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Background: Biliary atresia (BA) is a severe congenital biliary developmental 
abnormality threatening neonatal health. Traditional diagnostic methods rely 
heavily on experienced radiologists, making the process time-consuming and 
prone to variability. The application of deep learning for the automated diagnosis 
of BA remains underexplored.

Methods: This study introduces GallScopeNet, a deep learning model designed 
to improve diagnostic efficiency and accuracy through innovative architecture 
and advanced feature extraction techniques. The model utilizes data from 
a carefully constructed dataset of gallbladder ultrasound images. A dataset 
comprising thousands of ultrasound images was employed, with the majority 
used for training and validation and a subset reserved for external testing. 
The model’s performance was evaluated using five-fold cross-validation and 
external assessment, employing metrics such as accuracy and the area under 
the receiver operating characteristic curve (AUC), compared against clinical 
diagnostic standards.

Results: GallScopeNet demonstrated exceptional performance in distinguishing 
BA from non-BA cases. In the external test dataset, GallScopeNet achieved an 
accuracy of 81.21% and an AUC of 0.85, indicating strong diagnostic capabilities. 
The results highlighted the model’s ability to maintain high classification 
performance, reducing misdiagnosis and missed diagnosis.

Conclusion: GallScopeNet effectively differentiates between BA and non-BA 
images, demonstrating significant potential and reliability for early diagnosis. 
The system’s high efficiency and accuracy suggest it could serve as a valuable 
diagnostic tool in clinical settings, providing substantial technical support for 
improving diagnostic workflows.
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1 Introduction

Biliary atresia (BA) is a severe congenital anomaly of the biliary 
system that poses a significant threat to neonatal health. It is 
characterized by the obstruction of parts or all of the biliary tract, 
which prevents bile from flowing into the duodenum. This 
obstruction results in bile accumulation in the liver, leading to 
progressive liver damage, biliary cirrhosis, and ultimately liver 
failure. Without timely intervention, liver transplantation becomes 
necessary, posing a life-threatening risk to affected infants (1). The 
exact etiology of BA remains unclear, but it is believed to involve a 
combination of genetic predisposition and environmental factors, 
potentially including viral infections and immune-mediated 
damage during fetal development (1, 2). Early and accurate 
diagnosis is crucial for initiating treatment plans, preventing 
complications, reducing mortality, and improving patient prognosis. 
Interventions such as the Kasai portoenterostomy, which involves 
surgically bypassing the blocked bile ducts, can be  life-saving if 
performed early, but the success of such procedures diminishes with 
delays in diagnosis and treatment (1). Additionally, advancements 
in imaging techniques, such as the development of novel NIR-II 
fluorescent probes, have shown promise in improving the 
visualization of biliary structures and aiding in the early detection 
of BA (2).

Ultrasound imaging, particularly abdominal ultrasound, is widely 
employed as an initial screening tool for BA in pediatrics due to its 
non-invasive, convenient, cost-effective, and real-time characteristics 
(3). However, the ultrasound features of BA are often atypical, 
manifesting only as gallbladder enlargement, bile duct dilation, or 
enhanced liver echogenicity (4). This demands high image recognition 
skills from diagnosticians and vigilance towards subtle pathological 
changes. The heavy reliance on operator experience and subjective 
interpretation of pathological features compromises diagnostic 
consistency and accuracy (5). Traditional diagnostic strategies, 
including clinical symptom monitoring (such as the duration and 
appearance of jaundice) (6), biochemical markers (such as direct 
bilirubin levels) (7, 8), and imaging examinations, although 
informative, frequently fail to achieve optimal sensitivity and 
specificity in the early stages of the disease, delaying timely treatment 
(7). Manual interpretation of ultrasound images is not only time-
consuming but also prone to variability due to operator experience 
and fatigue, increasing diagnostic inconsistency (9, 10).

Recent advancements in elastography, including transient 
elastography and shear wave elastography, have been explored to 
improve the diagnostic accuracy for liver fibrosis and BA (4, 5, 9). 
Despite these advancements, significant challenges remain in 
differentiating BA from other causes of neonatal jaundice using 
conventional ultrasound techniques (9). Studies have shown that 
combining gray-scale ultrasound with elastography may enhance 
diagnostic performance, but this approach still heavily depends on the 
operator’s expertise and experience (9).

Furthermore, current diagnostic methods for BA, such as the 
infant stool color card screening program and newborn screening for 
direct or conjugated bilirubin measurements, have demonstrated 
varying degrees of success in early detection. These methods, while 
useful, often lack the necessary sensitivity and specificity to reliably 
identify BA in its early stages, leading to delays in diagnosis and 
treatment (6, 7).

In recent years, artificial intelligence (AI) technologies, 
particularly deep learning (DL), have introduced groundbreaking 
advancements in medical imaging analysis for BA diagnosis (10). 
Convolutional neural networks (CNNs), a fundamental component 
of DL, have demonstrated exceptional image analysis capabilities. 
CNNs automatically extract complex visual patterns and structural 
information from raw images through multi-level feature learning, 
thereby identifying disease characteristics (11). Studies indicate that 
CNNs, when diagnosing diseases such as tumors and cardiovascular 
conditions, achieve accuracy levels surpassing those of human experts, 
providing more objective and accurate support for clinical decision-
making (12–14). Given the urgency of early BA diagnosis and the 
challenges in interpreting ultrasound images, developing objective, 
efficient, and accurate AI-based diagnostic tools has become a 
research focus. These tools aim to leverage CNNs and other 
technologies to automatically identify subtle pathological changes in 
ultrasound images, reduce dependence on operator experience, 
improve diagnostic accuracy and consistency, and thereby promote 
early identification and intervention for BA, ultimately enhancing 
patient outcomes (15).

This study aims to develop a deep learning model specifically 
designed for the automatic diagnosis of BA in ultrasound gallbladder 
images. By focusing on the optimization of feature extraction and 
image enhancement techniques, this study seeks to overcome the 
limitations of existing models, thereby enhancing diagnostic accuracy 
and generalization capabilities (Figure 1). Specifically, the innovations 
of this study include:

 (1) Model design innovation: Developing an integrated CNN 
model specifically targeting the identification of changes in 
gallbladder and bile duct structures, enhancing the model’s 
sensitivity and specificity. The design focuses on optimizing 
structural and feature extraction levels to better identify and 
interpret BA characteristics.

 (2) Image enhancement and optimization: Utilizing advanced 
image enhancement techniques to improve the model’s ability 
to recognize subtle pathological changes, ensuring consistent 
performance across images of varying quality.

 (3) Rigorous model validation: Implementing stringent model 
validation strategies, including five-fold cross-validation and 
independent external test set validation, to ensure the 
model’s stability and generalizability across different datasets, 
further verifying the model’s reliability and clinical 
application potential.

