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Background: Pneumonia and lung cancer have a mutually reinforcing

relationship. Lung cancer patients are prone to contracting COVID-19, with

poorer prognoses. Additionally, COVID-19 infection can impact anticancer

treatments for lung cancer patients. Developing an early diagnostic system for

COVID-19 pneumonia can help improve the prognosis of lung cancer patients

with COVID-19 infection.

Method: This study proposes a neural network for COVID-19 diagnosis based

on non-enhanced CT scans, consisting of two 3D convolutional neural

networks (CNN) connected in series to form two diagnostic modules. The

first diagnostic module classifies COVID-19 pneumonia patients from other

pneumonia patients, while the second diagnostic module distinguishes severe

COVID-19 patients from ordinary COVID-19 patients. We also analyzed the

correlation between the deep learning features of the two diagnostic modules

and various laboratory parameters, including KL-6.

Result: The first diagnostic module achieved an accuracy of 0.9669 on the

training set and 0.8884 on the test set, while the second diagnostic module

achieved an accuracy of 0.9722 on the training set and 0.9184 on the test set.

Strong correlation was observed between the deep learning parameters of the

second diagnostic module and KL-6.

Conclusion: Our neural network can differentiate between COVID-19

pneumonia and other pneumonias on CT images, while also distinguishing

between ordinary COVID-19 patients and those with white lung. Patients

with white lung in COVID-19 have greater alveolar damage compared to

ordinary COVID-19 patients, and our deep learning features can serve as an

imaging biomarker.
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1 Introduction

Lung cancer has the highest incidence and mortality rates
among malignant tumors. According to the 2018 GLOBOCAN
cancer database report, lung cancer accounts for 11.6% of all cancer
cases and is the leading cause of cancer deaths worldwide for both
men and women, making up 18.4% of all cancer-related deaths (1).
Lung cancer typically leads to death due to various complications
such as asphyxiation, hypovolemic shock, and multiple organ
failure (2).Pneumonia is not only one of the leading causes of
death from lung cancer, but infections can also increase the
risk of developing lung cancer (3–5). In chronic pneumonia,
the infiltration of inflammatory cells and the accumulation of
pro-inflammatory factors, including cytokines, prostaglandins,
and chemokines, can stimulate various physiological processes,
including cell proliferation, angiogenesis, and metastasis (6).
Therefore, although there is no direct evidence proving that
pneumonia is the fundamental cause of lung cancer, lung infections
may contribute to the formation of an inflammatory environment
conducive to the occurrence and development of lung cancer.

Originating in 2019, Corona Virus Disease 2019 (COVID-19),
which can quickly cause severe acute respiratory syndrome and
fatal pneumonia (7). The most common symptoms of COVID-19
infection are fever, dry cough, difficulty breathing, headache, and
pneumonia. The progression of the disease may lead to gradually
worsening respiratory failure and can even be fatal (8). Since
COVID-19 has the potential to trigger a cytokine storm, patients
with severe pneumonia may be at risk of developing multiple organ
failure (9). This ultimately results in congestion and edema of
the alveolar septa, focal hemorrhage and necrosis of lung tissue,
alveolar exudation, and the formation of pulmonary interstitial
fibrosis (10). Among these, the symptoms of pulmonary fibrosis
are particularly prominent (11). Studies have shown that patients
without lung cancer can develop related chronic inflammation
after contracting COVID-19, which then stimulates and damages
alveolar epithelial tissue, resulting in pulmonary fibrosis and
potentially leading to lung cancer (12). Cancer patients, especially
those with lung tumors, are more susceptible to COVID-19
infection (13). Studies have indicated that this is a result of the
interaction between angiotensin-converting enzyme 2 (ACE2) in
the body and COVID-19 (14, 15). This mechanism exacerbates
the symptoms in lung cancer patients with concurrent COVID-
19 infection and increases the transmission risk of COVID-19 (9).
Therefore, lung cancer patients have a higher risk of developing
severe illness and death after contracting COVID-19 (13). In
addition, patients with combined lung cancer may also face an
increased risk of death due to systemic immunosuppression caused
by the cancer itself and anticancer treatments (16).

