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This study aims to address the potential and challenges of multimodal medical

information in the diagnosis of interstitial lung disease (ILD) by developing

an ILD identification model (ILDIM) based on the multimodal fusion attention

mechanism (MFAM) to improve the accuracy and reliability of ILD. Large-

scale multimodal medical information data, including chest CT image slices,

physiological indicator time series data, and patient history text information were

collected. These data are professionally cleaned and normalized to ensure data

quality and consistency. Convolutional Neural Network (CNN) is used to extract

CT image features, Bidirectional Long Short-Term Memory Network (Bi-LSTM)

model is used to learn temporal physiological metrics data under long-term

dependency, and Self-Attention Mechanism is used to encode textual semantic

information in patient’s self-reporting and medical prescriptions. In addition,

the multimodal perception mechanism uses a Transformer-based model to

improve the diagnostic performance of ILD by learning the importance weights

of each modality’s data to optimally fuse the different modalities. Finally, the

ablation test and comparison results show that the model performs well in terms

of comprehensive performance. By combining multimodal data sources, the

model not only improved the Precision, Recall and F1 score, but also significantly

increased the AUC value. This suggests that the combined use of different modal

information can provide a more comprehensive assessment of a patient’s health

status, thereby improving the diagnostic comprehensiveness and accuracy of

ILD. This study also considered the computational complexity of the model,

and the results show that ILDIM-MFAM has a relatively low number of model

parameters and computational complexity, which is very favorable for practical

deployment and operational efficiency.
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1 Introduction

Lung diseases have been one of the major contributors to
serious health problems in modern medicine (1). Among them,
Interstitial Lung Disease (ILD) is a group of diseases involving the
interstitial of the lungs, including various types such as pulmonary
fibrosis and alveolar protein deposition, etc. They are characterized
by damage to the interstitial structures of the lungs, usually leading
to symptoms such as dyspnea, cough, chest pain, and in severe
cases, can even be life-threatening (2). The early diagnosis and
effective management of ILD are crucial for improving the survival
rate and quality of life of patients (3).

The diagnosis of ILD has always been one of the difficult
problems in the medical community because of its complex
etiology, diverse symptoms, and wide variability in presentation
between patients (4). Traditional diagnostic methods for ILD rely
on clinical symptoms, pulmonary function tests, and unimodal
medical imaging data, such as chest CT images (5). However,
these methods have some limitations, for example, they struggle to
provide enough information to accurately diagnose different types
of ILD, leading to an increased rate of misdiagnosis (6). Therefore,
the development of an accurate and reliable method for recognizing
ILD is essential for improving patient treatment and management.

With the rapid development of deep learning and computer
vision technologies and their wide application, learning inference
based on image modality has been widely used in both industrial
and medical fields (7–10). Currently, a large number of studies
have focused on the diagnosis of ILD, mainly on the application of
unimodal medical information data, for example, chest CT images
have become one of the key tools for ILD diagnosis. Its high
resolution and detailed presentation of lung structures have made
it the first choice for physicians (11). However, a single CT image
modality still has some shortcomings. First, CT images cannot
provide enough information to differentiate between different
types of ILDs in some cases, as it relies heavily on the visibility
of morphological features (12). Moreover, the higher radiation
dose can pose a potential risk to the patient’s health, especially
if multiple repeat examinations are required (13). In addition,
unimodal physiologic index data, such as pulmonary function tests
and blood biochemical indices, although they have applications in
the adjunctive diagnosis of ILD, they are similarly limited because
they do not provide direct information about the structure of the
lungs (14). Therefore, existing unimodal ILD diagnostic methods,
although helpful to some extent in physician decision-making, still
have challenges and limitations in recognizing different ILD types.
This has led to the emergence of multimodal medical information
data in ILD diagnostic research, with the aim of being able to
synthesize information from different modalities to improve the
accuracy and reliability of ILD.

With the continuous progress in the fields of medical
imaging, bioinformatics and artificial intelligence, the application
of multimodal medical information data in the diagnosis and
treatment of diseases has become a hot research topic of great
interest (15–18). Multimodal medical information data include
multiple types of medical data, such as images (19), time-series
data (20), and textual information (21), which can provide
comprehensive information about a patient’s health status. In
the field of lung diseases, the application of multimodal data

has already achieved some impressive results in the detection of
lung cancer and lung nodules. Moreover, for the diagnosis of
ILD, multimodal medical information data has always had great
potential (22). First, multimodal data can provide physicians with
a more comprehensive view to capture the characteristics of ILD
from different dimensions, including structural, functional, and
biochemical information (23). By combining chest CT images,
physiologic index time series data, and textual information of
patient history can more accurately portray the pathological
changes and trends of ILD (24). Moreover, the comprehensive
analysis of multimodal data can help distinguish different types
of ILD, because different types of ILD can exhibit unique features
on different modal data (25). This can help improve the precise
classification and personalized treatment of ILD. In addition,
multimodal data can be used to track the progress of ILD
and monitor the treatment effect, providing better long-term
management for patients (26). However, there are a number of
challenges to realizing the potential of multimodal ILD diagnosis.
First, fusion and correlation analysis between different modality
data requires complex algorithms and models to handle to ensure
synergy between various information (27). Moreover, data quality
and accuracy are critical for multimodal ILD diagnosis and require
effective data cleaning and preprocessing methods.

