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Significance: The early detection and accurate monitoring of suspicious 
skin lesions are critical for effective dermatological diagnosis and treatment, 
particularly for reliable identification of the progression of nevi to melanoma. 
The traditional diagnostic framework, the ABCDE rule, provides a foundation 
for evaluating lesion characteristics by visual examination using dermoscopes. 
Simulations of skin lesion progression could improve the understanding of 
melanoma growth patterns.

Aim: This study aims to enhance lesion analysis and understanding of lesion 
progression by providing a simulated potential progression of nevi into 
melanomas.

Approach: The study generates a dataset of simulated lesion progressions, from 
nevi to simulated melanoma, based on a Cycle-Consistent Adversarial Network 
(Cycle-GAN) and frame interpolation. We  apply an optical flow analysis to 
the generated dermoscopic image sequences, enabling the quantification of 
lesion transformation. In parallel, we evaluate changes in ABCDE rule metrics as 
example to assess the simulated evolution.

Results: We present the first simulation of nevi progressing into simulated 
melanoma counterparts, consisting of 152 detailed steps. The ABCDE rule 
metrics correlate with the simulation in a natural manner. For the seven samples 
studied, the asymmetry metric increased by an average of 19%, the border 
gradient metric increased by an average of 63%, the convexity metric decreased 
by an average of 3%, the diameter increased by an average of 2%, and the color 
dispersion metric increased by an average of 45%. The diagnostic value of the 
ABCDE rule is enhanced through the addition of insights based on optical flow. 
The outward expansion of lesions, as captured by optical flow vectors, correlates 
strongly with the expected increase in diameter, confirming the simulation’s 
fidelity to known lesion growth patterns. The heatmap visualizations further 
illustrate the degree of change within lesions, offering an intuitive visual proxy 
for lesion evolution.

Conclusion: The achieved simulations of potential lesion progressions could 
facilitate improved early detection and understanding of how lesions evolve. By 
combining the optical flow analysis with the established criteria of the ABCDE 
rule, this study presents a significant advancement in dermatoscopic diagnostics 
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and patient education. Future research will focus on applying this integrated 
approach to real patient data, with the aim of enhancing the understanding of 
lesion progression and the personalization of dermatological care.

KEYWORDS

melanoma, ABCDE rule, artificial intelligence, patient education, sequential 
dermoscopy

1 Introduction

Melanoma, a highly aggressive form of skin cancer, is 
responsible for the majority of skin cancer-related deaths 
worldwide (1). The incidence of melanoma has been steadily 
increasing over the past few decades, making it a significant public 
health concern. Early detection of melanoma is crucial, as it 
dramatically improves patient survival rates. Studies have shown 
that the 5-year survival rate for patients diagnosed with early-stage 
melanoma exceeds 90%, compared to less than 20% for those 
diagnosed at an advanced stage (2). Early diagnosis allows for less 
invasive treatments, reduces the need for extensive surgical 
procedures, and lowers healthcare costs associated with late-stage 
treatments (3). The integration of digital technologies, e.g., 
smartphone apps, represents an impactful advancement in training 
for melanoma diagnosis (4). The increasing significance of digital 
technologies in dermatology is highlighted by developments in 
contactless dermoscopy (5–8) and computerized analysis of 
pigmented skin lesions (9). Improvements in image quality enhance 
the visibility of dermoscopic patterns, providing more detailed 
information that can be  instrumental in understanding lesion 
growth patterns and aiding in more accurate diagnoses. Other 
novel diagnostic modalities for melanoma are optical coherence 
tomography (10, 11), Raman spectroscopy (12–16), combined 
ultrasound and photoacoustic imaging (17, 18), and molecular 
diagnostics (19).

We propose the application of Cycle-Consistent Adversarial 
Networks (Cycle-GANs) in the transformation of dermoscopic images 
of nevi into simulated melanoma counterparts. This technology allows 
to visually demonstrate the subtle differences between nevi and 
melanoma using actual dermoscopic images from the patient’s body. 
During skin screening procedures, dermatologists could present both 
the original nevus image and the AI-generated melanoma version to 
the patient. This side-by-side comparison might aid dermatologists in 
explaining why certain lesions do not require excision and what 
changes to look for in follow-up examination (20–22). Conversely, for 
lesions appearing to be  melanoma, the AI can generate a nevus 
counterpart to also help educate patients on recognizing the 
differences between nevi and melanomas and the importance of 
monitoring for changes. Additionally, the utilization of Cycle-GANs 
to simulate the evolution of skin lesions presents an innovative 
opportunity to test potential novel diagnostic criteria based on image 
processing against AI-generated simulations. By comparing the 
characteristics of nevi and simulated melanoma counterparts, our 
approach could accelerate the validation process of image processing 
techniques and might enhance the general understanding of lesion 
growth patterns and dynamics.