Currently, COVID-19 patients can receive standardized
treatment protocols, greatly improving patient prognosis
(17). However, as the COVID-19 pandemic subsides, infected
individuals often lack clearly traceable infection paths, making
it difficult to diagnose epidemiologically as during the peak of
the COVID-19 pandemic. Additionally, Lung cancer patients
are inherently prone to bacterial infections (18, 19). This results
in lung cancer patients often finding it challenging to undergo
accurate diagnosis through simple procedures in the early stages
of the disease, ultimately making them more prone to progressing

to severe COVID-19 pneumonia (20). Due to the traditional lack
of early specificity in COVID-19’s radiological imaging, early
diagnosis of COVID-19 pneumonia presents a challenge (21).
Moreover, the results of most blood tests are usually nonspecific,
with significant variability among different ethnic groups and
stages of disease (22). Therefore, the diagnosis of COVID-19 is
typically based on nucleic acid tests, immunoassays, radiology, and
biosensor methods (23). Studies have shown that chest computed
tomography (CT) can capture the typical radiological features
of COVID-19 patients (24). Artificial intelligence methods can
significantly improve the accuracy of chest CT diagnoses (25–27).

This study developed an automatic diagnostic system based
on patients’ CT images using convolutional neural networks
(CNN). The deep learning features generated by this model
can automatically differentiate between COVID-19 pneumonia
and non-COVID-19 pneumonia without the need for manual
annotation by clinical doctors. Furthermore, the system can predict
whether COVID-19 pneumonia patients will develop into severe
pneumonia. Finally, we established medical interpretations of the
deep learning features using Krebs Von den Lungen-6(KL-6), a
serum biomarker highly associated with lung tissue damage, and
explored the predictive ability of these deep learning features for the
course of COVID-19 patients. This aids in improving the prognosis
of lung cancer patients infected with COVID-19.

2 Materials and methods

2.1 Inclusion criteria

In this study, we prepared two retrospective databases, namely
Subset-I and Subset-II:

Subset-I was used for the differential diagnosis of early COVID-
19 pneumonia and other types of pneumonia. We searched the
imaging database of China Medical University, focusing on patients
who visited Shengjing Hospital of China Medical University from
January 2016 to May 2023. We included patients diagnosed with
bacterial pneumonia, mycoplasma pneumonia, allergic pneumonia,
obstructive pneumonia, COVID-19 pneumonia, and other viral
pneumonias. For other viral pneumonias, we selected patients from
before 2022 to ensure they did not have concurrent COVID-19
infection. All patients were diagnosed through serology rather than
symptoms. All included patients had at least one CT scan within
a week of symptom onset. We excluded patients who could not
be diagnosed with a single pathogen infection and those who were
already in the mid or late stages of the disease at the time of their
visit, as early warning significance of the CT scans would be lost.
Subset-II was used for classifying COVID-19 patients. Each patient
had at least two CT scans to determine whether they had progressed
to severe pneumonia, also known as “white lung”. The inclusion
and exclusion criteria for patients are shown in Figure 1.

2.2 CT imaging protocol

A 320-channel scanner (Aquilion ONE 640; Canon Medical
Systems) and a 256-channel scanner (Brilliance 128; Philips
Medical Systems) were used. The imaging parameters were as
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FIGURE 1

Inclusion and exclusion criteria for patients in this study.

follows: tube current 80–230 mA, tube voltage 120 kV, slice
thickness 1–3 mm, FOV 500 mm, detector spacing 0.75–1.172 mm.

2.3 White lung diagnosis

White lung is defined as an increase in lung lesion area
greater than 50% between two CT scans (usually within 24–
48 h). Additionally, a high-density area covering more than 70%
of the lung on CT images is also defined as white lung. All
white lung diagnoses were made by two radiologists with over 6
years of clinical experience and reviewed by a senior radiologist
with 11 years of experience. If there was any disagreement
in the diagnosis, it was resolved through consultation between
the radiologists.