Given the potential and challenges of multimodal medical
information data in ILD diagnosis, this study aims to develop
an advanced ILD recognition model based on the multimodal
fusion attention mechanism (MFAM) to improve the accuracy
and reliability of ILD. By comprehensively utilizing chest CT
image slices, physiological indicator time-series data, and textual
semantic data, the model explored new possibilities in the field of
ILD diagnosis and provide physicians with more comprehensive
and accurate ILD diagnostic support to facilitate early diagnosis
and effective treatment of lung diseases. First, we collect large-
scale multimodal medical information data, including chest CT
image slices, physiological indicator time-series data and patient
history text information. These datasets come from different
medical institutions and databases, and can be carefully cleaned
and standardized to ensure the quality and consistency of the
data. In addition, we also protected the privacy of the data to
ensure the security of the patient’s sensitive information. MFAM
is used to synthesize and learn different modal data to capture
the multifaceted features of ILD. In which, CNN is used to
extract CT image features, bidirectional LSTM (Bi-LSTM) model
is used to learn temporal physiological index data under long-
term dependency, and self-attention mechanism is used to encode
textual semantic information with patient’s self-report and medical
advice. Moreover, the multimodal perception mechanism employs
a Transformer-based model to improve the diagnostic performance
of ILD by learning the importance weights of each modal data
so that the different modal data can be fused in an optimal way.
Therefore, in the field of ILD diagnosis, this study has the following
main technical contributions:

(1) Firstly, the problem of multimodal medical data fusion is
solved by organically combining textual information, CT
images, and physiological indicators information to describe
the patient’s health status in a more comprehensive and
multifaceted way.
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(2) Furthermore, by adopting an attention mechanism to
adaptively fuse information from different modalities, the
model makes full use of the advantages of various data sources
and fully considers the multidimensional features of ILD
diagnosis, including structure, function and clinical history.

(3) Ultimately, the experimental results show that the model
performs well in terms of comprehensive performance.
By combining multimodal data sources, the model not
only improves the precision, recall and F1 score, but also
significantly increases the AUC value. This indicates that
the combined use of different modal information can
assess the health status of patients more comprehensively,
thus improving the diagnostic comprehensiveness and
accuracy of ILD.

2 Methodology

ILD patients can exhibit marked differences in physiologic
and CT image characteristics compared with normal lungs.
Physiologically, patients with ILD have decreased lung function,
dyspnea, and abnormal digital indicators. On CT images, features
such as ground-glass infiltrates, parenchymal infiltrates, bilateral
distribution, and cobwebby or honeycomb fibrosis appear. These
features are crucial for the diagnosis of ILD and the evaluation of
the disease. Although clinical data reflected purely on physiologic
or CT images can provide physicians with a good basis for
diagnosis, relying solely on physiologic data or CT images can limit
the comprehensiveness and accuracy of the diagnosis because they
do not provide enough information to fully assess the condition
of patients with ILD. Therefore, it is necessary and important to
use both clinical data and CT images as inputs for a more accurate
diagnosis and assessment of ILD.

A. Introduction to the framework of the proposed model
The purpose of this study was to develop a multimodal

medical information diagnostic model to improve the accuracy
and reliability of interstitial lung disease (ILD). The model is
based on the Multimodal Fusion Attention Mechanism (MFAM)
and involves multiple sources of medical information, including
CT images, time-series data of physiological indicators, and
textual information of patient history. First, the data collection
and preprocessing phases aim to obtain multimodal medical
information, including CT images, physiological indicator time
series and patient history text. These data were professionally
cleaned and standardized to ensure data quality and consistency.
Simultaneously, privacy protection measures are employed to
ensure the security of sensitive patient information, and this step
aims to prepare multimodal data for model training and evaluation.

As shown in Figure 1, MFAM was introduced to fuse different
modalities of medical information with the aim of fusing features
from CT images, physiological indicators, and textual information
to capture the multifaceted features of ILD. MFAM achieves
the optimal fusion by learning the importance weights of each
modality of data to improve the diagnostic performance of ILD.
Convolutional Neural Network (CNN) is used to extract features
from CT image slices. The purpose of this step is to capture the
morphological and structural features of ILD images to provide
rich visual information for the model. Bidirectional Long Short-
Term Memory Network (Bi-LSTM) is used to learn long-term

dependencies in time-series data of physiological indicators. The
purpose of this step is to extract time-dependent features from
time-series data to better understand ILD trends. Self-attention
mechanism is used to encode textual information in patients’ self-
reports and medical prescriptions. The purpose of this step is
to transform the textual information into meaningful semantic
representations for use in the model. The multimodal perception
mechanism uses a Transformer-based model that fuses data from
different modalities and learns the importance weights of each
modality to optimally fuse this information. This helps to improve
the diagnostic performance of ILD.

B. Subject selection and clinical data collection
We selected patients attending the Respiratory Department of

the First Hospital of Gannan University of Medical Sciences as the
study population. Patients with IPF-ILD were randomly selected
into the study group, while patients with other non-ILD diseases
were included in the control group. All studies were conducted in
accordance with the regulations of the Medical Ethics Committee
of our hospital and ethical review was performed. All the study
subjects involved in blood collection participated in the study with
prior informed consent. The study was approved by the Ethics
Committee of the First Affiliated Hospital of Gannan Medical
University under the ethical approval number [LLSC2023-125].

C. Data processing and analysis
It is evident that the majority of individuals suffering from

IPF-ILD exhibit notably lower PaO2 pulmonary gas function
values when compared to non-ILD subjects under identical clinical
conditions. This finding underscores the substantial impact of
IPF-ILD on pulmonary gas function. While it is worth noting
that certain normal individuals can have lower PaO2 values than
some IPF-ILD patients due to factors such as inherent inter-
individual variations, physiological characteristics, and potential
testing errors, an overarching trend toward decreased lung gas
function is unmistakably evident among IPF-ILD patients. This
trend is likely associated with the unique characteristics of the
disease and structural alterations within the lungs. Consequently,
this discovery underscores the deleterious consequences of IPF-ILD
on pulmonary air function and establishes a critical foundation for
further research and treatment development (28).