2 Related work

Biliary atresia (BA) is a severe congenital liver condition that leads 
to bile duct obstruction in neonates, necessitating early and accurate 
diagnosis to prevent liver failure. Traditional diagnostic methods such 
as liver biopsy and intraoperative cholangiography (IOC) are 
considered gold standards due to their high sensitivity and specificity. 
Liver biopsy, despite its high diagnostic performance, is invasive and 
prone to sampling errors, and requires expert pathological 
interpretation (16). IOC, another gold standard, can only 
be performed by pediatric surgeons and involves significant risks (17). 
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Non-invasive methods like hepatobiliary scintigraphy and MRI offer 
alternatives but have limitations, including low specificity and the 
need for sedation (12, 17).

Ultrasound (US) is widely used as a non-invasive diagnostic tool 
for BA due to its feasibility and real-time imaging capabilities. Key 
ultrasound features for BA diagnosis include the triangular cord sign 
and gallbladder abnormalities. The triangular cord sign, indicating 
fibrosis of the extrahepatic bile duct, has high specificity but variable 
sensitivity (12, 15). Park et al. (18) emphasized the importance of the 
triangular cord sign in diagnosing BA and compared the effectiveness 
of ultrasonography, hepatobiliary scintigraphy, and liver needle 
biopsy, highlighting the varying diagnostic performance of these 
methods. Despite its advantages, the diagnostic performance of 
ultrasound heavily depends on the operator’s expertise, leading to 
variability and potential misdiagnosis, particularly in settings with less 
experienced radiologists (12, 19). This variability highlights the need 
for more consistent and accurate diagnostic tools.

Recent advancements in deep learning, particularly convolutional 
neural networks (CNNs), have shown significant promise in medical 
imaging. Gulshan et al. (20) demonstrated that CNNs could achieve 
dermatologist-level accuracy in skin cancer detection, showcasing the 
potential of AI to surpass human experts in diagnostic tasks. In the 
context of BA, Liu et al. (21) developed an ensemble deep learning 
model that outperformed human experts in diagnosing BA from 
sonographic images, achieving high accuracy and robustness across 
multiple centers. Their model utilized advanced feature extraction 
techniques and demonstrated a significant improvement in diagnostic 

performance, with a reported sensitivity of 93.1% and specificity of 
93.9%. However, the study’s reliance on high-quality sonographic 
images and the increased computational complexity of the ensemble 
model present challenges for its practical application in diverse 
clinical settings.

Several other studies have further validated the effectiveness of 
deep learning in medical diagnostics. Rajpurkar et al. (22) employed 
a deep learning model to assist in the diagnosis of diabetic retinopathy, 
achieving sensitivity and specificity comparable to ophthalmologists. 
Similarly, Zhou et al. (23) developed a deep learning algorithm for the 
detection of diabetic retinopathy, which showed a high level of 
accuracy in a large dataset. Additionally, Gu et al. (24) used a deep 
learning model to interpret chest radiographs for various pathologies, 
demonstrating that their model could achieve radiologist-
level performance.

In the context of BA, other notable studies include Caponcelli 
et al. (25), who developed an interpretable AI-based app to assist 
inexperienced radiologists in diagnosing BA from sonographic 
gallbladder images, achieving significant improvements in diagnostic 
accuracy. Another study by Zhang et al. (26) applied deep learning 
techniques to analyze stool color images for early detection of BA, 
showing high sensitivity and specificity. These studies collectively 
highlight the transformative potential of AI in enhancing diagnostic 
accuracy and consistency across various medical fields.

Despite these advancements, several challenges remain. Many 
existing AI models rely on high-quality imaging data and extensive 
preprocessing, which may not always be feasible in real-world clinical 

FIGURE 1

Workflow.
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settings. Gu et al. (24) pointed out that the reliance on high-quality 
images limits the applicability of these models in settings with variable 
imaging quality. Additionally, the diversity of training datasets is often 
limited, affecting the generalizability of the models across different 
populations and imaging conditions. Caponcelli et al. (25) noted that 
models trained on homogeneous datasets may struggle with diverse 
clinical data, highlighting the need for more inclusive and 
representative training datasets.

In response to these challenges, this study introduces 
GallScopeNet, an innovative deep learning model designed to 
optimize feature extraction and diagnostic accuracy for 
BA. GallScopeNet incorporates normal convolution and coordinate 
attention mechanisms to enhance its ability to detect subtle 
pathological features in ultrasound images while maintaining 
computational efficiency. This approach aims to improve the 
robustness and generalizability of the model across diverse clinical 
settings. By addressing these gaps, GallScopeNet aims to provide a 
reliable, efficient, and non-invasive diagnostic tool for early BA 
detection, potentially improving clinical outcomes and reducing the 
burden on healthcare systems.

3 Materials and methods

3.1 Data collection

The dataset for this study was sourced from a meticulously 
designed specialized resource—sonographic images for biliary atresia 
diagnosis [Zenodo. (2021). youngyzzZ/sonographic-gallbladder-
images-for-BA-diagnosis: fifth release of my project (v1.0.4). Available 
at: https://doi.org/10.5281/zenodo.4445734] (27). This database 
extensively collected and organized ultrasound image data related to 
BA, providing a valuable experimental foundation for this study. The 
dataset includes a total of 927 confirmed cases of BA and 2,778 control 
cases (non-BA patients). All diagnoses were confirmed through 
intraoperative cholangiography, percutaneous ultrasound-guided 
cholecystocholangiography, liver biopsy, or follow-up, ensuring the 
data’s reliability and accuracy. Inclusion criteria for the dataset were 
neonates with a clinical suspicion of biliary atresia based on initial 
clinical assessments and laboratory tests, with confirmation of the 
diagnosis through intraoperative cholangiography, percutaneous 
ultrasound-guided cholecystocholangiography, liver biopsy, or 
follow-up. Additionally, only high-quality ultrasound images that met 
predefined imaging standards were included. Exclusion criteria 
involved cases with poor-quality ultrasound images that did not meet 
these standards, neonates with other diagnosed liver conditions that 
could confound the diagnosis of biliary atresia, and patients with 
incomplete clinical records or lack of follow-up data to confirm 
the diagnosis.

3.2 Data preprocessing

The dataset used in this study included ultrasound images of 
varying quality, with differences in aspects such as contrast, noise 
levels, and the presence of artifacts. These variations in image quality 
reflect real-world clinical conditions, where factors such as differences 
in ultrasound equipment, patient movement during scanning, varying 

operator expertise, and suboptimal imaging conditions can 
significantly impact the final ultrasound image. Variations in contrast 
and the presence of noise or artifacts can obscure critical features 
necessary for accurate diagnosis. Additionally, artifacts such as 
shadowing, reverberation, and speckle noise often present in 
ultrasound images further complicate the analysis process.