The samples from the Subset-I and Subset-II in this study are
shown in Figure 2.

2.4 Laboratory parameters

We preserved serum samples from some patients and
selected the earliest sample from each patient for Laboratory
testing. The blood cell count was performed using the electrical
impedance method, white blood cells were classified using the VCS
method, D-dimer (DD) was measured by the latex agglutination
method, and procalcitonin (PCT), C-reactive protein (CRP), and
interleukin-6 (IL-6) were measured using immunofluorescence.

The KL-6 test kit was produced by Jiangsu Baweis Biotech Co.,
Ltd., batch number 23010301, and the testing method was latex
immunoturbidimetric assay. Before sample testing, instrument
parameters were set, as shown in Table 1. Instrument calibration
and reagent calibration were passed, and indoor quality control was
under control.

2.5 Neural networks and feature
extraction

As shown in Figure 3, in this study, we propose a diagnostic
system composed of concatenated neural networks. To enhance
the robustness and speed of the diagnostic system, we resize the
chest CT images to (128 × 128 × 60). To reduce interference
from other tissues on the model, we reassigned pixels greater than
600 HU to 600 and performed uniform standardization based on
the range of CT attenuation values. We randomly allocate patients
into training, validation, and test sets in a ratio of 3:3:4 based on
negative and positive cases. We first employ a 3D-ResNet50 with an
attention mechanism to classify the types of pneumonia. Then, we
use a 3D-AlexNet with an attention mechanism to classify whether
pneumonia will progress to white lung. In this study, we evaluate
the predictive ability of the models using accuracy. Additionally,
we calculate F1-score for each method. Furthermore, we perform
correlation analysis between the output of the FC layer of the
white lung classification network and KL-6 to provide a medical
interpretation of the predictive results of the neural networks.

2.6 Statistics

All analyses were performed using statistical software including
SPSS (version 24.0; IBM), R (version 3.63), Python (version
3.8.5), and MedCalc (version 15.2.2). Correlation analyses were
conducted using independent samples t-test or Mann-Whitney U
test; Pearson or Spearman tests were used for correlation analysis
between continuous categorical variables; Pearson or Fisher exact
probability test was used for categorical variables. In all statistical
analyses, a two-tailed p-value less than 0.05 was considered
statistically significant. The flowchart of this study is presented in
Figure 4.

3 Result

3.1 Baseline information

3.1.1 Subset-I
A total of 604 patients were collected for the differential

diagnosis of COVID-19 pneumonia and other pneumonias.
Among them, there were 302 COVID-19 patients and 302 patients
with other pneumonias. The clinical characteristics of the patients
are shown in Table 2.

Through analysis of baseline information, age and pneumonia
type are correlated, indicating COVID-19 patients are present
across all age groups in pneumonia cases requiring medical
intervention. White blood cells, neutrophils, eosinophils, basophils,
PCT, CRP, and pneumonia type are also correlated. In addition,
D-dimer (DD) is correlated with pneumonia type.

3.1.2 Subset-II
This dataset includes 102 COVID-19 patients, among whom 61

patients were diagnosed with white lung. The clinical characteristics
of the patients are shown in Table 3.
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FIGURE 2

Samples of data used in this study.

Through analysis of baseline information, age correlates
with the radiological manifestations of COVID-19. Oxygen
uptake, oxygen concentration, and radiological manifestations
of COVID-19 are related, while blood oxygen content is not
correlated with radiological manifestations. This indicates that
the radiological manifestations of COVID-19 correlate with the
severity of respiratory failure in patients, and can be alleviated
to some extent through high-concentration, high-volume oxygen
therapy. D-dimer (DD), KL-6, and radiological manifestations of
COVID-19 are correlated. Additionally, neutrophils, lymphocytes,
eosinophils, CRP, and radiological manifestations of COVID-
19 are correlated.