In this study, we selected 40 ILD samples as the experimental
group and 20 Non-ILD samples as the control group. The
selection of samples strictly followed the pre-set inclusion and
exclusion criteria to ensure the reliability and validity of the
study results. Specifically, the inclusion criteria included patients
with a confirmed diagnosis of idiopathic pulmonary fibrosis
(IPF-ILD), who were all treated in the same hospital and had
a clear clinical history and imaging findings. Meanwhile, all
participants were required to be at least 18 years old and able
to cooperate with relevant experimental and clinical assessments.
Exclusion criteria included patients with other known lung
diseases, individuals who had recently undergone lung surgery,
and patients with severe comorbidities such as heart disease or
other major medical conditions. In addition, any individuals who
had received medications that affected lung function or VEGF
and KL-6 levels during the study period were also excluded to
minimize potential confounders. Moreover, we collected samples
covering patients of different ages, and as can be seen in Figure 2,
all sample characteristics conformed to a reasonably good normal

Frontiers in Medicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2024.1446936
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1446936 November 18, 2024 Time: 12:16 # 4

Zhong et al. 10.3389/fmed.2024.1446936

FIGURE 1

Diagram of the overall implementation framework of the proposed ILDIM-MFAM model.

FIGURE 2

Preprocessing of CT slice data (including manual screening of CT images and image processing techniques and distribution visualization of basic
clinical data.

distribution, which ensured the applicability of the study results
across different demographic characteristics.

In terms of pulmonary function indexes, the PaO2 values
of IPF-ILD patients were mainly distributed around 85 mmHg,
while those of the control group were mainly distributed around
95 mmHg. This indicates that under the same clinical conditions,
IPF-ILD patients have significantly impaired pulmonary gas
function, which is reflected in lower PaO2 values. In summary,
through in-depth analysis of the data in Figure 2, we clarified the

differences between IPF-ILD patients and the control group in
terms of age, serum VEGF and KL-6 levels, and pulmonary air
function indicators.

D. CT slice image feature extraction via CNN
CNN is a deep learning model specially designed for

image recognition and feature extraction, which is composed by
convolutional, pooling and fully connected layers to automatically
learn and extract features from images, and has achieved good
results in practical applied research (29). In this section, we mainly
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want to extract features from chest CT image slices by CNN
to capture morphological information and structural features of
ILD. Convolutional operation is the core of CNN. It extracts local
features by sliding a convolution kernel over the image. It can be
described as the following Equation 1:

Conv (I,K) = (I ∗ K)
(
x, y

)
=
∑M

i=1
∑N

j=1 I
(
x− i, y− i

)
K
(
i, j
) (1)

where I denotes the input image, K is the convolution kernel, M
and N denote the height and width of the convolution kernel,
respectively. The convolution operation multiplies and sums the
convolution kernel with the input image point by point to
generate the convolved output feature map. Moreover, pooling
manipulation is used to reduce the spatial size of the feature map,
and to reduce the amount of computation, and to extract the most
important features.

As shown in Algorithm 1, the pseudo-code describes the
process of extracting features from chest CT images via CNN.
First, the algorithm accepts the input CT image and convolution
kernel and initializes the output feature map. For each image,
the algorithm progressively performs a convolution operation
to compute the output value at each position by sliding the
convolution kernel over the image. Moreover, a pooling operation
is applied to reduce the spatial size of the feature map and extract
the maximum value of each region, and finally the processed feature
maps are summarized as output. This process aims to capture the
morphological features and structural information of the image to
provide important visual input for subsequent disease diagnosis.

ALGORITHM 1 Feature extraction from chest CT images using CNN.

Input:

Input images I (chest CT image slices), convolution kernel K

Output:

Reduced feature maps F after convolution and pooling

1: Initialize output feature maps F←�

2: for each image I in I do

3: // Step 1: Perform Convolution

4: Initialize outputMap as a matrix of appropriate size

5: for each position (x,y) in I do

6: outputMap[x, y]←
∑M−1

i=0
∑N−1

j=0 I[x+ i, y+ j] K [i, j]

7: end for

8: // Step 2: Apply Pooling

9: Initialize pooledMap of reduced size

10: for each region in outputMap do

11: pooled Value←max (value in region)

12: Assign pooledValue to the corresponding position in
pooledMap

13: end for

14: Append pooledMap to F

15: end for

return F

E. Time-series feature extraction of physiological indicators
via Bi-LSTM

The purpose of this section is to extract features from time-
series data of physiological metrics by means of a Bi-LSTM to
capture the temporal dependencies and trends of changes in ILDs
as manifested in the patient’s physiology. It is a deep learning
model for sequence data to capture long-short term dependencies
in sequences. The Bi-LSTM consists of two LSTM layers, one
propagating sequence from the front and the other propagating
sequences from the back, and finally their outputs are merged
together. In which LSTM is a variant of Recurrent Neural Network
(RNN) for processing sequence data (30, 31). LSTM consists of an
input gate, forgetting gate, output gate and cell state that learns and
stores the information in the sequence.

