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The high prevalence of acute kidney injury (AKI) in ICU patients emphasizes the need 
to understand factors influencing continuous renal replacement therapy (CRRT) 
circuit lifespan for optimal outcomes. This review examines key pharmacological 
interventions—citrate (especially in regional citrate anticoagulation), unfractionated 
heparin (UFH), low molecular weight heparin (LMWH), and nafamostat mesylate 
(NM)—and their effects on filter longevity. Citrate shows efficacy with lower 
bleeding risks, while UFH remains cost-effective, particularly in COVID-19 cases. 
LMWH is effective but associated with higher bleeding risks. NM is promising 
for high-bleeding risk scenarios. The review advocates for non-tunneled, non-
cuffed temporary catheters, especially bedside-inserted ones, and discusses the 
advantages of surface-modified dual-lumen catheters. Material composition, 
such as polysulfone membranes, impacts filter lifespan. The choice of treatment 
modality, such as Continuous Veno-Venous Hemodialysis (CVVHD) or Continuous 
Veno-Venous Hemofiltration with Dialysis (CVVHDF), along with the management 
of effluent volume, blood flow rates, and downtime, are critical in prolonging filter 
longevity in CRRT. Patient-specific conditions, particularly the type of underlying 
disease, and the implementation of early mobilization strategies during CRRT 
are identified as influential factors that can extend the lifespan of CRRT filters. In 
conclusion, this review offers insights into factors influencing CRRT circuit longevity, 
supporting evidence-based practices and suggesting further multicenter studies to 
guide ICU clinical decisions.
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1 Introduction

An estimated 57.3% of individuals admitted to the ICUs meet the criteria for acute kidney 
injury (AKI) (1). Continuous renal replacement therapy (CRRT) is preferred over intermittent 
renal replacement therapy (IRRT) in ICUs for its gentle impact on hemodynamics and solute 
clearance, running continuously over 24 h to optimize treatment without disrupting patient 
stability (2). Maximizing CRRT filter lifespan is crucial (3) as it directly influences treatment 
efficacy and reduces costs associated with frequent circuit changes. A compromised filter can 
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diminish therapeutic efficacy by impeding solute clearance and 
necessitate more frequent circuit changes (4), impacting treatment 
costs (5). There are objective indicators for monitoring the lifespan 
and obstruction of CRRT circuits (6–9). The key parameters include 
access pressure (AP), prefilter pressure (FP), transmembrane pressure 
(TMP), effluent pressure (EP), and return pressure (RP). Each 
1-mmHg rise in TMP or filter pressure independently increases 
clotting risk by 1.5% (95% CI 1.0–2.0%) (6). A significantly negative 
AP (≤ −200 mm Hg) has been correlated with circuit failure within 
12 h (7). TMP values above 300 mmHg indicate a need for potential 
filter replacement (9). Vigilant monitoring of these indicators allows 
proactive measures against circuit obstruction, thereby prolonging 
CRRT circuit life and ensuring therapy continuity and efficacy. While 
not universally adopted in current CRRT guidelines, AP, FP, TMP, EP, 
and RP provide valuable insights for clinicians, supporting optimized 
clinical practices (10–14). Future large-scale randomized controlled 
trial (RCT) studies are anticipated to validate these indicators for 
broader inclusion in clinical guidelines. Therefore, understanding and 
optimizing the CRRT filter lifespan is crucial for ensuring the therapy’s 
effectiveness and reducing unnecessary expenses.

