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Introduction

The association of chronic inflammation with tumorigenesis is well-established.

The pathogenesis of Helicobacter pylori-mediated gastric cancer (GC) is an appropriate

example of inflammation-driven tumorigenesis. This Gram-negative pathogen resides in

the human gastric mucosa and incites a continued inflammatory response marked by

immune cell infiltration, production of cytokines, chemokines and reactive oxygen species

(ROS) (1). These events generally activate diverse signaling pathways in the infected

gastric epithelial cells (GECs), which play crucial roles in carcinogenesis. This process is

orchestrated by the interplay of H. pylori-derived outer membrane vesicles (OMVs) and

host-cell-derived extracellular vesicles (hEVs), which serve as secret carriers, transport

a diverse cargo of biomolecules, including the carcinogenic cytotoxin of H. pylori, the

cytotoxin-associated gene A (CagA) (2, 3). Depending on the duration of infection and the

host response, the cargoes of the vesicular packages vary. As the EV released by the infected

GECs andH. pylori-derived vesicles can be carried to the distal parts of the body, we believe

these vesicular bodies trigger signaling events in distal organs. In fact, evidence suggests

that H. pylori is not only associated with gastric pathogenic events but also contributes to

the disease pathogenesis of various other organs (2). However, the gastrointestinal tract

(GIT) presents another layer of complexity due to the dynamic population of the GIT

microbiota. These microorganisms may influence the prevalence of H. pylori and alter the

immunopathogenic outcome (4). Despite some understanding, studies in this field are in

their early stages. Here, we present our analysis and viewpoint on the potential involvement

of H. pylori infection-generated EVs in fostering gastric adenocarcinoma as well as other

gastrointestinal tract cancers.

Immunopathogenesis of H. pylori-mediated GC

H. pylori infection is associated with approximately half of the global population and

is a causative factor for GC. As an extracellular pathogen, H. pylori is mainly equipped to

infect the human gastric epithelium. H. pylori virulence factors trigger the production of

proinflammatory mediators in the infected GECs which drive the progression of gastritis,
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peptic ulcer, mucosa-associated lymphoid tissue (MALT)

lymphoma and in some cases, GC. The “pathogenic” virulence

factor CagA is considered a type I carcinogen for GC. The

risk of GC significantly increases when CagA is accompanied

by certain subtypes of other cytotoxins such as, the virulence

factor vacuolating cytotoxin A (VacA) and the blood group

antigen binding “colonizing” virulence factor/adhesin (BabA)

(5). Polymorphism of inflammation-regulating host genes largely

influences pathogenesis by H. pylori. Although, both CagA and

VacA allow persistence of the pathogen by suppressing host

immune responses, CagA can promote inflammation in the gastric

epithelium by inducing the nuclear factor-κB (NF-κB) pathway

and interleukin-8 (IL-8) secretion in some hosts. Both of these

factors are found at very high level in the blood of GC patients.

In addition, higher expression level of a T helper type-1 (TH1)

cell cytokine IL-1β and decreased level of the anti-inflammatory

cytokine IL-10 are associated with increased gastric atrophy and

distal GC (6). H. pylori virulence factor urease B (UreB) also

increases the expression of the proinflammatory cytokine tumor

necrosis factor-α (TNF-α) and can promote carcinogenic events in

genetically-susceptible hosts. Cyclooxygenases (COX1 and COX2)

are the other inflammatory mediators released byH. pylori-infected

GECs. In response to these inflammatory mediators, GECs and

immune cells in the infected gastric epithelium upregulate ROS

generation (1). Downregulation of ROS-scavengers ascorbic acid

(7) and GRP78/BiP (8) also promotes gastric carcinogenesis.

H. pylori-induced ROS generation (9) and the degradation of

prolyl hydroxylase 3 (PHD3) (10) can stabilize the oncogenic

transcription factor hypoxia-inducible factor 1α (HIF1α) causing

transcriptional activation of many hypoxia-responsive oncogenes.

ROS also initiate mutagenic events which promote GC progression.

In addition, the suppression of apoptosis significantly aids in the

establishment ofH. pylori infection (11) and the survival of mutant

cells. However, a TH1 cytokine, interferon-γ (IFN-γ) induces

apoptosis of H. pylori-infected GECs (12). Therefore, the risk

of GC development is heavily dependent on the host immune

responses and signaling events.

H. pylori infection and extragastric GIT
cancers

H. pylori shows tropism to the gastric pit (13) but various

extragastric manifestations of H. pylori infection have been

reported in recent times (14). Owing to the fecal-oral transmission

route, H. pylori has been isolated from several parts of the GIT

and shown correlation with several GIT cancers. The presence

of CagA-positive H. pylori in the oropharyngeal region can

mount a local immune response against human papillomavirus

(HPV) infection (15, 16) but their co-occurrence has also been

linked to the advancement of oropharyngeal carcinoma (17).