As shown in Algorithm 2, the pseudo-code describes the
process of extracting features from time-series data of physiological
metrics using a bi-directional long- and short-term memory
network (Bi-LSTM). First, the hidden and cellular states of the
forward and backward LSTMs are initialized. For each time step,
input gates, forget gates, output gates, and candidate cell states are
computed, and the cell states are updated based on the outputs of
these gates. Then, the final feature representation is generated by
merging the hidden states of the forward and backward LSTMs.
This process can effectively capture the long- and short-term
dependencies in time-series data and provide important temporal
feature information for the analysis of ILD.

In particular, the input gate controls the extent to which
new information flows into the cell state. It determines which
information should be added to the cell state by means of a Sigmoid
activation function. The formula for the input gate is described as
Equation 2:

it = σ
(
Wi •

[
ht−1, xt

]
+ bi

)
(2)

where it is the output of the input gate, σ denotes the Sigmoid
activation function, Wi is the weight matrix, bi represents the bias
of the input gate, ht−1 is the hidden state of the previous time step,
and xt is the input of the current time step.

The output of the forgetting gate determines which parts of
the cell state from the previous time step should be retained or
discarded. The formula for the forgetting gate is described as
Equation 3:

ft = σ
(
Wf •

[
ht−1, xt

]
+ bf

)
(3)

where ft represents the output of the forgetting gate, Wf is the
weight matrix, and bf is the bias of the forgetting gate. LSTM passes
information through the cell state. The formula for updating the
cell state is described as Equation 4:

ct = ft • ct−1 + it • ĉt (4)

where ct represents the cell state at the current time step, ft is the
output of the forget gate, ct−1 is the cell state at the previous time
step, it is the output of the input gate, and ĉt is the new candidate
cell state. The LSTM output gate controls which information from
the cell state can be output to the hidden state. The specific formula
is described as Equation 5:

ot = σ
(
Wo •

[
ht−1, xt

])
+ bo (5)

where ot represents the output of the output gate, Wo is the weight
matrix, ht−1 is the hidden state of the previous time step, and xt is
the input of the current time step, bo is the bias of the output gate.
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The hidden state of the LSTM is the output of the current time
step, which is jointly determined by the output gate and the cell
state. The specific formula is described as Equation 6:

ht = ot • tanh (ct) (6)

where ht represents the hidden state of the current time step, ot is
the output of the output gate, ct is the cell state of the current time
step, and tanh denotes the hyperbolic tangent activation function.

F. Text Semantic Extraction via self-attention mechanism
The purpose of this section is to extract semantic features

from textual data by means of Self-Attention Mechanism (SAM)
in order to capture important information related to ILD in
the textual information of patient medical history. The Self-
Attention mechanism is a powerful technique for text processing
and sequence modeling that automatically learns to assign different
weights to information at different positions in a sequence based on
the context of the input sequence (32).

The SAM allows the model to dynamically assign weights to
each word while processing a text sequence in order to focus on
important words. Attention Scores in SAM can be calculated for
each word by Equation 7:

Ei,j =

(
Qi •

(
Kj
)T)√

dk
(7)

ALGORITHM 2 Feature extraction from time-series data using Bi-LSTM.

Input:

Time-series data X = [x1 , x2 ,..., xT ], weight matrices Wi , Wf , W0 ,
biases bi , bf , b0

Output:

Hidden states H = [h1 , h2 ,..., hT ], cell states C = [c1 , c2 ,..., cT ]

1: Initialize C0 <— 0, H0 <— 0

2: for time step t = 1 to T do

3: Forward LSTM:

4: Compute input gate: it = σ(Wi [ht−1 , xt] + bi)

5: Compute forgetting gate: ft = σ(Wf [ht−1 , xt] + bf )

6: Compute output gate: ot = σ (Wo [ht−1 , xt] + bo)

7: Compute candidate cell state: Ct = tanh(Wc [rit_i,xt] + bc)

8: Update cell state: Ct = ft Ct−1 + it Ct

9: Compute hidden state: ht = ot tanh(Ct)

10: Backward LSTM:

11: Compute input gate (backward): i
′

t = σ(Wi [ht+1 , xt] + bi)

12: Compute forgetting gate (backward): f
′

t = σ(Wf [ht+1 , xt] + bf )

13: Compute output gate (backward): o
′

t = σ(Wo [ht+1 , xt] + bo)

14: Compute candidate cell state (backward): C
′

t = tanh(Wc [ht+1 ,
xt] + bc)

15: Update cell state (backward): C
′

t = f
′

t C
′

t+1 + i
′

t C
′

t

16: Compute hidden state (backward): h′ t = o′ t tanh(C′ t)

17: Merge outputs: Ht = ht + h′ t

18: end for

return H, C

where Ei,j denotes the attention score, Qi denotes the query vector,
Kj denotes the key vector, and dk denotes the dimension of the key
vector. After that, Attention Weights are calculated by Equation 8:

Ai,j = Softmax
(
Ei,j
)

(8)

where Aij denotes the attention weights and Softmax function is
used to normalize the attention scores to a probability distribution.
Thus the Self-Attention Output (SAO) can be calculated by
Equation 9:

SAi =
∑
j

(
Ai,j • Vj

)
(9)

where SAi denotes the self-attentive output andVj denotes the value
vector. The employed multi-head self-attention allows the model
to learn multiple sets of different self-attention weights to capture
different types of relations and semantics, which can be described
as Equation 10:

MHSAi =
[
SA1i, SA2i, · · · , SAHi

]
•Wo (10)

where MHSAi denotes the multi-head self-attentive output, H
denotes the number of attention heads, and WO denotes the
output weight matrix. With the above formula, the self-attention
mechanism is able to dynamically learn the importance of
different words according to the context of the text sequence
and extract semantic features, which helps to capture the
information related to ILD.