3.2 Result of deep learning

After 22 epochs, the CNN of COVID-19 diagnostic module
achieved the best accuracy on the validation set. Ultimately, the
network achieved an accuracy of 0.9669 and F1-score of 0.9674
on the training set. On the validation set, the network achieved
an accuracy of 0.9613 and F1-score of 0.9620. On the test set, the
network achieved an accuracy of 0.8884 and F1-score of 0.8911.

After 16 epochs, the CNN of white lung diagnostic module
achieved the best accuracy on the validation set, which was 1.00.
The network achieved an accuracy of 0.9722 and F1-score of 0.9750
on the training set. On the validation set, the network achieved
an accuracy of 1.0000 and F1-score of 1.0000. On the test set, the
network achieved an accuracy of 0.9184 and F1-score of 0.9286.

The accuracy and loss curves during the training process are
shown in Figure 5.

3.3 Analysis of misclassification results

For the COVID-19 diagnostic module, the primary errors
involve misclassifying non-contrast CT scans of COVID-19
patients as other types of pneumonia. As shown in Figure 6,
the main sources of misclassification are pneumonia patients
with malignant tumors and elderly patients with complex lung
conditions.

TABLE 1 KL-6 Testing Parameters.

Parameter Name Setting value

Sub/Main Wavelength −/570nm

Methodology Two-point Endpoint

Cal type Spline

Sample/R1/R2 3 ul/180 ul/60 ul

Time 10 min

Sampling 16–34

Calibration 6-point calibration

Unit U/ml

linear 80–5000

For the diagnosis module of "white lung," the main reason
for misclassifying white lung patients as ordinary COVID-19
pneumonia patients is the complexity of the lung images, or a
history of chest surgery, as shown in Figures 7A, B. The primary
reason for misclassifying ordinary COVID-19 pneumonia patients
as white lung patients is the age of the patients, as illustrated in
Figures 7C, D. These patients often have underlying lung diseases
or are unable to undergo the examination in the standard supine
position due to poor physical condition.

3.4 Correlation analysis based on
laboratory parameters

In the COVID-19 diagnosis module, the correlation between
deep learning features related to COVID-19 and experimental
parameters is shown in Table 4. Neutrophils, eosinophils, basophils
and lymphocytes were strongly correlated with the deep learning
features associated with COVID-19. Compared to other types
of pneumonia, deep learning features indicate that COVID-
19 patients tend to have overall higher levels of white blood
cells and lower proportions of neutrophils. This is consistent
with the clinical characteristics of patients in Subset I and
indicates that our model accurately reflects differences in white
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FIGURE 3

Structure of the COVID-19 White Lung Joint Diagnostic Model consists of two CNN.

FIGURE 4

Flowchart of this study.

TABLE 2 Baseline Information for patients in Subset-I.

Variable* COVID-19 patients Non-COVID-19 patients Statistic p

Sex 2.932(X2) 0.087

M 150 171

F 152 131

Age(year) 56 (38, 66) 70 (63, 79) −11.451 0

WBC(%) 6.8 (5.23, 9.68) 6.3 (4.5, 8.1) −3.198 0.001

NEUT(%) 65.4 (56.6, 74.4) 73 (63.8, 83.7) −6.169 0

lym(%) 23.3 (14.6, 31.1) 15.7 (8.675, 23.25) −5.998 0

mono(%) 8 (6.6, 9.95) 7.7(5.4, 10.4) −1.145 0.252

EO(%) 1.4 (0.425, 2.9) 0.2 (0.0, 0.925) −9.033 0

BO(%) 0.4 (0.2, 0.6) 0.2 (0.1, 0.3) −8.056 0

PCT(ng/mL) 0.09 (0.049, 0.158) 0.141 (0.056, 0.358) −2.038 0.042

CRP(mg/L) 16.2 (5.82, 45.9) 33 (12.9, 77.7) −3.532 0

IL-6(pg/mL) 18.05 (6.9, 145.1) 17.215 (8.36, 51.00) −0.076 0.94

DD(µg/L) 190 (104, 377.5) 292 (166, 631) −4.112 0

*BO, basophil; CRP, c-reactive protein; DD, D-Dimer; EO, eosinophil; IL-6, interleukin- 6; lmy, lymphocyte; mono, monocyte; NEUT, neutrophile; PCT, platelet; WBC, white blood cell.