Given these challenges, the selection process in this study was 
guided by the visibility of key anatomical features crucial for 
diagnosing biliary atresia. Images were evaluated based on their 
contrast quality, noise levels, and the presence of significant artifacts 
to ensure they did not negatively impact the diagnostic process. 
Specifically, images with poor contrast, excessive noise—such as 
speckle or electronic interference—or artifacts that could obscure or 
distort anatomical structures were excluded from the dataset. After 
applying these selection criteria, 897 confirmed cases of BA and 2,689 
control cases (non-BA patients) were included in the final dataset. 
This selection ensured that the model was trained on images where 
quality issues did not significantly hinder diagnostic accuracy, thereby 
providing a robust foundation for developing the model without 
necessarily relying on only the highest-quality images.

After completing the rigorous selection process, the selected 
ultrasound images underwent further optimization through advanced 
preprocessing and enhancement techniques. All images were 
uniformly resized to a standard dimension of 224 × 224 pixels. This 
resizing preserved data integrity while promoting efficient model 
training and ensuring unified image information processing and 
feature extraction.

Secondly, to further enhance the model’s learning performance in 
complex ultrasound images, a series of advanced data augmentation 
techniques were implemented to increase training set diversity and 
robustness. Adaptive histogram equalization (AHE) was used to adjust 
pixel brightness distribution adaptively (28), significantly enhancing 
contrast and making details such as gallbladder walls and internal 
textures more prominent, providing the model with rich information 
layers for learning. Median filtering effectively removed random noise 
from images (29), particularly ultrasound artifacts, similar to methods 
used for low-dose CT image denoising and enhancement in previous 
studies (30), preserving clear key structures like the gallbladder and 
bile ducts, thereby improving the model’s robustness in practical 
image processing and reducing misreads. Gamma correction adjusted 
image brightness and contrast (31), rendering overly dark or bright 
details visible, aiding in the recognition of subtle pathological features 
such as bile flow and blood flow, thereby enhancing the model’s 
sensitivity and specificity (Figure 2).

Additionally, a comprehensive suite of data augmentation 
techniques was applied to further enhance the robustness and 
generalizability of the model. These techniques included rotation 
by random angles within a specified range, ensuring the model 
learns to recognize anatomical structures regardless of their 
orientation, and scaling, where images were randomly scaled up or 
down to ensure the model becomes invariant to differences in 
image size and resolution. Flipping was applied horizontally and 
vertically to help the model generalize across different patient 
positions and imaging protocols. Random cropping of images 
forced the model to focus on different parts of the image, enhancing 
its ability to detect features that may appear in various locations. 
Noise injection added random noise to the images, simulating 
variations and imperfections that occur in real-world ultrasound 
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imaging, thereby improving the model’s robustness to noisy or 
poor-quality images. Finally, elastic deformation was used to 
randomly deform the images, simulating the variability in tissue 
appearance due to different imaging conditions or patient 
movements, which helps the model to recognize anatomical 
structures under varied conditions.

These augmentation techniques were carefully chosen to 
address potential biases and ensure that the model encounters a 
wide range of variations during training. This approach not only 
increases the diversity of the training set but also improves the 
model’s ability to generalize to different clinical settings and patient 
populations, thus reducing the risk of overfitting to specific types of 
data. These meticulously designed data processing and 
augmentation techniques not only improved image quality but also 
strengthened the model’s ability to recognize pathological features 
of BA, laying a solid foundation for model generalization and 
diagnostic accuracy. Through these data preparation steps, the 
model effectively extracts key information from ultrasound images, 
providing an efficient and reliable auxiliary tool for automatic 
diagnosis of gallbladder and BA.

3.3 Model construction

Deep learning, particularly convolutional neural networks 
(CNNs), has revolutionized the field of medical imaging by enabling 
automatic and accurate analysis of visual data. CNNs are designed to 
learn hierarchical patterns and features from images through multiple 
layers of convolution.

At a high level, CNNs consist of several types of layers: 
convolutional layers, pooling layers, and fully connected layers. The 
convolutional layers apply a set of learnable filters to the input image, 
where each filter convolves around the input image and activates 
certain features such as edges, textures, and colors. This process 
generates feature maps that capture various aspects of the image. 
Pooling layers then reduce the spatial dimensions of these feature 
maps, retaining the most essential information while reducing the 
computational load and preventing overfitting. Finally, fully connected 
layers process these features to classify the image into predefined 
categories (11).

The ability of CNNs to automatically learn and extract features 
from raw image data makes them particularly effective for image 
recognition tasks. This capability is further enhanced by using 
multiple layers, allowing the network to understand and capture 
increasingly complex and abstract features at each layer (11). The 
hierarchical learning approach of CNNs thus enables them to excel in 
various medical diagnostic applications by accurately identifying and 
interpreting intricate patterns in medical images.

However, designing CNN models that balance efficiency and 
accuracy can be challenging. This study focuses on finding a balanced 
solution between model efficiency and accuracy to meet the needs of 
embedded systems for medical diagnostics (32). Based on this, a 
lightweight ResNet34 model incorporating the PConv (partial 
convolution) architecture from FasterNet was used as the baseline 
model (33, 34). This model is a proven efficient model designed to 
provide good performance even in resource-limited environments. 
However, to further optimize the model’s diagnostic capabilities, 
particularly for recognizing complex features in gallbladder images 

FIGURE 2

Image enhancement using adaptive histogram equalization (AHE), median filtering, and gamma correction.
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indicative of BA, a series of innovative improvement strategies were 
designed to enhance model performance without significantly 
increasing complexity.

3.3.1 Improvement A: baseline (−PConv)
In optimizing the deep learning model for diagnosing BA from 

ultrasound gallbladder images, this study first re-examined the use of 
partial convolution (PConv). PConv was introduced in previous 
studies to reduce model complexity and computational cost (35, 36). 
The core idea of PConv is to apply standard convolution to only a 
portion of the input feature map’s channels, reducing computation and 
memory access frequency to improve operational efficiency. 
Specifically, PConv selects a small continuous portion of the feature 
map channels (e.g., one-quarter) for computation, while the rest 
remain unchanged, effectively reducing the number of floating-point 
operations (FLOPs) and memory access needs.

PConv modifies the traditional convolution process by focusing 
only on certain parts of the input, thereby reducing the computational 
load. This selective approach helps in speeding up the model and 
lowering the resource requirements, which is beneficial for 
applications in resource-limited environments. However, this 
reduction in computation might lead to a compromise in capturing 
detailed features necessary for high-precision tasks like diagnosing BA 
from ultrasound images.

Deep analysis revealed that for diagnosing diseases like BA, the 
subtle structural changes, morphology of the gallbladder wall, and 
hemodynamic features present in ultrasound images demand higher 
recognition capabilities from the model (37). Normal convolution, 
which covers all channels of the input feature map, has an inherent 
advantage in capturing these detailed features, despite higher 
computational costs and parameter counts (38). Normal convolution, 
through its global operation, can more fully extract inter-feature 
relationships and spatial contextual information, crucial for 
distinguishing normal and abnormal gallbladder structures.