1.1 Application of GANs in dermatology

As artificial intelligence (AI) rapidly advances, its integration into 
dermatology has been mainly through Convolutional Neural 
Networks for skin cancer classification (23) and the implementation 
of explainable AI (24–26) in those classifications. Another network 
type of growing importance in dermatology are Cycle-Consistent 
Adversarial Networks (Cycle-GANs) (27). A GAN functions with two 
neural networks: a generator creating images and a discriminator 
evaluating them, producing increasingly realistic results. A 
Cycle-GAN links two GANs for bidirectional data transformation 
between domains. GANs have been increasingly employed in 
dermatology for various applications. GANs have already found a 
significant application in dermatology, particularly for data 
augmentation in skin cancer classification models (28). The 
classification models are limited by imbalances in the training 
datasets. The implementation of GANs for data augmentation to 
balance the training data enhanced the robustness and accuracy of 
these diagnostic models (29). GANs have also been used for color 
constancy in medical imaging, ensuring consistent appearance in 
dermatological images under different lighting conditions (30, 31). 
Color variability can lead to bias of dermatologists and impact the 
diagnosis. Generative models are effective in generalizing dermoscopic 
image appearance (31). Furthermore, Cycle-GANs have been utilized 
to transform dermoscopic images of melanoma into art works as a 
form of art therapy for melanoma patients (32). Despite these 
advancements, the simulation of disease progression, such as the 
transformation of nevi into melanoma, remains underexplored. Our 
study represents the first attempt to apply Cycle-GANs to simulate 
skin lesion progression, offering a novel approach to visualize potential 
changes in lesions over time.

2 Methods

Cycle-GANs are well suited for the task of unpaired image-to-
image translation. They enable the translation of images between two 
distinct domains without the necessity of one-to-one corresponding 
image pairs in the training data. This feature makes them particularly 
advantageous for dermatological applications, where there is often a 
significant imbalance between the number of nevus and melanoma 
lesion images available (33). The Cycle-GAN architecture consists of 
two generator networks and two discriminator networks. Each 
generator is tasked with translating images from one domain to the 
other. Each discriminator works to differentiate between actual and 
translated images within its respective domain. This dual setup enables 
the bidirectional translation capability of Cycle-GANs. Figure 1 shows 
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a schematic of the Cycle-GAN and frame interpolation for the lesion 
progression simulation.

Grey panels indicate real images from a dermoscopic dataset, blue 
panels represent the discriminator model assessing the authenticity of 
images, green panels signify the generator model creating synthetic 
images, and orange panels highlight the generated synthetic images. 
This scheme describes the process of transforming nevi into their 
simulated melanoma counterparts through iterative learning and 
frame interpolation.

The model was trained using 1,571 melanoma images and 1,571 
nevus images from the SIIM-ISIC dataset (34). A batch size of 1 was 
used, with 200 iterations and a learning rate starting at 0.0002, linearly 
decreasing to 0 after 100 iterations. This training condition is similar 
to the original Cycle-GAN publication (27). The images were resized 
to 286 × 286 pixels and randomly cropped to 256 × 256 before training 
to standardize input and reduce computational complexity. The 
generator is based on the ResNet architecture with 9 convolutional 
blocks, and the discriminator uses the PatchGAN architecture (27).

Following the initial generation of simulation frames, a post-
processing step is implemented to address color inconsistencies. The 
entire simulation is completed within seconds and can be efficiently 
performed on a standard PC. The original simulations produced by 
the Cycle-GAN and the frame interpolation alter the color of the 
surrounding healthy skin, complicating frame comparison 
concerning the color parameter of the ABCDE rule (35). To mitigate 
this issue and ensure comparability, the colors in each frame are 
normalized to match those of the first frame in the sequence using 

a straightforward color offset adjustment. This is achieved by 
extracting and averaging the RGB values from the corners of the 
real image in the simulation and then converting these values to the 
LAB color space to establish a baseline color reference (36). The 
corner samples only contain healthy skin. For each subsequent 
frame in the simulation, the deviation in average corner color from 
the reference is calculated. The color adjustment is applied to the 
entire image in the LAB space. Finally, the adjusted image is 
converted back to RGB for consistent visual analysis across the 
simulation. This process ensures that color changes in the lesion can 
be accurately assessed, while maintaining the consistency of the 
healthy skin from the first frame of the simulation to the last one, as 
displayed in Figure 2.