As shown in Algorithm 3, the pseudo-code describes the
process of extracting semantic features from text data by SAM.
First, the input is a sequence of text and the corresponding query,
key and value vectors. Then, by calculating the attention scores,
the model can evaluate the importance of different words in the
text. The attention weights for each word are normalized by a
Softmax function to form a probability distribution. Then, using
these weights, the model computes the self-attention output to
extract the key information related to the ILD. In addition, the
use of a multi-head self-attention mechanism enables the model to
learn different semantic relationships and features, enhancing the
understanding of textual information. This process helps the model
to capture semantic information related to ILD more efficiently to
support subsequent diagnosis.

G. Transformer model with multi-modal perception
As shown in Figure 3, the information from CT image modality,

physiological metrics data modality and textual semantic modality
are positionally encoded by encoders, and the Transformer
model is used to sense the signals from these three modalities
and perform feature fusion and pattern perception. Therefore,
the main purpose of the research in this subsection is to
develop a robust multimodal perception system based on the
Transformer model that is capable of extracting high-level semantic
features from medical information data in different modalities to
support accurate diagnosis and classification of ILD. First, the
information from different modalities (e.g., images, temporal data,
and text) is effectively combined to obtain a more comprehensive
representation of ILD features. Moreover, through Transformer’s
self-attention mechanism, the model can automatically learn
and understand the correlations and dependencies between
different modalities to better recognize the relevant information
of ILD. Finally, the Transformer model’s multi-head self-attention
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ALGORITHM 3 Semantic feature extraction using
self-attention mechanism.

Input:

Input text sequence X = [x1 ,x2, ..., xn], query vectors Q, key vectors
K, value vectors V, number of attention heads H

Output:

Self-attention output SAO

1 Initialize attention scores E← 0 for all i, j

2 for each word j in X do

3 for each word i in X do

4 Compute attention score: Ei,j←
QiKT

j
√

dk
(Eq. 7)

5 end for

6 end for

7 Initialize attention weights A← 0 for all i, j

8 for each word i in X do

9 Compute attention weights: Ai,j← Softmax(Ei,j) (Eq. 8)

10 end for

11 Initialize self-attention output SAO← 0

12 for each word i in X do

13 for each word j in X do

14 Compute self-attention output: SAi←
∑n

j=1 Ai,jVj (Eq. 9)

15 end for

16 end for

17 Initialize multi-head self-attention output MHSA← 0

18 for each attention head h = 1 to H do

19 Compute multi-head self-attention output: MHSAi← SAi W0

(Eq. 10)

20 end for

return MHSA

mechanism can capture long-range dependencies in multimodal
data and extract high-dimensional semantic features, which helps
to recognize ILD more accurately.

As shown in Algorithm 4, this pseudo-code describes the
construction process of a multimodal sensory system based on
the Transformer model. First, the system receives CT images,
time-series physiological metrics, and textual semantic data as
inputs and performs feature extraction and encoding for each
modality by means of the CNN, Bi-LSTM, and the Transformer
encoder. Next, the fusion weights of each modality are calculated
to dynamically determine their contributions in the fusion. The
associations between different modalities are learned via MHSA
to generate a multimodal fusion feature representation. The fused
features are then fed into the Transformer encoder to generate the
model output. During model training, the loss is calculated and
the model parameters are updated using the AdamW optimizer,
which ultimately allows prediction based on new CT images
and clinical data.

For images, the CNN is used to extract features. For numerical
data, the Bi-LSTM is used for sequence modeling. For text data,
Transformer encoder is adopted for encoding. The input data
for each modality is encoded to obtain modality specific feature
representation. Assume that the output of the image encoder is Hi,

the output of the numeric data encoder is Hn, and the output of the
text data encoder is Ht , the fusion weights between each modality
are computed in order to dynamically determine the contribution
of each modality to the fusion. The feature representations for each
modality are described as Equations 11–13:

αi = E (Wi ∗ Hi) (11)

αn = E (Wn ∗ Hn) (12)

αt = E (Wt ∗ Ht) (13)

where, ai, an, at are the coded features of CT images, physiological
indicator time-series data and textual semantics, respectively,
and Wi, Wn, Wt are the coded weights, respectively. Moreover,
Multimodal Feature Fusion (MMFF) uses Multi-Headed Self-
Attention (MHSA) to learn the correlation between each modality
and generate the weight matrix by Equation 14:

MF (αi, αn, αt) = SA ([αi, αn, αt]) (14)

whereMF denotes multimodal fusion and SA denotes self-attention
mechanism. Furthermore, the computation of individual modal
fusion weights is realized by the self-attention mechanism, which
is used to learn the weights of each modality by Equation 15.

wi =
exp (Ei)∑
j exp

(
Ej
) (15)

where wi denotes the attention weight and Ei denotes the attention
score calculated from the self-attention mechanism.

The multimodal fused feature representation is input to
the Transformer encoder for further capturing the relationship
between different modalities. The weights calculated earlier can
be used to weight the fused feature representations of different
modalities by Equation 16:

M =
∑
i

wi • βi (16)

where M denotes multimodal fusion, and βi denotes the feature
representation after encoding different modalities. The output Ŷ of
the model can be described as Equation 17:

Ŷ = Softmax
(
λ •M + b

)
(17)

where Ŷ λ, b are the learning parameters. Furthermore, the
cross-entropy loss to measure the difference between the model’s
predictions and the true labels can be described as Equation 18.