The KDIGO guidelines state that the use and replacement of filters 
should be based on monitored filter performance (such as TMP and 
blood flow) and patient clinical condition assessment. There are no 
recommended specific standardized durations or removal criteria; 
decisions should be made based on individual circumstances, with 
particular attention to extracorporeal circuit clotting as a primary 
cause for unplanned filter replacement (10). The recurrent occurrence 
of clotting curtails the precious duration of therapeutic intervention, 
leading to suboptimal treatment outcomes and amplifying the 
economic burden of treatment and the workload for healthcare 
personnel. Upon the occurrence of coagulation in the CRRT circuit, 
a substantial depletion of the patient’s platelets ensues, consequently 
increasing the risk of mortality (15). Coagulation also substantially 
contributes to hemodynamic losses in patients, necessitating an 
increased demand for transfusions (16, 17). Therefore, enhancing filter 
longevity and performance efficiency in CRRT has been the subject of 
numerous recent researches. Methods to prolong the lifespan of the 
circuit encompass both pharmacological interventions and 
non-pharmacological factors. In terms of pharmacological 
interventions, larger, high-quality studies have primarily focused on 
determining optimal anticoagulation strategies, and this aspect has 
been central to several reviews (3, 5, 18). Attempts that are made in 
the ICU to prevent filters from clotting are not limited to 
pharmacological interventions. In CRRT, determining the optimal 
vascular access configuration involves various factors such as catheter 
design, size, insertion site, inserter experience, insertion depth, and 
line maintenance. Inappropriate access may lead to frequent alarms 
on the CRRT platform, resulting in treatment delivery failures or 
reduced blood flow, thereby affecting the effectiveness of therapy and 
encouraging stasis, potentially leading to thrombosis (19–22). Factors 
related to the patient, including underlying conditions, patient 
pathology, and illness severity, collectively influence the ease of 
conducting CRRT and preserving vascular access (23–26). Circuit-
related variables encompass factors associated with the blood filtration 
membrane, such as polyamide, polysulfone, or polyethylene, as well 
as treatment modalities including commonly utilized CVVHD, 
continuous veno-venous hemofiltration (CVVH), and CVVHD-F in 
clinical settings (27). Practices in this field also involve various 

approaches, such as modifications in the implementation of pre/post-
dilution in CVVH and CVVHD-F, effluent volume, target blood fluid 
flow rates, and overall circuit management procedures (28).

This review will comprehensively survey methods for prolonging 
the lifespan of CRRT circuits, covering both pharmacological 
interventions and non-pharmacological factors.

2 Methods

2.1 Scope and coverage of literature search

Our review focuses on exploring the filter lifespan in CRRT for 
AKI, along with the effects of pharmacological and 
non-pharmacological interventions. The search was limited to 
strategies aimed at prolonging filter lifespan in CRRT.

2.2 Keywords and search strategy

We utilized a comprehensive search strategy incorporating 
keywords such as “continuous renal replacement therapy,” “acute 
kidney injury,” “filter lifespan,” “pharmacological interventions,” and 
“non-pharmacological factors.” these keywords were combined using 
Boolean logic to ensure thorough coverage of relevant literature.

2.3 Database selection

We conducted searches across PubMed and Google scholar due 
to their extensive coverage of biomedical literature and 
multidisciplinary approach.

2.4 Time frame

Our search spanned articles published between January 2005 and 
December 2023 to capture the most relevant and recent studies.

2.5 Types of literature

We included peer-reviewed original studies, review articles, case 
studies, systematic reviews, and meta-analyses in our review.

2.6 Language restrictions

We limited our search to English-language publications to 
maintain consistency and clarity in the reviewed literature.

2.7 Screening process

Initially, articles were screened based on titles and abstracts to 
exclude irrelevant studies. Subsequently, full-text reviews were 
conducted to determine eligibility based on relevance to our 
review objectives.
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2.8 Quality assessment

Selected studies underwent rigorous quality assessment, 
considering study design, sample size, result consistency, and risk 
of bias.

2.9 Updated searches

To ensure completeness, additional searches were conducted 
following the initial submission to incorporate the latest 
research findings.

2.10 Data management and recording

We maintained detailed records of our search results and 
screening processes using Zotero literature management software for 
systematic data organization.

3 Pharmacological interventions

Pharmacological interventions can impact various stages within 
the cascade of coagulation in the human body (Figure 1), thereby 
interrupting the formation of blood clots. Pharmacological approaches 
encompass the use of a range of medications, including intravenous 
anticoagulants (such as UHF, LMWH, argatroban, bivalirudin, and 
RCA), oral anticoagulants (warfarin), and antiplatelet agents.