blood cells between COVID-19 and non-COVID-19 patients.
Cov-related deep learning features are also associated with
C-reactive protein, which is also consistent with clinical features
of patients in Subset-I. Cov-related deep learning features were
also associated with D-dimers, which matched clinical features
of patients in Subset-I. This indicates that deep learning features
can indicate whether patients have a hypercoagulable state.
These results show that our deep learning features can capture
information related to infection-related experimental parameters in
CT images.

In the white lung diagnosis module, the correlation between
white lung-related deep learning features, clinical features and
experimental parameters is shown in Table 5. In terms of
clinical parameters, blood oxygen saturation, oxygen concentration
fraction in inhaled air were associated with white lung-related deep
learning features, which were consistent with clinical features of
patients in Subset-II. In clinical practice, this suggests that white
lung patients require a greater oxygen concentration to maintain
relatively stable vital signs, and nonetheless, white lung patients
also have higher levels of hypoxia than the general population.
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TABLE 3 Baseline Information for patients in Subset-II.

Variable* White lung patients Non-white lung patients Statistic p

Sex 1.188(X2) 0.016

M 36 30

F 25 31

Age (year) 72.49 ± 10.35 67.08 ± 13.92 2.435 (t) 0.016

KL-6 (U/mL) 1100.94 ± 723 428.18 ± 385 5.891 (t) 0.002

Oxygen saturation
(L/min)

3 (2, 6) 3 (2, 3) −2.873 (Z) 0.004

FI02 (%) 33 (29, 41) 31 (27, 33) −2.866 (Z) 0.004

PaO2/FiO2 (mmHg) 73 (62, 86) 77 (66, 115) −1.170 (Z) 0.242

PaO2/FiO2 (most
severe) (mmHg)

57.78 ± 17.33 71.96 ± 21.77 −2.987 (t) 0.517

WBC (%) 8.65 ± 7.76 6.57 ± 2.90 1.920 (t) 0.181

NEUT (%) 83 (74, 88) 70 (61, 82) −4.233 (Z) 0

Lym (%) 8.8 (5.3, 15.1) 18.9 (9.8, 28.7) −4.120 (Z) 0

Mono (%) 6.35 ± 2.89 8.49 ± 3.80 −3.394 (t) 0.056

EO (%) 6.0 (4.2,7.7) 0.3 (0.0, 1.2) −3.435 (Z) 0.001

BO (%) 0.1 (0.1,0.2) 0.2 (0.1, 0.4) −1.742 (Z) 0.081

PCT (ng/mL) 0.14 (0.08, 0.88) 0.058 (0.495, 0.415) −0.859 (Z) 0.309

CRP (mg/L) 53.8 (37.9, 92.8) 28.8 (8.18, 84.5) −2.364 (Z) 0.018

IL-6 (pg/mL) 38.68 ± 37.96 42.97 ± 59.84 −0.202 (t) 0.301

DD (µg/L) 358 (206, 720) 232 (134, 532) −2.149 (Z) 0.032

*BO, basophil; CRP, c-reactive protein; DD, D-Dimer; EO, eosinophil; FI02, fraction of inspiration O2; IL-6, interleukin- 6; lmy, lymphocyte; mono, monocyte; NEUT, neutrophile; PCT,
platelet; WBC, white blood cell.

Neutrophils, eosinophils, lymphocytes, monocytes and white lung-
associated deep learning features were correlated with those of
patients in Subset-II. The deep learning features associated with
white lung were also associated with D-dimer, and the clinical
features of patients in Subset-II matched, suggesting that patients
with white lung were indeed at higher risk for coagulopathy.
Finally, white lung-related deep learning features were strongly
associated with KL-6, also consistent with clinical features of
patients in Subset-II. This suggests that patients with white lung
have more severe alveolar damage than ordinary patients with
COVID-19, and our model was able to capture this damage in
non-enhanced CT.