Normal convolution involves applying a convolutional filter across 
the entire input feature map, ensuring that every channel and pixel is 
considered. This comprehensive approach allows the model to capture 

intricate details and spatial relationships within the image. By 
processing the full input, normal convolution can extract rich and 
complex features, making it particularly effective for identifying subtle 
differences between normal and abnormal gallbladder structures. This 
thorough feature extraction is crucial for accurate diagnosis in medical 
imaging, where precision is paramount.

Therefore, this study replaced the partial convolution in the 
baseline model with normal convolution (Figure 3A), sacrificing some 
model complexity to enhance performance in diagnosing BA from 
ultrasound images. Despite the increase in computational complexity, 
normal convolution’s performance advantages in ultrasound image 
analysis are realized, especially in capturing intricate details and 
dynamic structures in gallbladder images. This includes more finely 
analyzing the slight changes in the gallbladder wall and identifying 
abnormal hemodynamic features indicative of BA, critical for 
improving diagnostic accuracy.

3.3.2 Improvement B: baseline (+CA)
Coordinate attention (CA), an innovative attention mechanism in 

current mobile network design, has shown significant effects in 
enhancing model performance (39–41). CA embeds positional 
information into traditional channel attention, overcoming the 
limitations of ignoring spatial information. Specifically, it aggregates 
information along the horizontal and vertical directions through two 
one-dimensional feature encoding processes, maintaining both long-
range spatial dependencies and precise positional details. This 
mechanism generates direction-aware and position-sensitive attention 
maps that complementarily apply to the input feature map, enhancing 
the expression of key areas, aiding the model in accurately locating 
and identifying target objects.

To elaborate, traditional channel attention mechanisms focus on 
emphasizing important channels but often overlook the spatial 
relationships within the image. CA addresses this by capturing the 
positional information along both the horizontal and vertical 
dimensions. It achieves this by splitting the input feature map into 
horizontal and vertical directions and encoding each direction 
separately. This approach allows the model to maintain a global view 

FIGURE 3

(A) Replacing partial convolution with normal convolution to enhance sensitivity to detailed features. (B) Embedding coordinate attention to optimize 
feature extraction.
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of the spatial dependencies while preserving detailed 
positional information.

The CA mechanism generates attention maps that are sensitive to 
the direction and position of features within the image. These attention 
maps are then applied to the input feature map, enhancing the model’s 
ability to focus on and accurately identify critical areas within the 
image. By doing so, CA enhances the model’s feature extraction 
capabilities, leading to improved performance in tasks requiring 
detailed spatial understanding.

This study’s improvement strategy focused on integrating this 
efficient CA attention mechanism into the model’s basic construction 
units to significantly improve model performance while strictly 
controlling the increase in model complexity. The approach goes 
beyond merely adding an attention module to the existing architecture 
but integrates CA into the fundamental unit design, making it an 
inseparable part of the model architecture. The carefully designed 
integration scheme ensures CA operations work synergistically with 
basic convolution operations, jointly optimizing the feature 
extraction process.

In practical implementation, the existing basic unit basic block 
was fine-tuned, integrating CA with minimal computational cost by 
adding the CA mechanism after the residual connection of the basic 
unit. The residual connection’s fused image feature data is fed into the 
CA mechanism to enhance the expression of key areas (Figure 3B). 
This allows attention weights to guide feature learning effectively with 
minimal model complexity increase.

3.3.3 GallScopeNet
Based on the advantages of the two improvements, this study 

optimized the model’s feature expression capabilities and designed the 
final model, GallScopeNet (Figure 3). The architecture of GallScopeNet 
integrates several key components and strategies to enhance its 
performance in diagnosing biliary atresia from ultrasound images.

Firstly, the model employs normal convolution instead of partial 
convolution. While this substitution results in a slight increase in the 
parameter count by approximately 0.1%, it significantly boosts the 
model’s ability to extract features from ultrasound gallbladder images. 
Specifically, GallScopeNet achieves an improvement of over 3% in 
accuracy and F1 score compared to the baseline model using partial 
convolution. These enhancements are crucial for identifying subtle 
pathological features associated with biliary atresia, demonstrating 
GallScopeNet’s superior performance in critical diagnostic tasks.

Secondly, GallScopeNet incorporates coordinate attention (CA) 
into its architecture. This innovative attention mechanism embeds 
positional information into the traditional channel attention framework, 
allowing the model to maintain high efficiency while improving feature 
expression. The inclusion of CA contributes to an increase of over 8% 
in both overall accuracy and F1 score on the test datasets. Additionally, 
the integration of CA adds only about 0.7% to the model’s parameter 
count, ensuring that GallScopeNet remains computationally efficient 
while significantly enhancing its diagnostic performance.

The integration of these components within GallScopeNet is 
designed to keep the model’s complexity and optimization latency in 
check. The architecture includes a series of convolutional layers with 
normal convolution and CA modules, arranged to maximize the 
extraction and utilization of critical features from the ultrasound images. 
The backbone of the model is based on a modified ResNet34 framework, 
which ensures a balance between depth and computational efficiency.

Overall, GallScopeNet is meticulously designed to accurately 
identify subtle changes in the gallbladder wall and bile ducts, 
leveraging both normal convolution for detailed feature extraction and 
coordinate attention for enhanced feature expression. These 
improvements collectively enable the model to perform robustly and 
efficiently in the clinical diagnosis of biliary atresia, demonstrating a 
reduction in false negatives by approximately 2.1% and an increase in 
true positives by 2.3%, further underscoring its reliability in 
clinical settings.

3.4 Model evaluation criteria

This study constructed a comprehensive evaluation system to 
rigorously measure the performance of the deep learning model 
in analyzing ultrasound images for gallbladder abnormalities. This 
multi-dimensional evaluation system integrates several key 
metrics, including accuracy (ACC), precision, recall, F1 score, and 
Matthews correlation coefficient (MCC), as well as core evaluation 
tools like area under the curve (AUC) and confusion matrix (42–
44). This approach is consistent with methodologies employed in 
recent studies on machine learning models for medical condition 
identification, ensuring comprehensive evaluation and comparison 
(45). The goal is to comprehensively test the model’s predictive 
accuracy, classification comprehensiveness, and consistency with 
actual diagnoses, ensuring thorough and broad evaluation.

Accuracy, as a fundamental classification performance metric, 
reveals the correctness of model classification. The calculation of 
accuracy is shown in Equation 1:

 
TP TNAccuracy

TP TN FP FN
+

=
+ + +  

(1)

where TP (true positive) is true positive, TN (true negative) is true 
negative, FP (false positive) is false positive, and FN (false negative) is 
false negative. High accuracy indicates overall good 
classification tendency.

Precision measures the proportion of true positives among the 
predicted positive samples, indicating the prediction accuracy for 
positive cases. The calculation of precision is illustrated in Equation 2:

 
TPPrecision

TP FP
=

+  
(2)

High recall ensures that all positive cases are captured, thereby 
reducing missed diagnoses.