Emerging evidences link H. pylori to colorectal, pancreatic and

hepatobiliary cancers as well (18). Gallbladder premalignant

lesions are found to be correlated with gastric colonization of

H. pylori and resultant ROS production (19). H. pylori promotes

autoimmune pancreatitis by stimulating inflammatory responses

in the pancreatic tissue leading to the increased risk of pancreatic

cancer (20). However, so-far, only one case-study has reported

about H. pylori bacteraemia (21) which is indicative of the

systemic spread of the virulence factors instead of “true” bacterial

colonization in extragastric tissues.

H. pylori infection and the GIT
microbiota

GIT oncogenesis is complicated due to the presence of trillions

of microorganisms in the GIT. Other than H. pylori, which is the

most predominant bacterium, the human stomach itself houses

Lactobacillus, Streptococcus, Prevotella, Hemophilus, Neisseria and

Rothia, to name a few. These microbes belong to the five

most abundant phyla- Proteobacteria, Firmicutes, Actinobacteria,

Bacteroidetes and Fusobacteria (22). The abundance of these

microbes varies depending on H. pylori infection, dietary habits,

race, age and disease states.

H. pylori not only rewires the α-diversity of the normal

gastric microbiota but also of the entire gut microbiota that has

a possible connection with various other GIT cancers (23). The

gastric microbiota composition differs significantly between H.

pylori-positive and H. pylori-negative patients. In the H. pylori-

positive group, Proteobacteria are more prevalent and coexist with

H. pylori through mutualistic relationships, taking advantage of the

altered pHwhile Firmicutesmight be supressed due to competition,

modulated pH and microenvironment.H. pylori infection has been

reported to decrease pathways involved in carbohydrate and lipid

metabolism which significantly downregulates Firmicutes (24). On

the contrary, in H. pylori-negative group, both Proteobacteria and

Firmicutes are the predominant phyla. It is worth mentioning

that the gastric microbiota diversity is decreased by H. pylori

colonization (25). Studies have found correlations of other

bacteria with H. pylori-mediated GC progression. For example,

gastric neoplasia progresses much faster upon the introduction of

intestinal pathogenic bacteria to solelyH. pylori-infected germ-free

insulin-gastrin mice (26). Robinson et al. (27) have reported that

GC has diverse bacterial DNA content, with Pseudomonas sp. being

dominant but not H. pylori. Once initiated by H. pylori infection,

human GC progression, beyond the adenocarcinoma stage, may

not depend on H. pylori since the gastric microbiota consists of

primarily oral and intestinal bacteria as observed after H. pylori

eradication (25). These reports point to the possibility that the GIT

microbiota strongly dictates GC progression. Further studies are

required to discern the exact mechanism.

EVs ferry oncogenic as well as
inflammatory factors and regulate H.

pylori-mediated GC pathogenesis

Over the last two decades, we have become aware that gastric

colonization of H. pylori can lead to systemic effects and can

influence extragastric disease manifestations including extragastric

oncogenesis (28, 29). One of the mechanisms proposed for the

extragastric association involves the release of OMVs by H. pylori

and infected cell-derived hEVs which deliver virulence factors and

genetic material to host cells. These OMVs and hEVs exhibit
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intricate functions and act as conveyance systems for virulence

factors, ROS-regulators, immune and inflammatory modulators.

H. pylori OMV-packed gamma-glutamyl transpeptidase (GGT),

another virulence factor, also induces ROS and promotes chronic

inflammation in the GIT (2). Systemic low-grade inflammation

is associated with atherosclerosis in H. pylori-infected males (30)

and CagA influences the process (31). The main players behind

these inflammatory events are IL-8 and NF-κB (32). EVs released

by H. pylori-infected GECs carry CagA, become blood-borne and

deliver the oncogenic factors to the distal parts of the body

contributing to atherogenesis and systemic inflammation (33).

Interestingly, a study by Olofsson et al. (34) has shown that

CagA, VacA, BabA, urease and more than 300 other H. pylori

proteins appear in the H. pylori infection-derived vesicles. These

vesicles can engage in crosstalk by either competing for host cell

binding sites or act synergistically to enhance their virulence or

immunomodulatory properties.

Fusion of H. pylori OMVs with other
microbial OMVs and extragastric
cancers, our perspective

Among the GI organs, the human stomach is unique since the

pH in its lumen can be very low. A healthy human stomach has a pH

ranging between 1.5–3. Interestingly, the long-term use of proton

pump inhibitors (PPIs), which are widely used to prevent gastric

ulcers, has been associated with an increased risk of GC (35). PPIs

increase the stomach pH by inducing hypochlorhydria. Alkaline

pH, due to either hypochlorhydria or chronic inflammation

or microbial metabolites, helps in the growth of extragastric

pathogens, mainly oral microbes such as Streptococcus anginosus,

Slackia exigua, Peptostreptococcus stomatis in the stomach (36).

However, the overall microbial heterogeneity in the stomach gets

decreased which modulates GC development. pH neutralization by

H. pylori can also cause the accumulation of pathogenic microbes

in the stomach contributing to oncogenesis (37).

From the above discussion about the GIT microbiota influence

on GC and other GIT cancer progression, we believe that OMVs

released in an H. pylori-infected GIT are not simply bystanders.