Utilizing frame interpolation, we create a seamless and gradual 
transition from the original dermoscopic nevus image to the simulated 
melanoma counterpart. This results in a brief video, illustrating the 
subtle progression of skin changes, potentially enhancing patient 
understanding of melanoma indicators. The frames demonstrate the 
transformation from the dermoscopic nevus image to an artificially 
simulated melanoma counterpart.

Figure 3 shows a dermoscopic image of a nevus from the ISIC 
dataset (34) and a simulated melanoma counterpart as well as selected 
frames from a frame interpolation, showing the gradual 
transformation from the original nevus image to the simulated 
melanoma lesion image.

Conversely, Figure 4 shows an example of the backward simulation 
direction from a real melanoma-lesion image into a simulated nevus.

FIGURE 1

Cycle-GAN and frame interpolation scheme used to simulate lesion progression.
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3 Evaluation

While various melanoma diagnosis scores exist, e.g., the 7-point 
checklist and the Menzies method (37), the ABCDE rule was utilized 
as example case here due to its widespread acceptance and ease of 
implementation via image processing. To assess how the simulated 
progression of skin lesions adheres to the ABCDE rule for melanoma 
diagnosis, we implemented the lesion properties illustrated in Figure 5 
and computed them for each image in the simulation. These metrics 
provide quantifiable insights into various aspects of the lesion 
morphology, each represented by a score ranging from 0 to 1, except 
for the lesion diameter. The lesion diameter is presented in metric 
units if the image resolution (mm/pixel) is available; otherwise, it is 
provided in number of pixels.

In this work, we consider six different metrics, i.e., asymmetry, 
border gradient and convexity, normalized cluster color dispersion, 
diameter, and color evolution.

Asymmetry measures the degree of dissimilarity between the 
two halves of the lesion. This metric is calculated by dividing the 
lesion along its major axis, mirroring one half across that axis, and 
assessing their structural similarity index (38). The same process 
is repeated along the minor axis. The computed similarity scores 

are then translated into dissimilarity values, which are then 
averaged to derive the final metric. It is expressed on a scale where 
0 signifies perfect symmetry, while 1 indicates complete 
asymmetry, reflecting the balance or imbalance between the 
lesion halves.

In our analysis, we also evaluate the border characteristics of 
the lesion using two metrics: border gradient and shape convexity. 
The gradient magnitude along the lesion contour offers insights 
into the sharpness or abruptness of intensity changes. This metric 
is computed using both the image and the segmentation mask. 
First, the image gradients in the x and y directions are calculated 
using the Sobel operator (39). These gradients are then combined 
to compute the gradient magnitude, which is subsequently 
normalized to the range [0, 1]. Next, the lesion contour is derived 
from the segmentation mask, and the gradient magnitude values 
at the image coordinates along the contour are extracted. These 
values are averaged to compute the final score. In our approach, 
low values suggest a gradual transition or smooth boundary, while 
high values indicate sharp transitions, emphasizing well-defined 
boundaries. Additionally, convexity measures the extent to which 
the lesion border protrudes outward, and it is computed using the 
following equation:

FIGURE 2

Overview of skin color adjustment. The first row displays the original nevus image, while the second row shows the initial output directly from the 
Cycle-GAN. The third row presents the color-adjusted output following post-processing. The lower part of the figure provides a visualization of the 
color adjustment process applied during post-processing.
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This metric relies solely on the mole’s segmentation mask. The 
lesion area is determined by quantifying the number of pixels within 
the lesion region. Next, the convex hull of the mask is determined, 
representing the smallest convex shape that can completely enclose the 
lesion. The area of the convex hull is then computed similarly by 
quantifying the number of pixels within this enclosing shape. A value 
of 1 signifies perfect convexity, while values less than 1 denote 
concavity or indentations in the lesion’s shape.

We utilize the normalized cluster color dispersion as the chosen 
metric to quantify color properties, indicating the level of color 
heterogeneity or variegation within the lesion. This entails computing 
lesion color segmentation, for which we  developed a clustering 
approach based on color distances in the linear RGB color space. 
We first test for unimodality of the lesion color distribution using 
Hartigan’s dip test (40). If the null hypothesis is rejected, the number 
of clusters is determined based on the best silhouette coefficient (41). 
After performing color segmentation, the Euclidean distance of each 
pixel’s intensity to the centroid of its assigned cluster is determined. 

The standard deviation of these distances for each cluster is then 
computed and normalized to the range [0, 1]. The final color 
dispersion score is derived as the weighted sum of these standard 
deviations, with weights corresponding to the percentage of pixels in 
each cluster. Values near 0 suggest a predominance of a single color, 
while values close to 1 indicate extreme color variation or maximal 
dispersion, such as black and white.