Recall focuses on the proportion of actual positives correctly 
identified, measuring the model’s capability to capture positive cases. 
The calculation of recall is given in Equation 3:

 
TPRecall

TP FN
=

+  
(3)

High recall ensures that all positive cases are captured, thereby 
reducing missed diagnoses.

The F1 score, as the harmonic mean of precision and recall, 
balances both metrics and is suitable for imbalanced class situations. 
The calculation of the F1 score is presented in Equation 4:
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Precision RecallF1score 2
Precision Recall

×
= ×

+  
(4)

A high F1 score indicates a balanced precision and recall.
The Matthews correlation coefficient (MCC) is a robust indicator 

of classification quality, particularly for imbalanced distributions. It 
ranges from −1 to +1, where +1 signifies perfect classification, 0 
represents random classification, and −1 indicates incorrect 
classification. The calculation of MCC is demonstrated in Equation 5:

 ( )( )( )( )
TP TN FP FNMCC

TP FP TP FN TN FP TN FN
× − ×

=
+ + + +  

(5)

MCC objectively reflects model performance on imbalanced data.
AUC, the area under the receiver operating characteristic curve, 

measures classifier performance across all thresholds. Ranging from 
0 to 1, a value close to 1 indicates strong distinction between positive 
and negative cases. AUC is important for reflecting the model’s 
discrimination ability, considering different false alarm costs.

Confusion matrix visually shows the relationship between model 
predictions and actual labels through TP, TN, FP, and FN, directly 
calculating metrics and revealing error patterns, identifying overfitting, 
underfitting, and biases, guiding model adjustment and optimization.

These metrics are particularly appropriate for the task of biliary 
atresia diagnosis. Given the critical nature of biliary atresia, where early 
and accurate detection is essential for effective treatment, each metric 
provides valuable insights into different aspects of model performance. 
Accuracy offers a broad measure of correct classifications, ensuring that 
the model performs well overall. Precision is crucial in minimizing false 
positives, which is important in a clinical setting to avoid unnecessary 
treatments or procedures. Recall ensures that true cases of biliary atresia 
are identified, reducing the risk of missed diagnoses, which could lead 
to severe complications if left untreated. The F1 score balances precision 
and recall, offering a comprehensive view of the model’s performance, 
particularly important in the medical field where both metrics are 
critical. The MCC provides a robust measure of performance even in 
the presence of class imbalance, reflecting the model’s capability to 
correctly classify both positive and negative cases in a balanced manner. 
The AUC evaluates the model’s ability to distinguish between biliary 
atresia and non-biliary atresia cases across various thresholds, providing 
a nuanced understanding of the model’s diagnostic power. Finally, the 
confusion matrix offers a detailed breakdown of prediction outcomes, 
allowing for the identification of specific types of errors and guiding 
further improvements to enhance the model’s accuracy and reliability. 
Together, these metrics ensure a comprehensive, rigorous, and clinically 
relevant evaluation of the model’s performance in diagnosing biliary 
atresia, aligning well with the goals and requirements of our study.

4 Results

4.1 Experiment

This study constructed a rigorous experimental scheme to 
comprehensively verify the proposed model’s efficiency, accuracy, 
and generalization capability across different tasks. The 

experimental design adopted a five-fold cross-validation 
mechanism and included an additional test set not involved in 
training for comprehensive model performance evaluation. In the 
five-fold cross-validation process, the dataset was evenly divided 
into five subsets, with each round selecting a different subset as the 
validation set and the remaining four as the training set. The cycle 
continued for five rounds, and the results from all rounds were 
aggregated to obtain the mean performance of the model, reducing 
accidental biases and enhancing the robustness of the evaluation.

To ensure optimal model performance, parameter optimization 
was performed using two key techniques: grid search and Bayesian 
optimization. Grid search involves exhaustively searching through a 
manually specified subset of the hyperparameter space of the model. 
This method allows for a comprehensive evaluation of different 
hyperparameter combinations, ensuring that the best parameters are 
selected based on model performance. On the other hand, Bayesian 
optimization is a more sophisticated approach that builds a probabilistic 
model of the function mapping hyperparameters to the objective and 
uses this model to select the most promising hyperparameters to 
evaluate in the true objective function. This technique is particularly 
useful for optimizing hyperparameters in large, complex models where 
grid search would be computationally prohibitive.

The impact of these optimization techniques on the model’s 
performance was significant. Grid search provided a thorough 
evaluation of hyperparameter combinations, ensuring that the model 
operates under the best possible settings. Bayesian optimization 
further refined this process by efficiently navigating the 
hyperparameter space and identifying optimal parameters that might 
be  missed by grid search. These combined techniques resulted in 
enhanced model accuracy, robustness, and generalization capability.

During model training, the changes in the loss function were 
closely monitored. If the training loss plateaued and there was no 
significant improvement in the validation set performance, it was 
determined that the model had converged, and training was halted. 
This typically occurred after approximately 100 iterations, indicating 
that the model had reached an optimal point where further training 
would not yield significant performance gains.

The model training process was supported by advanced hardware, 
including the NVIDIA RTX 3090 GPU and the high-performance Intel 
i9 CPU, providing the computational power necessary for rapid deep 
learning model training. The software environment utilized Python 3.9 
and the latest stable version of the Pytorch framework 1.12.0, ensuring 
smooth execution and reproducibility of the experiments.

4.2 Comparison experiments

4.2.1 Performance comparison and analysis

4.2.1.1 Performance metrics comparison
In the ablation experiments of GallScopeNet, first, the average 

indicators after five-fold cross-validation of GallScopeNet compared 
with other models indicate that GallScopeNet exhibits significant 
advantages in key indicators such as accuracy, precision, recall, F1 
score, and MCC (Figure 4A). This implies that GallScopeNet surpasses 
comparative models in classification accuracy, precision, recognition 
ability, balanced comprehensive classification, and classification quality.
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4.2.1.2 Stability across epochs
Additionally, the performance and stability comparison of 

different models across different epochs in the five-fold cross-
validation average shows that, although the box plot of GallScopeNet 
may not have the widest data distribution range, its mean is 
significantly higher than other models (Figure 4B), indicating that 
GallScopeNet maintains more stable and high-level performance 
across multiple epochs.

4.2.1.3 ROC curve analysis
Finally, the ROC curve comparison of various models after 

five-fold cross-validation indicates that GallScopeNet exhibits the 
highest AUC value (0.95) within a small curve fluctuation range 
(Figure 4C), demonstrating GallScopeNet’s strongest ability to 
distinguish between positive and negative cases and its optimal 
misdiagnosis capability, maintaining a high true positive rate 
even with a small error rate. The confusion matrix of 
GallScopeNet clearly shows the best classification effect, 
particularly the increase in true positives and true negatives 
(Figure 4D), indicating that GallScopeNet can more accurately 

identify BA and non-BA cases in practical applications, reducing 
misdiagnosis and missed diagnosis.