Citrate exerts its effects through the chelation of calcium, thereby 
inhibiting calcium-dependent steps in the biochemical coagulation 
process (29). One reason we prefer RCA is its ability to maintain 
effective circuit anticoagulation without increasing the risk of 
bleeding. This advantage makes RCA a commonly used 
anticoagulation method in CRRT (30–32). The Kidney Disease: 
Improving Global Outcomes (KDIGO) guidelines recommend using 
RCA rather than UHF in patients who do not have contraindications 
for RCA (10). Several RCTs have shown a significant prolongation of 
filter lifespan in the RCA group (9, 16, 33). A recent RCT (34) 
involving 596 patients reported a significantly prolonged filter lifespan 

FIGURE 1

Physiology of coagulation and mechanisms of pharmacological interventions in CRRT. AT, anticoagulant blood count; Ca2+, calcium ion; TF, tissue 
factor; II, prothrombin; IIa, activated factor II; V, labile factor; VI, accelerin; VII, proconvertin; VIIa, activated factor VII; VIII, antihemophilic factor; IX, 
christmas factor; IXa, activated factor IX; X, stuart-prower factor; Xa, activated factor X; XI, plasma thromboplastin antecedent; XIa, activated factor XI; 
XII, Hageman factor; XIIa, activated factor XII.
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in the RCA group (unadjusted median, 46.5 h [IQR, 18.8–70.3 h] vs. 
26.0 h [IQR, 12.0–50.6 h]; unadjusted absolute difference, 11.6 h [95% 
CI, 8.5–14.7 h]; adjusted absolute difference, 11.2 h [95% CI, 
8.2–14.3 h]; p < 0.001). Notably, bleeding complications were 
significantly reduced in the RCA group compared to the UHF group 
(5.1% vs. 16.9%; p < 0.001; OR, 0.27 [95% CI, 0.15–0.49]). The 
systematic reviews by Tsujimoto H suggest that, in comparison to 
UHF, RCA may reduce the risk of thrombocytopenia (RR 0.39, 95% 
CI 0.14 to 1.03; low certainty of evidence) (5). This reduction could 
be attributed to a decrease in heparin-induced thrombocytopenia 
(HIT), a common complication of heparin anticoagulation (35). In 
CRRT treatment for high bleeding risk patients, such as those post-
cardiac surgery (26, 36) or with severe trauma (37), RCA therapy 
demonstrates improved safety and hemodynamic stability. However, 
the incidence of new culture-proven infection since initiating dialysis 
was higher in the RCA group (68.0% vs. 55.4%; p = 0.002; OR, 1.71 
[95% CI, 1.23 to 2.39]) (34). This increase may be related to factors 
such as enhanced monitoring and prolonged filter lifespan. 
Additionally, hypophosphatemia associated with RCA may 
compromise the immune response, potentially increasing the risk of 
infection. The observed trend of a higher infection rate in the RCA 
group merits in-depth investigation in subsequent trials. Diagnosing 
citrate accumulation remains a relatively intricate task when there is a 
lack of monitoring for citrate concentration. The primary objective of 
RCA protocols should be to minimize the net citrate load administered 
to patients (38). Throughout treatment, it is crucial to closely monitor 
ionized calcium and perform regular assessments of total/ionized 
calcium and pH values. Employing limited blood flow is 
recommended, and a preference for high dialysate/filtration rates 
should be considered to optimize the removal of citrate (Table 1).

UFH has been the primary method of anticoagulation in CRRT 
for decades (40), despite lacking significant superiority over RCA in 
prolonging filter lifespan and preventing bleeding events (16). 
However, healthcare professionals have extensive experience in its 
usage, contributing to streamlining treatment procedures and 
enhancing safety. For patients with contraindications to citrate, 
KDIGO (10) recommends using UFH, providing rapid reversibility 
and economic feasibility. UFH’s anticoagulant effect can be monitored 
and adjusted using coagulation times such as activated partial 
thromboplastin time (APTT), and its reversibility allows for prompt 
action in urgent situations such as surgeries or bleeding management. 
Moreover, UFH is relatively cost-effective, making it an economically 
viable option for patients requiring prolonged CRRT treatment. 
Additionally, over the past few years, a multitude of studies have 
emerged, investigating the use of UHF as an anticoagulant in 
COVID-19 patients necessitating continuous renal replacement 
therapy (26, 41–45). Among these studies, Endres’ research (44) found 
that the filter lifespan in COVID-19 ICU patients undergoing CRRT 
is comparatively shorter, averaging 17 h, in contrast to the control 
group of non-COVID-19 pulmonary infectious shock patients, where 
it is 39 h. Furthermore, he demonstrated that implementing a systemic 
heparin administration protocol guided by anti-factor Xa levels in 
CRRT effectively prolongs the filter lifespan (24 [15.1, 54.2] vs. 17.3 
[9.5, 35.1] h, p = 0.04). In summary, UHF remains the primary 
anticoagulant due to its rapid reversibility, cost-effectiveness, and 
extensive healthcare professional experience. Furthermore, it exhibits 
notable advantages in prolonging the CRRT filter lifespan for 
COVID-19 patients.

