual targeting or compound CAR engineering targeting B cells and additional cells such as 
memory plasma cells; restricted B cell depletion or specific targeting of only autoreactive B cells; and the engineering of T regulatory cells. Created in 
Biorender.
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immunopathogenesis play B cells by producing autoantibodies 
targeting double-stranded DNA, that cause inflammation and 
tissue damage. Despite several therapeutic approaches targeting 
autoreactive B lymphocytes, SLE remains incurable (6). Due to 
sustained expression of CD19  in B-cell lineage, CD19 CAR-T 
therapy can potentially treat lupus by offering precision targeting 
and regulating the overall immune response (5, 6). Modifying T 
cells with CD19-targeting CAR and targeting CD19+ B cells may 
restore immune balance, decrease autoantibody production, and 
reduce the inflammatory response associated with lupus. 
Preclinical results indicate that anti-CD19 CAR-T cells are 
effective in depleting CD19+ B cells in a lupus model, eliminating 
autoantibody production, reversing disease manifestation in 
target organs, and increasing lifespan, suggesting long-term 
efficacy of this therapeutic approach (24, 25). Recently, 
encouraging effects have been shown in humans for anti-CD19 
CAR-T treatment of SLE. A patient with severe SLE was treated 
with autologous CD19 CAR-T cells and exhibited complete and 
sustained depletion of circulating B cells, followed by the 
disappearance of dsDNA autoantibodies. The therapy showed no 
adverse events and suggested wider application in treating severe 
autoimmune (26). This result was confirmed by another study that 
treated five refractory SLE patients with anti-CD19 CAR-T. All 
patients demonstrated sustained remission 1 year following the 
treatment. Three months following the treatment, naïve B cells 
reappeared without a relapse of SLE symptoms. This finding 
suggests that CAR-T in autoimmunity, due to different 
microenvironments, demonstrates transient persistence and 
achieves acute B cell aplasia, effectively resetting the immune 
system (27). In a recent update to its SLE management guidelines, 
the European League Against Rheumatism (EULAR) included 
CAR-T as one of the treatment options for patients with refractory 
SLE (28). However, further clinical trials are needed to evaluate 
the long-term safety and efficacy of anti-CD19 CAR-T in SLE.

Furthermore, another successful human treatment with anti-
CD19 CAR-T therapy has been reported for treating another 
autoimmune disease, myasthenia gravis, caused by a B-cell-driven 
dysfunction of neuromuscular transmission, often mediated by anti-
acetylcholine receptor (anti-AchR) antibodies. A patient with 
refractory, anti-AchR positive generalized myasthenia gravis was 
successfully treated with anti-CD19 CAR-T therapy, followed by 
reduced anti-Achr antibodies without any CAR-T therapy-related side 
effects, demonstrating improved muscle strength and fatigue (29).

Additionally, two separate studies reported successfully treating two 
patients suffering from refractory antisynthetase syndrome with anti-
CD19 CAR-T therapy (30, 31). This syndrome is characterized by the 
presence of autoantibodies directed against aminoacyl transfer RNA 
synthetase, along with clinical features such as interstitial lung disease, 
myositis, and arthritis. The therapy completely eliminated circulating B 
cells as well as pathogenic autoantibodies, and both patients experienced 
improved disease-related symptoms. One patient had a transient 
increase in myalgia and creatinine kinase concentration due to one of 
the most common side effects of CAR-T therapy, cytokine release 
syndrome (CRS), which resolved within 3 days (30). The second patient 
also experienced mild CRS, which might have stimulated preexisting 
autoreactive T cells, as an increased number of CD8+ Temra cells in 
peripheral blood were found, accompanied by exacerbations of muscle 
pain a few days following the treatment. Treatment with azathioprine 

and mycophenolate mofetil normalized Temra subsets and potentially 
contributed to the patient’s beneficial outcome (31).