Overall, GallScopeNet performs exceptionally well in all key 
performance indicators of the five-fold cross-validation, emphasizing 
its potential in ultrasound diagnosis of BA.

4.2.2 Model complexity analysis
While GallScopeNet achieved breakthroughs in performance, 

from the perspective of model complexity, it did not significantly 
increase in Params (parameter count), FLOPs (floating-point 
operations), and processing speed (FPS) (Table 1). Despite abandoning 
the PConv design and introducing innovative coordinate attention, 
GallScopeNet did not significantly increase the model complexity 
burden, maintaining efficiency in these key indicators, demonstrating 
the lightweight design and computational optimization.

4.2.3 Iterative performance analysis
In the iterative performance analysis of the model, GallScopeNet 

demonstrated its stability and convergence efficiency during the 
training process, further highlighting its excellent performance.

FIGURE 4

(A) Comparison of comprehensive performance indicators for different models, summarizing key metrics. (B) Performance and stability comparison of 
different models across various iteration periods, highlighting consistency and reliability. (C) ROC curve comparison of different models following five-
fold cross-validation, illustrating the models’ ability to distinguish between positive and negative cases. (D) Confusion matrix comparison of different 
models after five-fold cross-validation, showing classification accuracy through true positives, true negatives, false positives, and false negatives.
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4.2.3.1 Accuracy stability
Firstly, in the iteration graph of five-fold cross-validation accuracy, 

GallScopeNet shows very small variance in the late iteration stages of 
each fold, indicating highly consistent performance across different 
data subsets. GallScopeNet quickly reaches stable high accuracy, with 
minimal differences between folds (Figure 5A). This demonstrates 
GallScopeNet’s good generalization performance on different data 
splits, showing stable accuracy during iterations and reducing inter-
dataset fluctuations.

4.2.3.2 Convergence of key metrics
Secondly, in the detailed iteration graphs of training and validation 

metrics, key indicators such as accuracy, precision, recall, F1 score, 
and MCC for GallScopeNet all show clear convergence trends 
(Figure  5B). This indicates that the model not only improves 
performance during training but also consistently optimizes 
evaluation performance on the validation set, proving GallScopeNet’s 
effectiveness and generalization ability during training.

4.2.3.3 Loss function analysis
Lastly, in the iteration graph of training and validation loss, 

GallScopeNet clearly shows a decreasing and stabilizing trend in loss 
values (Figure 5C). This indicates that the model gradually reduces 
prediction errors during training, optimizing the gap between model 

predictions and actual values, achieving a good fitting status. This 
further emphasizes that GallScopeNet not only quickly finds the 
optimal solution during training but also maintains good 
generalization during validation, reflecting the model’s efficient 
learning capability and stable convergence.

In summary, GallScopeNet’s performance during iterative 
training, whether in terms of accuracy stability in five-fold cross-
validation or the convergence of key metrics and loss functions, fully 
demonstrates its superiority in learning efficiency and generalization 
performance. The model quickly converges at different iteration stages 
and maintains consistent performance on the validation set, 
highlighting GallScopeNet’s robust, efficient, and accurate potential in 
ultrasound gallbladder image diagnosis tasks.

4.3 External independent testing

To validate the generalization performance of GallScopeNet, 842 
images were initially separated from the original dataset to serve as an 
independent external dataset. This external testing phase was crucial 
for assessing how well the model performs on unseen data, ensuring 
its reliability in real-world diagnostic applications.

Firstly, GallScopeNet’s radar chart of indicators demonstrates 
its comprehensive performance on the independent dataset 
(Figure  6A). GallScopeNet maintained high levels in key 
performance indicators such as accuracy, precision, recall, F1 score, 
and MCC on the new dataset, reflecting the model’s generalization 
capability. This indicates that GallScopeNet not only performs 
excellently in training and validation but also maintains high 
accuracy and stability on unseen data, proving its potential for 
reliable diagnostic applications. Particularly, the accuracy of 81.21% 
highlights GallScopeNet’s effectiveness in correctly classifying cases.

Secondly, GallScopeNet achieved an AUC of 0.85 on the external 
independent dataset (Figure  6B). This value indicates strong 

FIGURE 5

(A) Iteration graph of accuracy for different models, showcasing the accuracy trends across iterations. (B) Iteration graph of various training and 
validation metrics for GallScopeNet, demonstrating the convergence and performance consistency. (C) Iteration graph of loss values for GallScopeNet 
during training and validation, highlighting the model’s ability to reduce prediction error over time.

TABLE 1 Comparison of complexity indicators of different models in 
ablation experiments.

Model Params (M) FLOPs (G) FPS

Baseline 21.28 7.33 0.1214

Baseline (+CA) 21.45 7.35 0.1506

Baseline (−PConv) 21.30 7.34 0.1386

GallscopeNet 21.42 7.35 0.1395
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performance in distinguishing between positive and negative cases, 
even on external data, demonstrating high diagnostic accuracy and 
low misdiagnosis capability. The high AUC value further confirms 
GallScopeNet’s discrimination ability on external data, proving its 
generalization capability.

Finally, the confusion matrix results of GallScopeNet on the 
external data show excellent performance (Figure 6C). The confusion 
matrix shows high true positives (TP) and true negatives (TN) while 
maintaining low false positives (FP) and false negatives (FN), 
indicating that GallScopeNet accurately classifies gallbladder and 
non-BA cases on new data, reducing misdiagnosis and missed 
diagnosis. This proves GallScopeNet’s accurate classification ability on 
external data, reducing the risk of misdiagnosis and missed diagnosis.

Overall, the balanced maintenance of comprehensive indicators, 
high AUC value, and excellent confusion matrix results demonstrate that 
GallScopeNet not only performs excellently in training and validation 
datasets but also has high efficiency and accuracy in diagnosing BA on 
external datasets, reflecting the model’s reliability and practical value.

4.4 Comparison of complexity and 
accuracy between GallScopeNet and other 
mainstream models

In a comprehensive comparative evaluation against mainstream 
models, GallScopeNet demonstrates its superiority in both 
accuracy and efficiency (Table  2). The comparison focused on 
several key parameters: accuracy (ACC), the number of integrated 
parameters (Params, M), floating-point operations per second 
(FLOPs, G), and frames per second (FPS). These metrics provide a 
clear picture of both the performance and complexity of the 
models evaluated.

GallScopeNet achieves an accuracy of 81.21%, which is higher than 
other mainstream models such as ResNet50 (80.98%), ResNet34 
(80.60%), DenseNet (79.81%), and Vgg16 (81.03%). The ability of 
GallScopeNet to capture intricate details and subtle pathological features 
in ultrasound images contributes to its superior diagnostic performance.