` = −

K∑
k=1

Yk • log
(
Ŷk

)
(18)

where Yk is the one-hot encoding of the real label. After that,
the gradient descent or its variants are used to minimize the loss
function from Equation 19:

θ∗ = arg min
θ

` (θ) (19)

where θ denotes the parameters of the model. The gradient of the
loss function with respect to the parameters is computed by the
back-propagation algorithm. Moreover, the Adamw optimizer is
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FIGURE 3

Schematic of the fusion of different model features.

used to update the model parameters. After training is complete, we
can use the trained multimodal model to make predictions. Given
new CT images X1 and clinical data X2, as well as textual semantic
information about doctors and patients X3, we can compute the
output Y of the model by Equation 20:

Y = arg max
k

Ŷk (20)

3 Results

Ablation experiments are necessary to validate the performance
benefit under different modal inputs and to explore the
contribution of data characteristics of different modalities to the
diagnostic performance of ILD. In this study, CT images with
detailed information characterizing the structure and morphology
of the lungs, data on physiological indices reflecting lung function
and gas exchange, and textual information providing a description
of the patient’s background and condition were used as inputs for
multi-modal signals to explore the correlation between different
modal information and ILD.

Therefore, the design of this multimodal ablation test is
based on the fact that ILD is a complex lung disease and its
diagnosis requires multifaceted information. Using any one data
source alone can lead to insufficient information or misdiagnosis.
Combining text, CT images, and physiologic indicators can provide
more comprehensive, multifaceted information that can help
accurately diagnose the type and severity of ILD and the overall
health of the patient.

A. Analysis of experimental results
To observe how well the proposed model learns on image data,

temporal data and textual semantic data, the accuracy and loss
during its training and validation are visualized in Figure 4. It can
be seen that in the initial stage, the training accuracy increases
rapidly and the model learns some basic patterns and features.
As training progresses, the accuracy curve can gradually level off,
indicating that the model has largely converged to the optimal

solution. Eventually, the training accuracy curve can stabilize at a
relatively high level, indicating that the model is performing well
on the training data. The validation accuracy curve is similar to the
training accuracy curve in the initial phase, but gradually stabilizes
in subsequent phases. After the validation accuracy stabilizes, it
should be close to or consistent with the training accuracy curve,
indicating that the model also performs well on unknown data
without overfitting.

As shown in Figure 5, the ROC curves of the ILD diagnostic
performance under six different modal forms of input are
elaborated, and overall, the information from each modality is seen
to be an effective way to diagnose ILD. It can be seen that the model
using only CT image data for ILD diagnosis has an accumulated
area under the ROC curve (AUC) of 0.89. This implies that the
model has a good ability to differentiate between ILD and non-
ILD situations and its performance is relatively high. The model for
ILD diagnosis when using only physiologic indices accumulated an
area under the ROC curve (AUC) of 0.74. Although the AUC value
is smaller than the other models, it still indicates that physiologic
indices have the ability to discriminate between the ILD. It is worth
mentioning that the model combining CT images and physiologic
indicators achieved an AUC value of 0.93, showing a high ILD
diagnostic performance. This suggests that combining information
from multiple modalities can significantly improve the accuracy
of ILD diagnosis and that there can be complementarity between
the two data sources. Moreover, the model combining text data
and CT images achieved an AUC value of 0.91, indicating that
these two data sources have significant value in ILD diagnosis.
The combination between text data and CT images improved
the performance of the model. However, combining text data,
CT images, and physiologic index information for ILD diagnosis
showed excellent performance with an AUC of 0.97. This result
suggests that combining multimodal data sources can achieve
very high ILD diagnostic accuracy, which is important for clinical
decision making.

The data of the detailed ablation test results for each index
are statistically presented in Table 1, which shows that the
model performance using CT images performs relatively well
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ALGORITHM 4 Multimodal perception system using transformer.

Input:

CT image data Ximage , physiological metrics time-series data Xnum ,
textual semantic data Xtext

Output:

Multimodal fused feature representation M, model output Y

1 Encode each modality:

2 Hi← CNN(Ximage) B Extract
features from
CT images

3 Hn← Bi-LSTM(Xnum) BModel
time-series data

4 Ht← Transformer_Encoder(Xtext) B Encode
textual data

5 Compute fusion weights:

6 Wi , Wn, Wt← calculate_weights(Hi , Hn , Ht)

7 Modality-specific feature representations:

8 ai←Wi Hi B CT image
feature

9 an←Wn Hn B Numerical
data feature

10 at←Wt Ht B Text data
feature

11 Multimodal Feature Fusion (MMFF):

12 MF←MHSA(ai , an , at) B Learn
correlations
between
modalities

13 Compute fused feature representation:

14 M← weight_fused_features (MF, Wi, Wn, Wt)

15 Model output:

16 Y← Transformer_Encoder(M)

17 Loss computation:

18 L<— cross_entropy_loss(Y, Yk)

19 Optimize model parameters:

20 Update parameters θ← AdamW(L,
θ)

B Using
AdamW
optimizer

21 Make predictions for new data:

22 Given new data (X1 , X2 , X3), compute Y←M(X1 , X2 , X3)

return Y

with high Precision and Recall in the journals with unimodal
inputs. This suggests that CT images can provide important
information about ILD characteristics and help to differentiate
between ILD and Non-ILD cases. The CT images can capture
details of lung structures and lesions, and therefore have an
important role in diagnosis. When combining the input modalities
of CT images and physiological indicators, the performance of
the model was improved in all aspects, including precision, recall,
F1 score, and AUC. This suggests that by fusing multimodal
information, the model can better synthesize the information
from CT images and physiological indicators, which improves