The diameter measures the length of the lesion’s longest axis. To 
determine this, we identify the optimal ellipse that aligns with the 
lesion’s shape and calculate the intersection points of its major axis line 
with the lesion contour. The Euclidean distance between these points 
represents the lesion’s diameter.

The evolution of the lesion over time can be  assessed as the 
comparison of the previous metrics at two different time points. 
However, in our experiments we also evaluate the color variation by 
implementing a strategy to quantify changes in lesion color 
throughout the simulation. The lesion color segmentation explained 
before is firstly performed for the two captures of the lesion. 
Subsequently, distances between the centroids of the clusters from 
both segmentations are computed, based on maximum intersection 
over union (IoU) correspondence. These distances are then averaged 

FIGURE 3

Top: Original nevus image from ISIC dataset (left) and AI-generated image (right) showing the lesion’s potential melanoma progression. Bottom: 
Selected frames from the frame interpolation video generated with Runway (2024 Runway AI, Inc., New York, United States) showing a stepwise 
progression from the nevus state to the simulated melanoma state.
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FIGURE 4

Top: Original melanoma image from ISIC dataset (left) and AI-generated image (right) showing the lesion’s potential nevus state. Bottom: Selected 
frames from the frame interpolation video generated with Runway (2024 Runway AI, Inc., New York, United States) showing a stepwise progression 
from the melanoma state to the simulated nevus state.

FIGURE 5

Overview of the implemented image processing techniques for ABCDE rule analysis of the simulation.
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and normalized by the maximum number of clusters, with values near 
0 indicating subtle color changes and values near 1 representing 
extreme color transitions, such as from black to white.

We also employ Farneback’s method of optical flow to analyze the 
transformation within the simulation frames, tracking the motion 
between each stage of the lesion’s progression. Optical flow quantifies 
the apparent motion of objects, surfaces, and edges in a visual scene, 
based on the changes in brightness patterns between consecutive 
frames (42). By accumulating the optical flow vectors across all 
frames, we create a heatmap that visualizes the degree of change, with 
the magnitude of these vectors indicating the extent of transformation. 
Accumulated optical flow involves summing up the optical flow 
vectors over a sequence of frames rather than examining them 
pairwise. This approach can highlight consistent motion patterns 
across multiple frames (43).

Although this method results in the loss of the directional 
information between single frames, it effectively highlights regions of 
significant activity over the complete simulation. To complement this, 
we overlay the accumulated optical flow vectors on the last frame, 
representing the simulated melanoma state, to provide spatial context 
to the changes. Figure 6 shows a visual explanation of optical flow.

In Figure 6, image 1 shows a nevus acquired with a dermoscope 
(DE300, Firefly Global, Belmont, Massachusetts, United States). For 
image 2, the lesion was automatically cropped, enlarged, and 
superimposed onto image 1. The optical flow between image 1 and 
image 2 shows this enlargement as the vectors are generally pointing 
outwards from the center of the lesion. Please note that this example 
is intended solely to illustrate the concept of optical flow within a 
dermatological context.

To gauge the extent to which the generated images capture the 
likeness of nevus or melanoma lesions, we trained a classifier on real 
images and then analyzed its confidence on all the generated frames. 
This method allows us to examine the classifier’s discernment and 

determine the fidelity of the generated images to both nevus and 
melanoma characteristics.

For frame classification, we utilize a self-trained model based on 
the VGG11 architecture, trained on the HAM10000 dataset (44). VGG 
models are well known for their effectiveness in transfer learning and 
have been previously used in skin cancer classification models (45). 
The dataset is labelled with seven different skin lesion types (benign 
classes: melanocytic nevi, benign keratosis-like lesions, 
dermatofibroma, vascular lesions; malignant or pre-malignant classes: 
melanoma, basal cell carcinoma, actinic keratosis). The model was 
trained for 15 epochs, to distinguish the skin lesions from the 
melanocytic nevi class (5,759 images) and the melanoma class (956 
images). We evaluate the model performance on a validation dataset 
randomly selected from the HAM10000 dataset. This consists of 1,103 
images (melanocytic nevi: 946, melanoma: 157); the validation data 
has not been used to train the classification model. The accuracy score 
of 0.9 is derived from the total number of images that were correctly 
identified as nevus or melanoma.

The samples chosen for this analysis were carefully selected 
from the dataset to ensure a broad representation of diversity and 
variability in lesion types. This selection was based on criteria such 
as relative lesion size, lesion color variation, and skin color to 
provide a comprehensive evaluation of our methodology across 
different scenarios.