In addition to conventional heparin anticoagulation, literature has 
also documented the use of LMWH for anticoagulation in CRRT. The 
filter lifespans between LMWH and UFH groups (43+/−15 vs. 
52+/−18 h, p = 0.10), with no significant difference in circuit clotting 
rates. However, LMWH poses a higher risk of major bleeding 
compared to UFH (5). Despite lacking distinct advantages in the 
general population, LMWH shows benefits for COVID-19 patients. 
Reports (46, 47) suggest COVID-19 patients undergoing CRRT 
experience higher rates of premature filter change and longer dialysis 
downtime. In Arnold et  al. (41) comparison of different 
anticoagulation strategies in the treatment of 71 critically ill patients 
with COVID-19 undergoing CRRT, the average treatment duration 
was 8.1 h (SEM: ±1.3 h) with UFH, 8.0 h (SEM: ±0.9 h) with 
argatroban, and 11.8 h (SEM: ±0.5 h) with LMWH. Notably, LMWH 
exhibited a significant extension in treatment duration by 3.7 h 
(p = 0.008) and 3.8 h (p = 0.002), respectively. Overall, LMWH 
demonstrates specific benefits for COVID-19 patients, as evidenced 
by the significant extension in CRRT filter lifespan in this study. 
However, it remains unclear from current literature whether CRRT 
anticoagulant therapy consistently involves concurrent use of LMWH 
or other anticoagulants. Considering this gap, we recommend future 
research, particularly large-scale RCTs, to further explore the impact 
of different anticoagulation strategies on CRRT circuit longevity in 
COVID-19 patients.

NM, initially designed as a synthetic serine protease inhibitor for 
pancreatitis treatment, has seen increased utilization in CRRT since 
1990, predominantly in Japan. It inhibits platelet aggregation and 
various coagulation factors, including thrombin, Xa, XIIa, kallikrein, 
and components of the complement system. NM has demonstrated 
efficacy in prolonging filter lifespan, thereby improving filtration 
efficiency. With its versatile application and the absence of absolute 
contraindications, NM emerges as a suitable anticoagulant for CRRT, 
particularly in patients susceptible to bleeding risks (48–50). In a 2014 
RCT led by Yong Kyu Lee, the efficacy of NM and no anticoagulation 
was assessed in high-risk bleeding patients undergoing CRRT. The 
study found no statistically significant difference in mortality, 
transfusion, or survival between the two groups, and no adverse 
events related to NM were reported. However, notable distinctions 
emerged when comparing the NM group to the no-anticoagulation 
group. The NM group exhibited a significantly reduced overall 
number of CRRT filters used (2.71 ± 2.12 vs. 4.50 ± 3.25, p = 0.042) and 
a decreased frequency of filter changes due to clots per 24 h (1.15 ± 0.81 
vs. 1.74 ± 1.62, p = 0.040). Subdividing filter lifespan into below and 
over 12 h, the NM group demonstrated a significantly higher number 
of filters functioning beyond 12 h (p = 0.037, odds ratio 1.84) (48). 
Another smaller-sample, single-center, prospective randomized study 
also observed that, compared to the control group, the NM group 
exhibited significantly prolonged filter lifespan and enhanced filtration 
efficiency (51). However, larger-scale randomized trials are needed to 
validate its safety and effectiveness in high-bleeding risk patients 
compared to other anticoagulants such as citrate.

4 Non-pharmacological factors

In addition to selecting pharmacological interventions, several 
non-pharmacological factors play a pivotal role in influencing the 
lifespan of CRRT filters (Figure 2). Coagulation in CRRT circuits may 
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TABLE 1 Characteristics of studies reporting RCA with filter life (5, 9, 16, 30, 32–34, 36, 37, 39).

Study 
name

Sample 
size

Design Description Inclusion criteria Exclusion criteria Intervention/
Comparison

Control

Tsujimoto H 

et al. 2016 (5)

412 patients/

unclear

Retrospective 

review

RCA vs. UHF Up to 12 September 2019, selected randomized 

controlled trials (RCTs or cluster RCTs) and quasi-

RCTs of pharmacological interventions to prevent 

clotting of extracorporeal circuits during CRRT

No RCA UHF

Fabien 

Stucker et al. 