3 Dual targeting for optimal treatment 
of autoimmune diseases

Early in the disease course, CD19-based therapy may prevent 
autoreactive plasma cell accumulation, but later, memory plasma cells 
may accumulate and lead to persistent autoantibody production 
despite B-cell depletion (32, 33). CD19, one of the earliest and most 
specific markers of B-lineage cells, may not be expressed in all plasma 
cells. Plasma cells express CD19 heterogeneously, and memory plasma 
cells are among the CD19-negative plasma cell populations (33–35). 
Additionally, B cell activating factor (BAFF) cytokine, a member of 
the TNF superfamily, plays a crucial role in promoting the survival 
and function of B cells and memory plasma cells (36, 37). BAFF can 
bind to BAFF-receptor (BAFFR), Transmembrane Activator and 
CAML-interactor (TACI) and B-Cell Maturation Antigen (BCMA) 
and these three receptors have distinctive roles in regulating B cells 
function (37, 38). Overexpression of BAFF leads to the development 
of autoreactive B cells and displays autoimmune-like symptoms in 
mice, highlighting the significance of dysregulated BAFF expression 
in autoimmunity (39). Moreover, autoimmune diseases have been 
associated with sustained high levels of BAFF, making inhibiting 
BAFF signaling a promising therapeutic approach (40–43). Further, 
BCMA has shown to be essential for survival of plasma cells and 
memory plasma cells and increased expression of BCMA has been 
observed in SLE patients (44, 45). Therefore, targeting both B and 
memory plasma cells may be more effective, leading to the complete 
removal of autoantibodies. By combining various types of CARs with 
CD19, such as BAFF, BCMA or BAFFR, the effectiveness of CAR-T 
cells could be improved. This can be achieved by engineering two 
pools of T cells, each expressing different CARs, or by incorporating 
multiple antigen recognition domains within a single CAR construct, 
called a compound CAR (cCAR) (46). Recently, an early phase 1 
clinical trial has started to evaluate the effectiveness of CD19-BAFF 
CAR-T cell therapy for autoimmune diseases (NCT06279923). 
Nevertheless, several clinical trials have started investigating the safety 
and efficacy of CD19-BCMA CAR-T cell infusion in various 
autoimmune conditions (Table 1).

TABLE 1 Clinical trials using BCMA-CD19-CAR T therapy for autoimmune 
diseases.

Condition NTC number

Refractory systemic lupus erythematosus 05030779

Refractory systemic lupus erythematosus 05846347

Refractory systemic lupus erythematosus 05858684

Relapsed/refractory systemic lupus erythematosus 05474885

Refractory scleroderma 05085444

Refractory immune nephritis 05085418

Refractory immune nephritis 05085418

Refractory Sjogren’s syndrome 05085431

Refractory POEMS syndrome, amyloidosis, autoimmune 

hemolytic anemia, vasculitis

05263817
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4 Chimeric autoantibody receptor 
engineering in autoimmune diseases

The use of chimeric autoantibody receptor (CAAR) T cells to 
precisely target autoantigen-specific B cell subpopulations and overcome 
complete B cell depletion is an emerging area of research. For 
autoimmune diseases caused by specific autoantibodies produced by 
individual B cell clones, these therapeutic T cells can be genetically 
engineered with a CAR targeting specific antigen of autoantibodies on 
autoreactive cells to suppress or modulate the immune response without 
affecting healthy tissues. CAAR-T provides a more targeted and 
personalized approach compared to traditional immunosuppressive 
therapies. Similar to CD19-specific CAR-T cells, CAAR-Ts function 
analogously by specifically targeting autoantigens, leading to the 
destruction of pathological immune cells. Additionally, natural killer 
(NK) cells expressing CAAR can also specifically remove pathological 
B cells in vitro and could be potentially investigated in future clinical 
trials (47, 48). Preclinical findings have shown the encouraging potential 
of CAAR-T cells in treating several autoimmune conditions (48–51).