4 Results

The classification model’s confidence in diagnosing each frame is 
shown in Figure 7. The confidence value reflects the model’s certainty 
in its classification decision.

The confidence levels indicate that the classification model 
initially accurately identifies the nevus input image as a nevus lesion. 

FIGURE 6

Visual representation of optical flow. Between image 1 and image 2, the lesion is cropped and enlarged. The resulting optical flow is visualized by the 
blue vectors.
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As the simulation progresses, the model’s confidence in this diagnosis 
decreases. Conversely, as the combined confidence levels always 
approximate a total of 1, the confidence for melanoma increases. This 
shift effectively highlights the model’s capability to simulate the 
potential evolution of a lesion from nevus to melanoma.

Beyond a certain number of frames, the classification remains 
largely unchanged, likely because the frame interpolation no longer 
significantly alters the image, suggesting that only subtle modifications 
are made beyond this point. It is important to note the significant 
confidence difference observed between the penultimate frame and 
the last frame. This variation arises because the first and last frames, 
unlike the interpolated frames, are not influenced by frame 
interpolation effects. The interpolation process introduces a level of 
noise absent in the training data used for the classification model, 
which could explain the discrepancy in model confidence. However, 
the transition in confidence from the first frame to the second frame—
the initial frame produced by interpolation—is not as pronounced, 
indicating a gradual adaptation of the model to the interpolated data.

In the following, we  aim to determine how the simulation of 
melanoma progression conforms to the widely recognized ABCDE 
rule for melanoma diagnosis. Figure 8 displays the evolution of the 
lesion evaluation metrics for each frame throughout the simulation.

Generally, the latter half of the simulation exhibits minimal changes, 
which was also observed in the confidence values. The results appear 
relatively noisy, highlighting the strong dependence of the metrics to the 
segmentation masks. This issue could be mitigated by improving the 
generation of segmentation masks for the simulation. Currently, each 
frame is segmented independently, without considering the continuity 
with previous frames. Introducing a method that ensures segmentation 
masks maintain consistency across successive frames could significantly 
reduce noise and enhance data quality.

Within each metric category, certain samples are more significantly 
impacted by changes related to that specific metric. For example, the 
asymmetry increases significantly more for sample S7 than for the other 
samples. The border gradient increases throughout the simulation, 
suggesting more defined borders in the simulated melanoma state. 

However, this is contrary to the expectations set by the ABCDE rule, 
which typically associates melanoma with less defined boundaries. 
Regarding color metrics, there is a notable emphasis on color changes, 
evolution, and dispersion, indicating that the simulation predominantly 
modifies color aspects of the lesions. A strong increase in the lesion 
diameter is observed in S2. For the other samples, the diameter 
undergoes only a small change. The analysis of these metrics highlights 
the complex interplay among parameters for the early detection of 
melanoma. In clinical dermatology, not all parameters of the ABCDE 
rule need to be met to justify an excision and melanoma lesions do not 
necessarily exhibit all ABCDE characteristics simultaneously. Similarly, 
in our simulations, adherence to the metric parameters varies across 
samples; some samples may show a pronounced change in one metric 
while others remain unchanged. This variability mirrors the clinical 
reality, underscoring the simulation’s relevance and applicative value in 
dermatological assessments.

Figure 9 shows statistical trends for the first and the last frame of 
the frame interpolation.

The paired boxplot for the first and the last frame of the simulation 
reveals general trends across the dataset, while also highlighting 
variations among individual metrics. Particularly in color-related 
metrics and the border gradient, a consistent behavior is observed 
across all samples. However, the plot also underscores the absence of 
absolute metric values defining nevus and melanoma states; metrics 
indicative of a nevus in one sample may correspond to a melanoma in 
another, illustrating the complex and variable nature of these 
diagnostic indicators.

The Pearson correlation coefficients (PCCs) and p-values 
presented in Table 1 demonstrate the degree of correlation between 
the evolution of each sample and the respective classification 
confidence, as illustrated in Figure 7.

Table  1 reveals numerous significant correlations across all 
metrics, with the p-value exceeding the threshold of 0.05 only once. 
Asymmetry, border characteristics, color dispersion, and color 
evolution exhibit strong correlations. In contrast, the correlations for 
convexity and diameter are less pronounced. The boxplots displayed 
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FIGURE 7

Confidence levels of a nevus diagnosis for each frame. The y-axis quantifies the model’s confidence in each diagnosis, reflecting the degree of 
certainty associated with the classification outcomes. S1 to S7 represent the samples in the study.
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in Figure 10, which illustrate the value distribution of metrics for the 
complete simulations, aid in understanding why certain samples and 
metrics correlate with the classification confidence while others do not.