4 Discussion

Lung cancer, with its high incidence and mortality rates,
imposes a significant health burden on human society. The shift
in the spectrum of pneumonia diseases caused by the COVID-
19 pandemic undoubtedly exacerbates this burden. Compared
to other pneumonias, COVID-19 spreads rapidly and poses
a higher risk to lung cancer patients (28). Therefore, early
diagnosis of COVID-19 through imaging provides additional value
for lung cancer patients (29). In COVID-19, imaging findings
precede clinical manifestations. Therefore, despite stable vital
signs, severe COVID-19 diagnosed by imaging carries a high
potential risk of deterioration. In the context of severe infection,

patients often experience severe cardiovascular events, making
resuscitation extremely challenging (30). This is especially true for
lung cancer patients, whose lung function is relatively fragile (31,
32). Therefore, diagnosing COVID-19 infection and COVID-19-
related severe pneumonia has significant clinical benefits for lung
cancer patients.

In this study, we propose a diagnostic system consisting
of two neural networks that can accurately identify COVID-19
pneumonia and other types of pneumonia. Based on this, we
can predict and identify the occurrence of severe pneumonia
in COVID-19 pneumonia, providing an alert for critically ill
patients. Furthermore, we conducted a correlation analysis between
deep learning features related to severe pneumonia and KL-6.
Our predictive results show a significant correlation with KL-
6, as elevated KL-6 levels are indicative of alveolar damage,
demonstrating that the high-density shadows seen in imaging in
COVID-19 pneumonia are directly caused by lung injury.

The identification of pneumonia types is the first step in
pneumonia diagnosis and treatment. Pathogen culture is the gold
standard for identifying the types of infection (33). However,
this process is quite time-consuming. Therefore, for various
pneumonias including COVID-19, doctors often have to rely on
clinical judgment in the short term. Existing studies have been able
to distinguish COVID-19 from community-acquired pneumonia,
but patients who come to health care facilities often have complex
infections (34). In this study, using a dataset containing 600 cases,
our model achieved a accuracy rate at 0.8884, indicating its high
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FIGURE 5

Accuracyand Loss Curves of COVID-19 diagnostic modules (A) and white lung diagnostic module (B).

FIGURE 6

(A) A post-operative patient with right breast cancer, with a visible metal clip in the right breast. (B) An 85-year-old elderly patient with concurrent
bronchiectasis.
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FIGURE 7

(A) An elderly patient with an unclear left upper lobe bronchus, distal mucus plug, and atelectasis in the lingula segment. (B) An elderly patient
post-cardiac pacemaker surgery. (C) An 82-year-old elderly patient. (D) An 84-year-old elderly patient.

TABLE 4 Correlation Analysis of Laboratory Parameters with Deep
Learning Features in the COVID-19 Diagnosis Module.

Variable* r-value p-value

WBC (%) −0.078 0.090

NEUT (%) 0.304 0.000

Lym (%) −0.294 0.000

Mono (%) −0.062 0.177

EO (%) −0.417 0.000

BO (%) −0.343 0.000

PCT (ng/mL) 0.160 0.880

CRP (mg/L) 0.273 0.000

IL-6 (pg/mL) −0.062 0.654

DD (µg/L) −0.246 0.000

*BO, basophil; CRP, c-reactive protein; DD, D-Dimer; EO, eosinophil; IL-6, interleukin-
6; lmy, lymphocyte; mono, monocyte; NEUT, neutrophile; PCT, platelet; WBC,
white blood cell.

potential for clinical application. Additionally, because our network
structure is relatively straightforward, this implies that COVID-
19 pneumonia exhibits significant differences compared to other
types of pneumonia.