Namely, NMDAR encephalitis is the most common autoimmune 
encephalitis, leading to psychosis, seizures, and autonomic 
dysfunction caused by anti-NMDA receptor (NMDAR) 
autoantibodies. Preclinical research demonstrated the efficacy of 
NMDAR-specific CAAR-T cells in depletion and sustained reduction 
of autoantibody levels without off-target toxicity in a mouse model, 
suggesting phase I/II trials in the treatment of NMDAR encephalitis 
with NMDAR-CAAR T cells (50). Further, Pemphigus vulgaris (PV) 
is an autoimmune disease caused by autoantibodies to keratinocyte 
adhesion protein Dsg3. Eliminating anti-Dsg3 memory B cells could 
cure PV without general immunosuppression risks. An engineered 
chimeric autoantibody receptor (CAAR) that targets autoantigen 
Dsg3 has been shown to guide T cells to target and successfully 
eliminate autoreactive B cells in vivo in a humanized mouse model. 
CAAR-Ts demonstrated clear therapeutic potential for antibody-
mediated autoimmune diseases without off-target toxicity (51). Two 
CAAR-T cell therapies for treating human autoimmune diseases have 
entered clinical trials. A phase I  open-label study has begun to 
determine the maximum tolerated dose, infusion schedule, and safety 
of Dsg3-CAAR-T cells in patients with mucosal-dominant PV 
(NCT04422912). Also, another phase 1 study has begun evaluating the 
safety of MuSK-CAAR-T cell therapy for patients with Muscle-specific 
tyrosine kinase (MuSK) myasthenia gravis (NCT05451212). Moreover, 
various combinations of CAARs could be  used to enhance 
effectiveness in conditions where pathogenic autoantibodies target 
multiple autoantigens. Nevertheless, further studies are needed to 
demonstrate the long-term safety and efficacy of CAAR-T cells.

5 Engineered Tregs (CAR-Tregs) in 
autoimmune diseases

Regulatory T lymphocytes (Tregs) are small heterogenous 
subpopulation of T lymphocytes, that play a vital role in maintaining 
immunological balance. Tregs suppress the immune response by 
limiting the ability of antigen-presenting cells to initiate an adaptive 
immune response, inducing apoptosis of effector T cells, disrupting 
metabolic pathways, and releasing anti-inflammatory cytokines (52). 
Dysregulation of these processes can lead to Treg dysfunction, which 

can also manifest in activation defects. This creates an imbalance in 
the ratio between resting and activated Tregs, contributing to 
autoimmune processes (53, 54). Moreover, Treg levels or functional 
alterations are associated with many autoimmune disorders, and 
decreased Treg frequencies have been identified in several 
autoimmune diseases, which may be linked to disease severity (52, 
54–57). Altering the low frequency or dysfunction of Tregs is 
considered a novel approach to treating autoimmune disorders, with 
the primary goal of decreasing inflammation, facilitating tissue repair 
and restoring immune tolerance. Phase 1 clinical trials have indicated 
that infusion of autologous ex vivo-expanded Tregs is safe and well 
tolerated, with no significant adverse events (58). Antigen-specific 
Tregs have demonstrated greater efficacy and reduced risk of general 
immunosuppression compared to polyclonal Tregs in preclinical tests, 
indicating a potential therapeutic strategy for the future (59, 60). 
Several autoimmune diseases could benefit from antigen-specific 
CAR-Tregs, as described below.

Loss of Tregs has been identified as an important factor in the 
development of SLE (61). Moreover, Tregs in SLE patients have a 
reduced frequency and suppressive activity as well as an increased 
apoptosis rate compared to normal controls, suggesting new treatment 
options focused on Treg function (56). Overactive T cells in SLE can 
contribute to impaired immunological regulation, increased production 
of inflammatory cytokines, and an increase in effector T-cell 
phenotypes. IL-2 is a crucial factor for the expansion of Treg cells, and 
epigenetic silencing of the IL-2 gene in T cells leads to decreased 
production of IL-2, contributing to reduced Tregs and a secondary 
immune deficiency (62–64). Engineered anti-CD19 CAR-Tregs may 
improve their immune suppressive capabilities, block B cell 
proliferation, and restore the immune system’s normal composition in 
inflamed organs in a humanized mouse model of SLE (65).

Further, Tregs are essential in regulating CNS autoimmunity in 
several experimental autoimmune encephalomyelitis (EAE) models by 
limiting autoimmune inflammation through controlling cytokine 
secretion and modulating T effector cell proliferation and migration. 
Loss of Tregs worsens EAE severity, followed by increased 
pro-inflammatory cytokine production and proliferation of effector T 
cells, indicating that modulation of Tregs function could be an effective 
treatment approach (66). Animal models of EAE showed that CAR-Tregs 
could prevent, improve, and protect against the disease, effectively 
reducing or eliminating symptoms (67, 68). Furthermore, CAR-Tregs 
showed effectiveness in suppressing the manifestations of colitis in 
mouse models, indicating the viability of a CAR-Treg-based approach 
(69). Additionally, a study in mice examined antigen-specific CAR-Tregs 
for treating vitiligo, where GD3-reactive CAR-Tregs were generated. The 
results indicate that restoring peripheral Tregs can protect against skin 
depigmentation and that CAR-Tregs lead to increased secretion of IL-10, 
limit cytotoxicity toward melanocytes and delay depigmentation. This 
implies that antigen-specific CAR-Treg cells may have a positive effect 
on the control of long-term progressive depigmentation (70).