2015 (9)
103 patients/

unclear
RCT

Citrate-based 

anticoagulation vs. 

heparin

ICU patients were eligible if they were ≥ 18 years of 

age and had an AKI requiring CRRT according to 

the kidney failure criteria of the RIFLE definition.

Patients were excluded if they had active hemorrhagic 

disorders or severe thrombocytopenia (<50 × 109/L), a 

history of heparin-induced thrombocytopenia, severe 

liver failure defined as a factor V < 20%, or were on the 

waiting list for liver transplantation.

RCA Heparin

Gattas DJ 

et al. 2015 

(16)

212 

patients/857 

filters

RCT RCA vs. regional 

anticoagulation 

using heparin and 

protamine

(1) Acute renal failure requiring CRRT, (2) 

Suitability for regional anticoagulation of the CRRT 

circuit, (3) Clinical equipoise regarding the method 

of circuit anticoagulation, and (4) Informed consent 

was given or sought soon after enrollment.

(1) Expected stay in ICU less than 24 h, (2) Age less than 

18 years, (3) Pregnant or breastfeeding, (4) Suspected 

ischemic hepatitis or liver failure, (5) Known allergy to 

heparin or protamine, (6) Suspected or confirmed 

heparin-induced thrombocytopenia (HIT), and (7) 

Chronic kidney disease requiring dialysis before ICU 

admission.

RCA with the 

maintenance of systemic 

normocalcemia

Regional heparin 

anticoagulation 

with protamine 

reversal

Bai M et al. 

2023 (30)

89 patients/

unclear

RCT RCA vs. no-

anticoagulation

(1) Liver failure (acute liver failure and chronic liver 

failure), (2) High bleeding risk, (3) Scheduled CRRT 

treatment, and (4) Informed consent.

(1) Use of other anticoagulants, (2) Uncorrectable 

hypoxemia (PaO2 < 60 mmHg) or systemic 

hypoperfusion shock, (3) Pregnancy or lactation, and (4) 

Fistula, CRRT treatment time < 12 h.

RCA No 

anticoagulation

Schultheiß C 

et al. 2012 

(32)

28 patients/43 

filters

Systematic 

review and 

meta-analysis

Investigate the 

predictive capability 

of baseline liver 

function parameters 

regarding citrate 

accumulation

Liver failure patients in the ICU receiving CRRT
Severe alkalosis (pH > 7.55) or acidosis (pH <7.1) and 

deficiency of ionized calcium (Caion <0.9 mmoL/L).

Characterize predictors 

for citrate accumulation 

in terms of a Catot/Caion 

ratio of ≥2.5 and 

investigate the feasibility 

of citrate anticoagulation 

in patients with markedly 

impaired liver function.

Controlling for 

other various

Louise 

Schilder et al. 

2014 (33)

139 patients/

unclear
RCT

Citrate 

anticoagulation vs. 

systemic 

heparinization

Patients in the ICU receiving CVVH

The presence of an increased bleeding risk (defined as a 

platelet count below 40 × 109/L, an activated partial 

thromboplastin time (aPTT) longer than 60 s, a 

prothrombin time-international normalized ratio (PT-

INR) greater than 2.0 or recent major bleeding), age 

below 18 or over 80 years, the need for therapeutic 

systemic anticoagulation (heparin or coumarins) or a 

known HIT.

RCA
Systemic 

heparinization

(Continued)
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TABLE 1 (Continued)

Study 
name

Sample 
size

Design Description Inclusion criteria Exclusion criteria Intervention/
Comparison

Control

Zarbock A 

et al. 2020 

(34)

596 patients/

unclear
RCT

RCA vs. systemic 

heparin 

anticoagulation

(1) KDIGO stage 3 acute kidney injury classification 

(urine output <0.3 mL/kg/h for ≥24 h, and/

or > 3-fold increase in serum creatinine level 

compared with baseline, and/or serum creatinine 

level of ≥4 mg/dL [353.6 μmol/L] with an acute 

increase of at least 0.5 mg/dL [44.2 μmol/L] within 

48 h) OR an absolute indication for continuous 

kidney replacement therapy (serum urea levels 

>150 mg/dL, serum potassium levels >6 mmol/L, 

serum magnesium levels >9.7 mg/dL [4 mmol/L], 

blood pH <7.15, urine production <200 mL/12 h or 

anuria, or fluid overload with edema in the presence 

of acute kidney injury resistant to diuretic 

treatment); (2) at least 1 additional condition 

(severe sepsis or septic shock, use of vasopressor, 

refractory fluid overload); (3) age between 18 and 

90 years; (4) intention to provide full intensive care 

treatment for at least 3 days; and (5) provision of 

written informed consent.