Moreover, GallScopeNet possesses a clear efficiency advantage, 
reflected in its parameter count of 21.42M, which is comparable to 
ResNet34’s 21.29M and significantly lower than Vgg16’s 

134.28M. Additionally, GallScopeNet requires 7.35G FLOPs, which is 
less than ResNet50’s 8.22G and comparable to ResNet34’s 7.34G. This 
lower computational demand underscores its efficiency, making 
GallScopeNet suitable for deployment in environments with limited 
processing power. The model also demonstrates impressive speed, 
processing at 0.1395 frames per second (FPS), which is competitive 
with ResNet50 (0.1403 FPS) and ResNet34 (0.1349 FPS), while 
significantly outperforming Vgg16 (0.1901 FPS). This high FPS rate is 
particularly beneficial for real-time diagnostic applications, where 
quick and accurate analysis is crucial.

In summary, GallScopeNet not only surpasses other models in terms 
of accuracy but also optimizes resource utilization through its efficient 
architectural design. The model’s competitive parameter count, lower 
FLOPs, and high FPS collectively ensure that it delivers high diagnostic 
accuracy while being computationally efficient. This makes GallScopeNet 
particularly advantageous in real-time processing scenarios and 
resource-limited settings, establishing it as a new benchmark in the field 
of ultrasound image analysis for biliary atresia diagnosis.

4.5 Visualization

To comprehensively evaluate the deep learning model 
GallScopeNet’s performance in analyzing ultrasound images of BA 
and non-BA, a detailed feature visualization analysis was conducted. 
This process involved importing a carefully selected series of BA and 
non-BA ultrasound images into the GallScopeNet model, aiming to 

FIGURE 6

(A) Radar chart displaying the comprehensive performance indicators of GallScopeNet on the external independent dataset, effectively summarizing 
multiple key metrics in a single visualization. (B) ROC curve illustrating GallScopeNet’s performance in distinguishing between positive and negative 
cases on the external independent dataset. (C) Confusion matrix visualization depicting the classification performance of GallScopeNet on the external 
independent dataset.

TABLE 2 Comparison of complexity and accuracy between GallScopeNet 
and other mainstream models.

Model Acc 
(%)

Params 
(M)

FLOPs 
(G)

FPS

Vgg16 81.03 134.28 31.0 0.1901

ResNet50 80.98 23.51 8.22 0.1403

ResNet34 80.60 21.29 7.34 0.1349

ResNet18 76.69 11.18 3.64 0.1182

DenseNet 79.81 13.95 5.74 0.1751

GallscopeNet 81.21 21.42 7.35 0.1395
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visually demonstrate the model’s ability to capture key pathological 
markers through the generated feature interest heatmaps (Figure 7). 
The results showed that GallScopeNet demonstrated high accuracy, 
accurately marking key pathological features such as gallbladder wall 
thickening and abnormal blood flow in BA images while successfully 
recognizing and highlighting normal anatomical structures and 
physiological blood flow patterns in non-BA images. The significant 
differences in heatmaps between the two clearly demonstrated the 
model’s differential diagnostic capabilities. This feature visualization 
practice not only confirmed GallScopeNet’s ability to effectively 
extract key information in ultrasound image analysis but also further 
revealed its decision logic in distinguishing complex pathology from 
normal states, providing strong empirical support for the model’s 
efficiency and reliability in the auxiliary diagnosis of BA.

5 Discussion

5.1 Research summary

This study conducted an in-depth exploration of diagnosing BA 
from ultrasound images using the deep learning model GallScopeNet. 
The core of the research lies in enhancing early diagnostic accuracy and 

model design to reduce dependence on experience. By integrating 
multi-scale feature extraction strategies and innovative coordinate 
attention mechanisms, this study effectively addressed the limitations 
of traditional methods in recognizing subtle pathological features. The 
introduction of GallScopeNet not only optimized model design but 
also underwent rigorous validation, ensuring robust performance.

5.2 Novelty and significance

This study’s application of deep learning technology to BA 
diagnosis showcases uniqueness and innovation in two main aspects: 
firstly, the optimized design of the baseline model by replacing partial 
convolution with normal convolution. This adjustment, despite 
increasing computational complexity, significantly enhanced 
performance, overcoming the model’s limitations in capturing detailed 
features in complex ultrasound images, particularly in recognizing 
gallbladder wall and hemodynamic changes (34, 46). Secondly, the 
innovation lies in introducing coordinate attention (CA), embedding 
positional information into feature extraction. This mechanism, 
building upon traditional channel attention, allows the model to 
consider spatial dependencies and precise positional details along both 
horizontal and vertical directions. GallScopeNet, integrated with CA, 

FIGURE 7

Accurate characterization visualization of GallScopeNet for gallbladder wall features in BA and non-BA states.
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not only exhibits precision in complex image processing but also 
advances the application boundaries of deep learning in BA diagnosis, 
introducing new possibilities to the field.

5.3 Clinical significance

The development of GallScopeNet holds significant clinical 
implications for the early diagnosis of BA. By reducing dependence on 
operators, the model enhances diagnostic accuracy and consistency, 
shortening identification time. For patients, this means earlier 
initiation of treatment plans, reducing complication risks, improving 
prognosis, and increasing survival rates (47). Compared to traditional 
ultrasound analysis by radiologists, GallScopeNet offers a more 
standardized and objective approach, minimizing the variability that 
arises from human interpretation. Studies have shown that traditional 
imaging diagnostic methods for biliary atresia, such as hepatobiliary 
scintigraphy, typically achieve a specificity ranging between 70 and 
80% (48, 49). In contrast, the specificity of the GallScopeNet model 
used in this study is 86.10%, indicating a superior diagnostic 
performance and demonstrating its potential to reduce misdiagnosis 
in clinical practice. This makes GallScopeNet particularly valuable in 
settings where experienced radiologists are not available, ensuring a 
high level of diagnostic reliability across different healthcare providers. 
In resource-limited settings, GallScopeNet’s efficiency is especially 
critical, providing a feasible diagnostic tool for remote or resource-
constrained medical institutions (10).

The advanced technology employed in GallScopeNet, when 
combined with the insights and oversight of experienced medical 
professionals, can achieve exceptional efficiency and accuracy in the 
diagnosis of biliary atresia. While the model offers significant 
advantages in terms of diagnostic consistency and objectivity, the role 
of medical doctors remains crucial. Their supervision ensures that the 
deep learning model’s outputs are appropriately interpreted within 
the broader context of each patient’s unique clinical scenario. This 
collaborative approach enhances the reliability of diagnoses, ensuring 
that technological advancements complement, rather than replace, 
the critical expertise of healthcare providers.

5.4 Clinical integration

Integrating GallScopeNet into the clinical workflow is essential 
for its effective application in diagnosing biliary atresia (BA) and 
other biliary diseases. This involves seamless integration with 
existing hospital information systems (HIS) and picture archiving 
and communication systems (PACS) for real-time access to 
ultrasound images and patient data. Developing a user-friendly 
interface will allow clinicians to easily interact with GallScopeNet, 
upload images, view results, and receive diagnostic suggestions 
without extensive technical expertise. Providing clinical training and 
ongoing support will help clinicians understand and trust the 
model’s results, effectively incorporating them into their diagnostic 
processes. Obtaining regulatory approval through rigorous testing 
will establish the model’s safety and efficacy. Continuous feedback 
from clinicians will be  vital for iterative improvements. Regular 
monitoring and evaluation will track diagnostic outcomes and 
identify areas for enhancement, ensuring high standards of accuracy 
and reliability.