Type 1 diabetes mellitus (T1DM) is an autoimmune condition that 
attacks and destroys β cells in the pancreas. Although the frequency of 
Tregs in T1DM is normal, they exhibit an activation defect 
characterized by an increase in resting Tregs and a decrease in activated 
Tregs. A lower number of activated Tregs has been linked to a more 
severe clinical course, indicating its clinical significance (54). 
Therefore, delivering, redirecting, and activating T regulatory cells to 
target β cells could modulate the immune system and have therapeutic 
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effects. Insulin-specific CAR-Tregs obtained from CD4+ effector T 
cells have shown promising results in a mouse model of type 1 diabetes. 
These CAR-Tregs had a normal Treg phenotype, suppressive function, 
and stability. Although they could not prevent diabetes in mice, they 
have demonstrated clear therapeutic potential with minimal off-target 
toxicity (71). Further, a recent study aimed to evaluate the potential of 
using HPi2 targeting CAR-Tregs to restore immune balance and 
improve disease in T1D in vitro. HPi2 was hypothesized to target all 
human endocrine pancreatic islet cell subtypes, and this approach was 
chosen since autoimmune processes typically destroy most endogenous 
β cells. However, the study found that anti-HPi2-driven CAR-Tregs 
were unsuccessful due to their non-specificity for human pancreatic 
islets and high expression on CD4+ T cells, suggesting future studies 
should explore alternative islet-specific targets (72).

Rheumatoid arthritis (RA) is a common chronic autoimmune 
disease causing irreversible joint and bone damage. Tregs have been 
found to have impaired function or number in RA patients and thus 
could be used as a promising therapeutic target (73–76). A phase 
I  clinical trial is underway to assess the safety and efficacy of an 
autologous CAR-Treg cell-based therapy for treating RA 
(NCT06201416). This therapy specifically targets citrullinated proteins 
accumulated in the inflamed tissue associated with the disease to 
reduce inflammation and restore immune system tolerance.

Altogether, additional research is needed to investigate the 
effectiveness of CAR-Tregs, identify disease-specific targets, improve 
the manufacturing process by defining suitable sources for Treg 
isolation, and improve marker selection and proliferation capacity (77).

6 Potential adverse effects and future 
perspectives

CAR-T cell therapy has shown promise in treating hematological 
cancers, but it can lead to several potential side effects, including 
cytokine release syndrome (CRS) and immune effector cell-associated 
neurotoxicity syndrome (ICANS). CRS is the most common and 
potentially life-threatening inflammatory response caused by the rapid 
activation and expansion of CAR-T cells. This can result in the 
excessive release of cytokines, leading to symptoms such as high fever, 
hypotension, and in rare cases multi-organ failure. ICANS is linked to 
CRS but presents distinct symptoms like confusion, seizures, and 
cerebral edema. CRS often precedes neurotoxic events, suggesting a 
temporal and mechanistic link (78–80). A recent systematic review 
and meta-analysis involving 7,604 patients looked into the rate of 
non-relapse mortality (deaths not caused by cancer progression) in 
various CAR T-cell trials for lymphoma and multiple myeloma. 
Non-relapse mortality rates varied from 1 to 10% across trials, with 
only a minority associated with the most common side effect, 
CRS. Additionally, 50.9% of non-relapse mortalities were due to 
infections, underscoring the critical importance of addressing 
infectious complications after CAR T cell therapy (81).

So far, CAR-T cell therapy have shown encouraging results, with 
demonstrated feasibility, tolerability, and efficacy in treating 
autoimmune disorders. However, more long-term assessments are 
required before they are accepted in wide clinical applications. The 
FDA recently reported T-cell malignancies in patients treated with 
BCMA-or CD19-directed autologous CAR T-cell therapies. Secondary 
malignancy risk is a concern for all approved products in this category. 