Interestingly, H. pylori OMVs can alter the hepatocyte-derived

exosome contents, activate hepatic satellite cells and downregulate

E-cadherin leading to hepatic fibrosis (38). H. pylori-mediated

duodenal ulcer is associated with the OMV-encapsulated Omp30

release (39). Both of these diseases have definite premalignant

potentials. Exosomal CagA promotes colitis by caudal type

homeobox 2 (CDX2)-dependent claudin-2 upregulation in the

intestinal epithelial cells (40). Claudin2 is long known for its

assocaiation with colon cancer. Though not studied in H. pylori

infection, glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

secreted by Gram-negative bacteria helps in OMV-membrane

fusion and is implicated in spreading bacterial cytotoxins to remote

cells (41). This fusogenic enzyme is employed by the Gram-

negative bacteriaMoraxella xanthus to ascertain topological fusion

of its own OMVs with other Gram-negative bacterial OMVs

(42). Although the mechanism of OMV release by Gram-positive

bacteria is not definitively understood, under some circumstances

they release OMVs (43). Therefore, the GIT OMV pool from

both Gram-negative and Gram-positive bacterial population may

function as a lush haul of oncogenic factors and immune

modulators not only in the GIT but also in other organs, post their

intestinal absorption. Likely, the influence of the collective OMVs

and fused-OMVs in the GIT will decisively steer the rate and course

of oncogenesis in the GIT as well as in other organs. As OMVs can

invade host cells and even accumulate near tumor cells to influence

the tumor microenvironment (32, 44), their synergistic effects on

GIT cancer need to be thoroughly studied.

EV fusion with the target cell membrane has been observed

under low pH condition although the fusion mechanism is not

clearly known (45). In experimental conditions, low pH allows

bacterial OMV fusion (46). The stomach is the likely organ in the

human body which, in physiological conditions, might allow EV

lipid-membrane fusion due to the low pH condition in the stomach

lumen. The membrane-bending physical and electrical conditions

are created at low pH which leads to the rearrangement of lipid

polar groups (47). Although there is no experimental evidence yet,

but by going through the existing literature, we believe that fused

OMVs can be formed at the low pH of the human stomach.

Figure 1 summarizes our viewpoint regarding the OMV-OMV

fusion possibilities in the acidic environment of human stomach.

Conclusion, lacunae and future
perspectives

The potential of pH-dependent multi-microbial OMV

fusion might lead to changes in the overall composition and

properties of the resultant fused OMV, thereby broadening the

receptivity of various off-target extragastric regions with unique

pH environments (48). pH regulates the cellular uptake and

release of EVs, inducing inflammation-mediated diseases such

as the Alzheimer’s disease, pulmonary diseases, dermatological

disorders or cancer. Comprehending these complex relationships

is crucial to interpret the role of H. pylori and other microbes in

these diseases, demanding targeted research to facilitate precise

therapeutic modalities. OMVs are considered as good vaccine

candidates. The compositional attributes of H. pylori OMVs

and the intricate local gastrointestinal milieu and microbiota

introduce novel dimensions for OMV-OMV fusion. Nevertheless,

the precise molecular determinants orchestrating their preferential

fusion with cells of extragastric organs, particularly within the

distinct and heterogenous microenvironment of these organs,

have yet to be comprehensively defined. Future therapeutic

strategies are poised to harness the transformative potential of

these nanoscale vesicles loaded with therapeutic biomolecules.

Designing customized bacterial OMVs with treatment agents,

surface engineering such as membrane protein modification or

ligand incorporation may assist in the drug delivery attempts at the

desired site of action. While bioengineered hybrid EVs have been

generated for diagnostics and drug delivery, OMV-OMV fusion

in the body still remains an enigma. Their fusion opens up the

possibility of binding the fused OMVs with other nonconventional

host cells based on the compatible ligand-receptor interaction

and portrays the possible reasons behind the association of H.

pylori with extragastric cancers. Due its implication in the disease
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FIGURE 1

The GIT microbiota-derived OMVs help in strengthening the carcinogenic potential of Helicobacter pylori beyond the human stomach. H. pylori

resides in the human stomach and incites persistent inflammatory reactions and oxidative stress. hEVs and OMVs released by H. pylori carry

cytotoxins as well as other factors which contribute to GC pathogenesis. Low pH in the lumen of the human stomach opens up the possibility of H.

pylori-derived OMVs to fuse with OMVs originating from other pathogenic bacteria in the stomach. In addition to bind with their own target cells,

fused OMVs have possibilities to bind with the cell membrane of various o�-target cells of the GIT and cause carcinogenesis. Spreading of fused

OMVs through the blood vessels opens the possibility of distribution of H. pylori cytotoxins to other distal organs in the body as well. The figure is not

drawn to the scale.

pathogenesis, the OMV-OMV fusion phenomenon warrants for

in-depth research. Particularly, hybrid vesicles that integrate EVs

of biological origin with natural cargo-carrying capacity and

synthetic EVs with customizable features will augment the latter’s

compatibility, therapeutic potential and specificity (49). With the

advancement of EV research and bioengineering, the potential of
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EVs in personalized, targeted and efficient therapies will become

clearer while minimizing systemic toxicity.
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