However, there are potential challenges and limitations in real-
world clinical settings. Ensuring consistent quality and standardization 
of ultrasound images across different facilities is a major challenge, as 
variations in equipment and protocols can affect performance. 
Integration with existing HIS and PACS systems may face technical 
hurdles, requiring IT infrastructure adjustments. Clinicians may need 
time to adapt to and trust AI-based tools, necessitating robust training 
programs. The model’s reliance on high-quality input data means 
suboptimal images could lead to inaccurate predictions, requiring 
effective quality control. Navigating the regulatory landscape for 
approval can be complex and time-consuming, potentially delaying 
deployment. Addressing these challenges is crucial for the successful 
implementation and adoption of GallScopeNet in clinical practice.

5.5 Limitations

5.5.1 Data diversity and limitations
The current dataset, although covering confirmed and non-BA 

cases, lacks a wide age range, racial diversity, geographical spread, 
disease duration, and severity levels, limiting the model’s 
generalizability and applicability. Future work should integrate more 
diverse data to encompass different population characteristics and 
improve the model’s comprehensiveness.

5.5.2 Model complexity and efficiency balance
Although the introduction of normal convolution and coordinate 

attention improved feature extraction capabilities, the increased 
parameter count and computational complexity present challenges for 
resource-constrained edge devices or real-time diagnostic scenarios. 
Future work should continue to optimize the model architecture, such 
as using lightweight techniques, to maintain performance while 
reducing resource consumption.

5.5.3 Lack of long-term follow-up data
The study lacks long-term follow-up data, making it difficult to 

evaluate the model’s impact on patient prognosis and quality of life. 
Future work should collect long-term follow-up data to assess the 
model’s long-term effects on patient prognosis and verify its practical 
value in clinical decision-making.

5.5.4 Sensitivity to specific pathological features
Although the model has high recognition capabilities for BA, its 

differentiation of other biliary diseases such as inflammation, infection, 
stones, and cysts needs further optimization. Future work should focus 
on improving the model’s accuracy in identifying different pathological 
conditions to enhance diagnostic comprehensiveness.

5.6 Future directions

In advancing GallScopeNet’s research on ultrasound diagnosis of 
BA, this study focuses on several practical directions: primarily refining 
data processing techniques by incorporating advanced image 
enhancement and dynamic compensation technologies to optimize 
feature extraction strategies, adapting to different ultrasound images, 
and improving image resolution and accuracy (50). Secondly, expanding 
the model’s practical applications by integrating domain adaptation 
learning and diverse tasks, such as diagnosing other biliary diseases 
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beyond BA, enhancing the model’s adaptability and applicability across 
various cases (51). Additionally, conducting large-scale clinical 
validation studies to ensure the model’s diagnostic accuracy and clinical 
relevance in real-world settings, facilitating the transition of laboratory 
findings to clinical practice and practical applications (52–54).

Future research should also explore the integration of GallScopeNet 
with other diagnostic modalities, such as combining ultrasound with 
MRI or CT imaging, to provide a more comprehensive diagnostic tool. 
This multimodal approach could further improve diagnostic accuracy 
and provide a more holistic view of the patient’s condition. Moreover, 
leveraging federated learning techniques could enable the model to 
be trained on data from multiple institutions without compromising 
patient privacy, thereby increasing the robustness and generalizability 
of GallScopeNet across diverse populations and settings.

In summary, GallScopeNet’s future emphasizes not only technical 
refinement but also practical application, combined with clinical 
practice, to advance the practical implementation of ultrasound image 
diagnosis for BA (54). By addressing these areas, GallScopeNet can 
evolve into a more versatile and powerful tool, ultimately improving 
patient outcomes and advancing the field of medical diagnostics.

6 Conclusion

This study explored the diagnosis of BA, a severe neonatal health 
threat, using deep learning technology, particularly the innovative 
design and application of the GallScopeNet model, achieving significant 
progress in ultrasound image diagnosis. By analyzing a carefully 
constructed dataset of gallbladder ultrasound images, this study not only 
optimized the feature extraction process, enhancing the model’s learning 
performance in complex ultrasound images, but also achieved notable 
improvements in diagnostic accuracy and generalization capabilities. 
GallScopeNet’s design highlights two key improvements: firstly, 
replacing partial convolution with normal convolution, which, despite 
sacrificing some computational efficiency, significantly improved the 
model’s sensitivity to subtle structural features, especially in capturing 
gallbladder wall and hemodynamic changes; secondly, integrating 
coordinate attention, maintaining model efficiency while enhancing 
feature expression and optimizing the recognition of gallbladder and bile 
duct structures. These improvements, while keeping model complexity 
manageable, significantly enhance the identification of subtle changes in 
the gallbladder wall and bile ducts, crucial for BA diagnosis.

Through comprehensive evaluation using five-fold cross-validation 
and independent testing, GallScopeNet performed exceptionally well 
across key indicators such as accuracy, precision, recall, F1 score, 
confusion matrix, and AUC. On external test datasets, the model 
maintained high classification performance, achieving an accuracy of 
81.21% and an AUC of 0.85, reducing misdiagnosis and missed diagnosis, 
proving its reliability and practical value. Visualization analysis clearly 
demonstrated the model’s ability to capture key pathological features in 
BA and non-BA images, further validating its diagnostic capabilities.

This study is one of the first attempts to use a lightweight, efficient 
deep learning model tailored for embedded systems in the context of 
BA diagnosis. GallScopeNet achieves a high level of accuracy while 
being optimized for computational efficiency, making it suitable for 
use in embedded systems and resource-constrained environments. 
This balance between model complexity and performance ensures that 
the tool can be widely deployed, offering significant benefits in early 
diagnosis and treatment planning for BA.

The development and application of GallScopeNet represent a 
breakthrough in ultrasound image diagnosis of BA, particularly in 
recognizing subtle features and analyzing complex structures. 
Through innovative model design and rigorous validation, 
GallScopeNet not only demonstrates efficiency and accuracy in BA 
diagnosis but also maintains generalizability, providing a reliable 
tool for clinical applications, especially in resource-limited settings.

Future efforts to optimize and expand data diversity, improve 
model efficiency, collect long-term follow-up data, and extend the 
model to more biliary diseases will deepen GallScopeNet’s potential, 
advancing the precision medical practice of ultrasound diagnosis 
for BA and beyond. By addressing these areas, GallScopeNet can 
evolve into a more versatile and powerful tool, ultimately improving 
patient outcomes and advancing the field of medical diagnostics.
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