the comprehensive performance, and that this joint modeling
enables a more comprehensive assessment of the patient’s health
status. Although the performance metrics in the case of using
the combined modality of text and physiological indicators are
slightly lower than the case of using CT images alone, they
are still relatively good. The better performance of the model
combining textual and physiological indicator modalities than
using physiological indicator modalities alone suggests that the
semantic information of textual modalities still has a non-negligible
role in diagnosis, especially when the model needs to take into
account aspects such as the patient’s clinical history, symptom
description, and so on. The model achieved the highest level
of performance with the highest precision, recall, F1 score, and
AUC when simultaneously fusing CT images, textual information,
and physiological metrics. As shown in Figure 6, which exhibits
the confusion matrix of the model test results for different
modal inputs, the visualization results once again emphasize the
importance of multimodal information fusion. It is very obvious
to see that combining information from different modalities allows
for a more comprehensive assessment of the patient’s condition and
improves the diagnostic comprehensiveness of ILD.

In summary, the results of the ablation trial emphasize the
importance and complementarity of the different input modalities
in the diagnosis of ILD. Among them, CT images provide
important structural information, physiologic indicators provide
physiologic information, and textual information provides clinical
context and symptom description. The combined utilization
of this information can help improve the comprehensive
performance of ILD and provide more accurate diagnosis
and treatment for patients. The fusion of different modality
information can better meet the complexity and diversity needs of
medical diagnosis.

4 Discussion of the application
potential of the ILDIM-MFAM

The previous ablation experiments comparatively analyzed the
excellent performance of the ILD diagnostic study proposed in this
study in terms of validity and engaging accuracy of different modal
fusions. To analyze the comprehensive diagnostic performance
of the ILDIM-MFAM model proposed in this study, as well as
the potential for practical improvements and applications, the
diagnostic accuracy and the computational complexity of the model
were considered comprehensively.

As shown in Table 2, The ILDIM-MFAM model is designed
to effectively address the identification of interstitial lung
diseases by integrating multi-modal data sources through a
sophisticated attention mechanism. By leveraging a combination
of convolutional and recurrent neural networks alongside
transformer-based attention mechanisms, the model adeptly
captures intricate features across diverse data modalities, thereby
enhancing both performance and efficiency. The fusion of
information from various modalities enables comprehensive
representation learning, while the attention mechanism selectively
focuses on relevant features, optimizing both predictive accuracy
and computational efficiency. This design approach ensures that
the ILDIM-MFAM model achieves a balance between performance
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FIGURE 4

Visualization of the training and learning process of the proposed ILDIM-MFAM model.

FIGURE 5

Classification ROC curves with six different forms of modal inputs (respectively, CT images, CT images & physiological indicators, CT images &
physiologic indicators, Text & physiological indicators, Text & CT images, Text & CT images & physiologic indicators for the six different forms of
modality).

TABLE 1 Statistics of diagnostic metrics with different forms of modal
inputs

Input modes Precision Recall F1 AUC

CT images 0.85 0.80 0.82 0.89

Physiological
indicators

0.72 0.65 0.68 0.74

CT images &
physiologic
indicators

0.90 0.88 0.89 0.93

Text & physiological
indicators

0.75 0.70 0.72 0.78

Text & CT images 0.88 0.84 0.86 0.91

Text & CT images&
physiologic
indicators

0.94 0.95 0.94 0.97

and efficiency, making it well-suited for practical deployment
in clinical settings where accurate and timely identification of
interstitial lung diseases is paramount.

As shown in Figure 7, multiple deep learning decoding models,
which were used to diagnose ILD & Non-ILD, with the aim of
evaluating their performance in the presence of multimodal data
inputs as well as the trade-off with computational complexity.
By comparing the performance of the different models, it can be
seen in Table 3 that the proposed ILDIM-MFAM shows the best
results in various performance metrics (Precision, Recall, F1) and
achieves an F1 score of 0.94, which indicates that the model has
a high level of accuracy and comprehensiveness in the task of
classification of ILD and Non-ILD. This is in line with the main
goal of the study, which is to improve the accuracy of ILD diagnosis.
In addition, as can be seen in part (a) of the figure, ILDIM-
MFAM also performs well in terms of robustness by statistically
analyzing the five tests. This means that the model’s performance
is relatively stable across different datasets or test sets and is
not susceptible to randomness, which is important for clinical
applications.

In terms of computational complexity, the results in Table 3
demonstrate that ILDIM-MFAM has a relatively low number of
model parameters with 4.7 M and computational complexity of
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FIGURE 6

Classification performance analysis of ILD diagnostic models with different modal inputs.

TABLE 2 Parameter statistics of the proposed ILDIM-MFAMmodel.