While the advantages of these products still surpass the possible 
drawbacks of their authorized use, the FDA is examining the potential 
for severe consequences such as hospitalization and death and is 
considering regulatory measures (82). Therefore, safety for 
autoimmune trials must be at a higher rate. The choice of an adequate 
strategy for cellular engineering to treat autoimmune diseases depends 
on the pathogenesis underlying the disease, its severity and length, 
and associated conditions. Additionally, due to the complex and 
heterogeneous nature of autoimmune diseases, other targets, as well 
as the efficacy and safety of multitargeting, should 
be further investigated.

Furthermore, the duration of optimal CAR-T cell activity in the 
treatment of autoimmune diseases is a subject of debate. In cancer 
treatment, long-term persistence of CAR T cells is beneficial for 
maintaining continuous immune monitoring. However, in 
autoimmune diseases, prolonged CAR T cell activity may result in 
immunosuppression or organ damage due to excessive elimination of 
normal immune cells. Therefore, it may be preferable to have limited 
or controlled expression of CAR T cells in the treatment of 
autoimmune diseases to minimize potential long-term toxicities. 
Therefore, future strategies should implement molecular switches or 
shorter half-life constructs CARs that express transiently or degrade 
after a specific period to reduce long-term immune suppression. The 
introduction of molecular switches can help manage immune-
mediated toxicities, such as CRS and ICANS. Suicide switches provide 
a way to rapidly destroy CAR-T cells in cases of severe toxicity, 
ensuring safety. On/off switches offer external control by activating 
CAR expression only in the presence of a specific drug, allowing for 
precise titration of therapy based on patient response. Additionally, 
logic gate systems like AND and NOT gates improve targeting 
specificity, activating CAR-T cells only when certain conditions are 
met, thus minimizing damage to healthy tissues. These innovations 
enhance safety and efficacy, making CAR-T therapy more adaptable 
for complex diseases like autoimmunity (83–86).

Shorter half-life constructs CARs such as messenger RNA (mRNA)-
based CAR T cells offer an alternative strategy to achieve transient and 
restricted expression of CARs, providing for more controlled treatment. 
Moreover, this also allows for in vivo reprogramming of T cells, favoring 
this approach due to faster production and lower cost (87, 88).

Manufacturing-related issues, including variability in cell quality 
and production delays, can also affect treatment outcomes. Some 
drawbacks of CAR-T therapy are the long production time (around 
30 days) and high cost (up to half a million dollars) due to the 
autologous manufacturing process. Thus, alternative strategies focused 
on resolving these issues are under investigation. Decentralized 
production or on-site production using a fully automated closed 
system could significantly shorten the manufacturing process and 
lower the therapy cost (89, 90).

Recently, the European Society for Blood and Marrow 
Transplantation (EBMT) and the International Society for Cell and 
Gene Therapy (ISCT) published expert-based consensus and 
recommendations on using cellular therapies, including CAR-T, for 
treating severe and refractory autoimmune diseases. The guidelines 
emphasize referrals to expert centers with inter-disciplinary 
interaction, including hematological and autoimmune diseases 
specialist experience, as well as assessment of the effectiveness and 
tolerability of the therapies, long-term outcomes, and safety 
monitoring (91).
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In conclusion, CAR-T cell therapy offers significant advantages over 
conventional treatments for autoimmune diseases by addressing the root 
cause of the condition: the autoreactive immune cells. Unlike traditional 
therapies, which broadly suppress the immune system, CAR-engineered T 
cell therapy holds the potential to specifically target and eliminate the 
pathogenic immune cells driving the autoimmune response. This precise 
approach helps preserve overall immune function, reducing the risk of 
infections and other side effects. Additionally, CAR-T cells can 
be engineered with molecular switches that allow real-time control over 
their activity, enhancing both safety and efficacy. This strategy offers the 
potential for long-term remission by directly targeting the underlying 
drivers of autoimmunity, rather than merely managing symptoms. 
Undoubtedly, CAR-T cell therapy stands as a compelling therapeutic 
approach for various autoimmune diseases, although there are still 
unresolved challenges that need to be addressed for widespread clinical use.
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