Focusing on the samples and metrics that exhibit correlations in 
the opposite direction of those anticipated by the ABCDE rule 
(highlighted in gray in Table 1), we observe that the dispersion of the 
metric distribution for these cases is small, indicating almost 
imperceptible changes for asymmetry, convexity, and diameter, as 
illustrated in Figure 10. These subtle variations could be attributed to 
the inherent variability of the segmentation masks, suggesting that the 
detected changes are not significant.

On the other hand, for the border gradient metric, we observe 
strong negative correlations, indicating that the lesion borders become 
sharper as the simulation progresses, contrary to what is expected by 
the rule. This could be attributed to the characteristics of the training 
data or the model’s focus on certain features. Observing the original 
and simulated images depicted in Figures 2, 3, we notice that the 
lesions tend to become darker and sharper as the simulation 
progresses, which aligns with the results obtained.

For the rest of the samples and metrics, we see that color-related 
parameters, such as normalized cluster color dispersion and 

normalized cluster color distances, along with border gradient, exhibit 
a broader distribution compared to other parameters like diameter. 
The wide dispersion of these metrics indicates that the simulations 
have a pronounced impact on color.

In rare cases, the simulation produced undesired artifacts and 
border effects, which can reveal the computational nature of the 
generated image. Figure 11 illustrates an example where such artifacts 
and border inconsistencies are present.

These artifacts and border inconsistencies highlight a limitation 
of the current simulation model, which will need to be addressed in 
future work by developing post-processing filtering methods that can 
quantify the degree of artifact interference and incorporating this 
feedback into the model training, ensuring that future iterations 
produce fewer such artifacts.

Figure 12 illustrates the dynamics of lesion evolution, employing 
optical flow analysis to map the transition from a nevus to a 
simulated melanoma.

The heatmap of the accumulated optical flow visualizes the 
degree of change a lesion region undergoes in the simulation. The 
degree of change varies across different parts of the lesion, with some 
areas showing significant transformation while others exhibit 
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FIGURE 8

Evolution of ABCDE rule metrics. S1 to S7 represent the samples in the study.
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minimal changes. This can be seen in the overlay of the heatmap and 
the last frame of the simulation (Figure 12, upper right) as the red 
color signifies a strong degree of change only for certain regions in 
the lesion (see white arrows) while other regions undergo less 
change which is visualized by the green and blue colors in 
the heatmap.

The accumulation of optical flow vectors provides insights into the 
subtle movements and overall expansion of the lesion. Although the 
vectors are small, their accumulation across the lesion reveals patterns 
of growth and transformation. The zoomed-in view highlights the 
detailed motion patterns, showing the outward orientation of vectors 
that indicates expansion in specific parts of the lesion.

While this information does not directly impact the diagnosis, it 
could be valuable monitoring lesion progression. Consequently, the 
resulting vector field from optical flow analysis opens opportunities 
for advanced vector field analysis. This includes exploring fixed points 
(sink, source, saddle), periodic orbits (attracting, repelling), and 
vector field topology which could improve the understanding of lesion 
progression dynamics.

5 Discussion

Comparing our findings with existing literature, such as 
Stanganelli et al. (46), we observe that digital monitoring has proven 
pivotal in the early detection and management of melanocytic lesions. 
Stanganelli et al. highlighted the critical role of digital monitoring in 
identifying subtle changes in atypical lesions, which aligns with our 
approach of simulating lesion evolution to visualize these changes 
dynamically. Their results showed that frequent digital monitoring 
significantly aids in early melanoma detection and reduces 
unnecessary excisions, especially in high-risk patients.

Similarly, Kittler et  al. (47) demonstrated the effectiveness of 
sequential dermoscopy imaging (SDI) in detecting early melanomas 
that lack specific features at baseline. Our method offers a dynamic 
perspective on lesion evolution, complementing traditional SDI 
techniques. Altamura et al. (48) found that short-term SDI at three-
month intervals effectively identifies melanomas lacking dermoscopic 
features. After 6 weeks, already 69% of the melanomas were detected. 
However, 31% of melanomas required the full monitoring period for 
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Paired boxplot for each ABCDE rule related metric with the first and last frame of the frame interpolation. S1 to S7 represent the samples in the study.
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detection, highlighting the need for prolonged observation for 
some lesions.