Layer (type) Output
shape

Param #

Input (32, 16, 1024) 0

Conv2d (in_channels = 3,
out_channels = 64)

(64, 112, 112) 1792, 000

ReLU (64, 112, 112) 333,280

MaxPool2d (kernel_size = 2) (64, 56, 56) 0

Bi-LSTM (input_size = 10,
hidden_size = 20)

(1024, 20) 183,024

TransformerEncoderLayer (1024, 64) 1280, 000

Linear (Attention Weights) (32, 16, 256) 69,120

Linear (Attention Weights) (1, 10) 2,570

Softmax (1, 10) 0

Linear (Classifier) (2, 10) 2100

Total params: 4.67 M

Trainable params: 4.54 M

Non-trainable params: 0 M

Input size: 2.10 M

Forward/backward pass size: 0.12 M

Params size (MB): 4.7 M

Estimated Total Size: 4.71 M

# Indicates a comment symbol for the given pseudo-code.

Giga Floating-point Operations Per Second (GFLOPs) with 2.3,
respectively. Although it performs well in terms of performance,
the relatively low number of model parameters and computational

complexity make ILDIM-MFAM more efficient in terms of
computational resources. This is very favorable for real-world
deployment and runtime efficiency. The superior performance
of these studies is mainly due to the fact that ILDIM-MFAM
employs the Transformer principle, which is very beneficial for
multimodal data processing. The Transformer model can handle
correlation and information fusion between different modalities,
which is especially important in the case of multimodal data input.
Through the self-attention mechanism and multi-head mechanism,
Transformer can adaptively capture key information in the input
data, which improves the model’s ability to adapt to different data
modalities.

Although the proposed ILDIM-MFAM model exhibits
excellent performance and computational efficiency, there are
still some potential drawbacks and room for improvement. First,
the model performance can be affected by the amount of data,
especially in the context of scarce medical data, and the model can
lose some of its accuracy. Second, considering the clinical reality,
medical data can contain noise and uncertainty, so the robustness
and generalization ability of the model still need to be further
enhanced. In addition, the interpretability of the models is also a
challenge, as the internal working mechanisms of deep learning
models are often difficult to explain to healthcare practitioners and
patients. Future work could focus on expanding and diversifying
the collection of datasets to enhance the robustness of the models,
as well as investigating more interpretable methods of model
interpretation to improve the acceptance of medical applications.
In addition, more migration learning and continuous monitoring
methods can be explored to ensure that the model can adapt to
changes in different medical scenarios and time dimensions to
improve its usefulness.
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FIGURE 7

The ILD diagnostic accuracies of different models after inputting multimodal data, and the comparison of their model parameters and computations
[in panel (a), the diagnostic accuracies of 5 tests were used for statistical analysis in order to make the test results of the models more robust. In
panel (b), the number of parameters and complexity of different models are used to synthesize the application value of ILD diagnostic models].

TABLE 3 Existing state-of-the-art deep learning decoder models with multimodal features input are used for performance comparison.

Model Precision Recall F1 Params (M) GFLOPs

CNN 0.85 0.88 0.86 2.5 1.2

CNN-GRU 0.88 0.89 0.88 3.2 1.5

CNN-Bi-LSTM 0.90 0.92 0.90 3.8 1.8

CNN-GRU-Attention 0.91 0.93 0.91 4.2 2.0

CNN- Bi-LSTM -Attention 0.92 0.94 0.91 4.5 2.2

The proposed ILDIM-MFAM 0.94 0.95 0.94 4.7 2.3

5 Conclusions and discussion

It is worth noting that although nintedanib is currently
approved for the treatment of progressive pulmonary fibrosis
(PPF), we need to emphasize the importance of accurate diagnosis
(33, 34). In particular, in some patients with fibrotic interstitial
lung diseases (ILDs) with non-idiopathic pulmonary fibrosis (non-
IPF), a combination of immunosuppressive and antifibrotic agents
may be required to optimize treatment outcomes. Available clinical
studies have shown that some patients respond favorably to
combination therapy in specific situations. Therefore, accurate
identification of the type of pathology in these patients is essential
for the development of a personalized treatment plan. This
will not only improve patient prognosis but also guide future
clinical decisions.

The purpose of this study is to address the challenges in the
field of interstitial lung disease (ILD) diagnosis and develop an
innovative ILD identification model (ILDIM) by introducing a
multimodal fusion attention mechanism (MFAM). We have fully
utilized multimodal medical data such as chest CT image slices,
physiological index time series data, and textual information of
patient history to characterize the patient’s health status in a more
comprehensive and multifaceted way. The main contributions
of this study include solving the multimodal medical data
fusion problem, using an attention mechanism to adaptively fuse

different modal information, and comprehensively considering
the multidimensional features of ILD diagnosis, thus significantly
improving the diagnostic comprehensiveness and accuracy of
ILD. It is proved through experiments that the model performs
well in terms of comprehensive performance, which not only
improves the accuracy, recall and F1 score, but also significantly
increases the AUC value. This implies that the combined use
of different modal information can assess the health status of
patients more comprehensively and provide more reliable support
for ILD diagnosis.

Although MFAM performs well in multimodal data fusion,
there is room for improvement. Future work could explore more
complex modality fusion strategies to further improve model
performance. In addition, this study focused on ILD diagnosis,
but the approach of multimodal medical information fusion can
be extended to other medical fields, such as tumor diagnosis and
neurological disease research. Finally, we encourage future studies
to explore practical clinical applications to introduce the model into
medical practice to provide physicians with better decision support
tools, thereby improving patients’ health and quality of life. In
conclusion, this study provides strong evidence for the application
of multimodal medical information fusion in ILD diagnosis and
points the way to future research directions.

It cannot be ignored that this study has some limitations
in terms of data collection and model generalization. First,
the sample selection was mainly from a single hospital,
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which may have resulted in an under-representative sample
and limited the generalizability of the findings. In addition, the
sample size, although sufficient for preliminary analysis, may not
adequately reflect the diversity of diseases in different populations.
Therefore, future studies should be conducted in a wider range of
clinical settings to validate the applicability of the model in different
patient populations. Meanwhile, bias, such as selectivity bias and
reporting bias, may exist during data collection, and these factors
may affect the reliability of the results. Therefore, further studies
should consider these limitations to enhance the clinical utility and
generalizability of the model.
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