Identifying severe cases is the second step in the diagnosis
and treatment of COVID-19 pneumonia. The progression of a
patient’s condition and their CT imaging in COVID-19 pneumonia
may not synchronize (33). For some patients, severe extensive
high-density shadows on CT scans do not necessarily indicate the
presence of severe respiratory failure. Due to the lack of more
precise imaging biomarkers or evaluation methods, clinicians tend
to subjectively interpret such CT findings as indicating a potential
high risk of respiratory failure. As early as the beginning of the
COVID-19 pandemic, artificial intelligence has shown tremendous

TABLE 5 Correlation Analysis of Laboratory Parameters with Deep
Learning Features in the White Lung Diagnosis Module.

Variable* r-value p-value

KL-6 (U/mL) −0.422 0.000

oxygen saturation (L/min) −0.295 0.014

FI02 −0.342 0.005

PaO2/FiO2 (mmHg) 0.050 0.686

PaO2/FiO2 (most severe)
(mmHg)

0.108 0.375

WBC (%) −0.076 0.423

NEUT (%) −0.340 0.000

Lym (%) 0.306 0.001

Mono (%) 0.320 0.001

EO (%) 0.264 0.005

BO (%) 0.120 0.204

PCT (ng/mL) −0.084 0.660

CRP (mg/L) −0.233 0.030

IL-6 (pg/mL) −0.076 0.719

DD (µg/L) −0.293 0.020

*BO, basophil; CRP, c-reactive protein; DD, D-Dimer; EO, eosinophil; FI02, fraction of
inspiration O2; IL-6, interleukin- 6; lmy, lymphocyte; mono, monocyte; NEUT, neutrophile;
PCT, platelet; WBC, white blood cell.

potential in the diagnosis of COVID-19 (35). Based on X-rays and
CT scans, researchers have used both 2D and 3D neural network
models, significantly advancing the intelligence of COVID-19
diagnosis and treatment (36, 37).In this study, our neural network
was able to identify patients with extensive high-density shadows
with an accuracy of 0.9184, providing a potentially generalizable
objective diagnostic criterion. Additionally, in this study, we found
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a correlation between KL-6 and the occurrence of white lung in
patients, suggesting that our definition of white lung based on
imaging may be caused by alveolar damage. Since alveolar damage
cannot be quickly restored, this may be the reason why COVID-
19 patients experience respiratory difficulties that are difficult to
reverse. Compared to other types of pneumonia, COVID-19 itself
carries a higher risk of hypercoagulability, and this risk is further
elevated in patients with white lung. Because elderly patients are
more prone to developing white lung, this increased risk may
translate into sudden cardiovascular events in patients.

At the same time, our study has certain limitations: Firstly,
it is a single-center study lacking external data validation. Future
research needs larger sample sizes and multicenter studies to
further improve the accuracy and stability of the deep learning
models. Secondly, for the construction of deep learning models,
there is a lack of analysis of clinical factors, which would be
beneficial for building more stable models. Additionally, this study
did not establish a direct link between the model and clinical
outcomes, due to the data being from a specific period during the
COVID-19 pandemic where patient records and treatments may
not be accurate. Finally, considering the speed of diagnosis, the
structure of the two diagnostic modules in this study is relatively
simple, and the ability of image feature extraction is not strong. In
future research, we aim to develop a universal model for classifying
various pneumonias, thereby simplifying and standardizing the
pneumonia diagnostic process.

5 Conclusion and future work

Our study results demonstrate the potential of deep learning
in diagnosing COVID-19 pneumonia from CT images, particularly
in distinguishing between ordinary patients and those with white
lung in COVID-19 pneumonia. The 3D CNN can accomplish
diagnostic tasks without manual annotation. There are differences
in KL-6 expression between patients with and without white lung,
while there is correlation between deep learning features associated
with white lung. This suggests that patients with white lung have
greater alveolar damage compared to ordinary patients. This aids
in improving the prognosis of lung cancer patients with COVID-19
infection. In the future, we will develop multi-classification models
for pneumonia and further explore the relevance of deep learning
features to the prognosis of COVID-19 infection.
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