Haenssle et al. (49) emphasized the importance of individualized 
surveillance plans based on melanoma risk factors, showing that high-
risk patients benefit significantly from frequent digital dermoscopy 
follow-ups, leading to the detection of thinner melanomas at earlier 
stages. Similarly, Argenziano et  al. (22) noted that dermoscopic 
monitoring increases the likelihood of detecting featureless 
melanomas and minimizes unnecessary excisions of benign lesions. 
Their study also found that short-term monitoring protocols at three-
month intervals had the highest patient compliance and were effective 
in detecting early melanomas, although slow growing melanomas 
required longer monitoring periods to reveal changes.

Terushkin et al. (50) on the other side found that slow-growing 
melanomas often exhibit minimal growth over long-term follow-up, 
becoming more disorganized and developing new colors and 
structures over time. This aligns with our findings that prolonged 
monitoring is crucial for detecting subtle changes indicative of 
melanoma. Salerni et  al. (51) analyzed the benefits of a two-step 
method (total-body photography and digital dermatoscopy) for early 
melanoma diagnosis, emphasizing the need for high patient 
compliance and resource-intensive follow-up programs. In our study 
we address these challenges by providing a dynamic and detailed 
perspective on lesion evolution.

Also, Argenziano et  al. (21) stressed the importance of 
understanding the natural evolution of melanocytic lesions and 
improving melanoma diagnosis through dermoscopy and digital 
follow-up. Our approach addresses this issue by potentially providing 
a more detailed and dynamic visualization of lesion changes over time.

Overall, our study aligns with and extends the existing literature 
by demonstrating the effectiveness of a dynamic monitoring approach 
in improving the early detection of melanoma and reducing 
unnecessary surgical procedures. This method provides a 
comprehensive understanding of lesion evolution, addressing key 

challenges identified in previous studies and offering a promising tool 
for enhancing melanoma surveillance and diagnosis. Further 
systematic studies will have to follow, however, to demonstrate the full 
potential of the approach.

Buhl et  al. (52) discusses an approach to improve melanoma 
detection by combining static and dynamic dermatoscopic features. 
The DynaMel algorithm was developed through a prospective 
observational study involving 688 patients at high risk for melanoma, 
with a follow-up period averaging 44.28 months. During this time, 675 
lesions exhibiting dynamic changes were excised, leading to the 
identification of 61 melanomas. The study found that integrating 
dynamic criteria - such as asymmetric multifocal enlargement, focal 
changes in pigmentation, and overall pigmentation changes - into the 
traditional 7-point checklist significantly increased the sensitivity of 
melanoma detection from 47.5 to 77.1%, while maintaining a high 
specificity. Our study ties in well with this work as it simulates the 
dynamic changes in lesions.

6 Conclusion

This research explores the potential of combining lesion 
progression simulations with optical flow analysis to provide 
dermatologically relevant insights on the lesions examined. By 
adhering closely to the ABCDE rule, the simulations prove to 
be robust tools for representing the evolution of skin lesions, providing 
dermatologists with a reliable method to visualize and understand 
disease progression. Optical flow analysis further adds to this 
approach by highlighting dynamic changes within the lesions, 
identifying areas that require higher clinical attention during lesion 
monitoring. Beyond simply visualizing the changes, optical flow offers 
a quantitative assessment of lesion movement and expansion patterns, 
which may be particularly useful in detecting early-stage melanomas 
where traditional visual cues may be insufficient. This approach not 

TABLE 1 Pearson correlation coefficients and p-values.

S A B C D E

Asymmetry Gradient Convexity Color Diameter Evolution

ρ 1 −0.954702 −0.968174 0.954087 −0.961917 −0.800910 −0.875324

p-val 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

ρ 2 −0.450438 −0.60801 0.601743 −0.782247 −0.846785 −0.643279

p-val 0.000579 0.000000 0.000000 0.000000 0.000000 0.000000

ρ 3 0.297445 −0.781473 0.822825 −0.727357 0.601767 −0.849163

p-val 0.000198 0.000000 0.000000 0.000000 0.000000 0.000000

ρ 4 −0.674758 −0.652609 0.590950 −0.447553 0.181571 −0.905309

p-val 0.000000 0.000000 0.000000 0.000743 0.025174 0.000000

ρ 5 −0.752571 −0.961138 0.306781 −0.930462 0.113930 −0.954466

p-val 0.000000 0.000000 0.000121 0.000000 0.162240 0.000000

ρ 6 −0.945634 −0.989335 0.931796 −0.970484 0.760012 −0.980060

p-val 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

ρ 7 −0.983136 −0.983924 −0.427019 −0.956945 0.977155 −0.982438

p-val 0.000000 0.000000 0.000411 0.000000 0.000000 0.000000

The font color indicates the sign of the correlation (red: negative, black: positive). A gray field shows that the sample’s correlation has a different sign in that category than the expected 
according to the ABCDE rule. A bold field indicates a high p-value. S1 to S7 represent the samples in the study.
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FIGURE 10

Value distributions for each metric and sample for full simulations. S1 to S7 represent the samples in the study.

FIGURE 11

Original nevus image (left) and simulated melanoma image (right), highlighting a case where artifacts and border effects are present in the simulation.
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only complements the ABCDE rule but could also evolve into a new 
diagnostic layer that quantifies lesion transformations in real-time, 
potentially serving as an early warning system for rapid melanoma 
progression. Integrating such quantitative tools into routine 
dermatological practice may lead to earlier interventions, personalized 
follow-up schedules, and more precise treatment plans for patients at 
risk of melanoma. However, the potential of optical flow analysis will 
need to be studied in future work in more detail.

This visual tool goes beyond the traditional ABCDE rule for 
melanoma diagnosis, offering a more intuitive and understandable 
approach. By seeing the potential progression from nevus to 
melanoma, patients gain a clearer understanding of their diagnosis, 
fostering confidence in self-examinations and early detection. 
Melanoma patient education on skin self-examination improves their 

self-efficacy. With this, the level of perceived physician support 
increases (53). Generative AI in dermatology is not just a technological 
advancement; it could be a step towards empowering patients with a 
deeper understanding of their skin health. By bridging the gap 
between complex melanoma diagnostics and patient comprehension, 
technology could enhance proactive skin care and early cancer 
detection. The broader application of this technology could improve 
patient education across various diseases, that require visual 
diagnosis. Deploying AI in patient care and education necessitates 
careful consideration of ethical issues, including patient privacy, data 
security, and the need for transparent AI decision-making 
processes (54).

Furthermore, while the simulation operates independently of the 
ABCDE rule, its outcomes correlate with this established diagnostic 

Accumulated optical flow vectors (crop)Accumulated optical flow vectors

Heatmap of accumulated optical flow (overlay)Heatmap of accumulated optical flow

FIGURE 12

Optical flow analysis of lesion evolution. Upper left: Heatmap of accumulated optical flow vectors, with color intensity indicating change magnitude 
and highlighting transformation areas. Upper right: Heatmap overlaid on the simulation’s final, simulated melanoma frame, combining flow data with 
visual context. Lower left: Optical flow vectors across the lesion, emphasizing motion. Lower right: Zoomed-in view of vectors from the lower left, 
revealing detailed motion patterns within a focused area.
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framework, underscoring the potential of generative AI to mimic 
complex biological processes. This allows for testing and validating novel 
diagnostic criteria against the simulations. Such an approach could not 
only enhance our understanding of skin lesion progression, but also lays 
the groundwork for incorporating new, evidence-based criteria into 
clinical practice, potentially improving the early detection of melanoma. 
When considering the use of this technology as a training tool for 
dermatologists and an educational tool for patients, it is important that 
the simulation impacts the parameters in a natural and realistic manner. 
This ensures that the learning experience is authentic and reflective of 
real-world conditions, which is precisely what our simulation achieves. 
Finally, the simulation could be  helpful in developing algorithms 
specifically designed for lesion change detection, enhancing the early 
diagnosis of melanoma and monitoring of skin lesion progression.

While it is recognized that the majority of melanomas do not 
originate from benign melanocytic nevi, this approach is specifically 
tailored to enhance detection and monitoring of those melanomas 
that develop from pigmented skin lesions (55).

The simulations effectively adhere to the ABCDE rule, 
affirming their validity in mirroring realistic lesion dynamics. 
The optical flow analysis promises applicability in identifying 
regions within the lesions that require heightened attention by 
the dermatologist.

Future challenges include enhancing the resolution of the input 
and output images (presently at 256 × 256), which is crucial for 
improving detail and clarity. Additionally, more research is needed to 
minimize artifacts and border effects that may distort results.

In future work, we plan to validate the generated lesions by 
acquiring a cohort of board-certified dermatologists to 
independently diagnose the images, thereby ensuring the clinical 
relevance and accuracy of our simulations. We plan to explore the 
generalizability of the approach by applying the Cycle-GAN to 
other dermatological conditions (e.g., basal cell carcinoma) and 
other medical imaging datasets (e.g., microscopy or histopathology) 
to evaluate its performance and potential across different contexts.

Our next work will prioritize comparing these simulations with 
actual lesion progressions from sequential dermoscopy, which is 
challenging due to the rarity of such data, as suspicious lesions are 
often excised preemptively. The technology could be implemented 
into patient consultations, explaining the necessity of excisions, and 
assessing patient confidence in dermatological decisions.
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