(1) Increased Bleeding Risk: Individuals with a 

heightened risk of bleeding were excluded. (2) Diseases 

with Hemorrhagic Diathesis: Patients with conditions or 

organ damage associated with a tendency to bleed 

excessively (hemorrhagic diathesis) were excluded. (3) 

Need for Therapeutic Anticoagulation: Those requiring 

therapeutic anticoagulation were excluded. (4) Previous 

Allergic Reactions to Anticoagulants: Patients who had 

experienced allergic reactions to anticoagulants in the 

past were excluded. (5) Known Heparin-Induced 

Thrombocytopenia: Individuals with a confirmed history 

of heparin-induced thrombocytopenia were excluded. (6) 

Persistent and Severe Lactic Acidosis: Exclusion criteria 

included persistent and severe lactic acidosis, defined as a 

pH <7.2 in two consecutive measurements for more than 

2 h and a lactate level > 72.1 mg/dL (8 mmol/L). This was 

considered in the context of acute liver failure.

RCA
Systemic heparin 

anticoagulation

Agnieszka 

Kośka et al. 

2022 (39)

52 patients/193 

filters

A prospective 

observational 

study

This study assesses 

RCA efficacy in 

patients admitted to 

critical care following 

cardiovascular 

surgery and the 

influence of standard 

antithrombotic 

agents routinely used 

in this specific group.

The inclusion of consecutive cardiovascular surgery 

patients treated with post-dilution hemofiltration 

with RCA enhances the generalizability of the 

findings to this specific patient population.

UFH infusion RCA

Standard 

antithrombotic 

agents 

(acetylsalicylic 

acid, low 

molecular weight 

heparin, 

fondaparinux)

Morabito S 

et al. 2012 

(36)

33 patients/302 

filters

An 

observational 

study

The study aims to 

evaluate the efficacy 

and safety of RCA-

continuous veno-

venous 

hemofiltration 

(CVVH) using a 

low-concentration

(1) Patients undergoing continuous renal 

replacement therapy (CRRT) due to acute kidney 

injury (AKI) following cardiac surgery. (2) Patients 

deemed to have a high risk of bleeding, possibly 

resulting from factors such as recent cardiac surgery. 

(3) Patients willing to undergo regional citrate

(1) Patients not eligible for anticoagulation choices of 

RCA, heparin, or no anticoagulation (no-AC). (2) 

Presence of clinical conditions or contraindications 

unsuitable for RCA or other anticoagulation treatments. 

(3) Failure to meet defined criteria for high bleeding risk, 

such as a platelet count below 50,000/μl or heparin-

RCA-CVVH using a 

12 mmoL/L citrate 

solution.

heparin or no 

anticoagulation

(Continued)

https://doi.org/10.3389/fmed.2024.1442065
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Hu et al. 10.3389/fmed.2024.1442065

Frontiers in Medicine 07 frontiersin.org

stem from variables, such as blood flow stasis or turbulence, 
hemoconcentration, or activation of the intrinsic coagulation system 
due to contact with blood air or the blood filter (52). As a result, 
non-pharmacological strategies aimed at preventing clotting in CRRT 
circuits involve meticulous catheter or entry site selection, 
optimization of blood flow rates, careful consideration of CRRT 
modalities, and implementation of blood dilution methods.

First of all, the selection of catheters significantly impacts the 
patency of the extracorporeal circuit in CRRT (53). For critically ill 
patients, using a non-tunneled, non-cuffed temporary catheter is 
recommended due to its ease of bedside insertion and superior 
survival rates compared to alternative catheters (54, 55). Klouche et al. 
(56) findings indicate that a non-tunneled, non-cuffed temporary 
catheter not only exhibited a shorter insertion time (23.2 ± 13.8 vs. 
45.7 ± 27.5 min, p < 0.05) but also demonstrated superior catheter 
survival rates compared to the alternative catheter at specified time 
points (100% vs. 60%, p < 0.05). Additionally, the investigations 
conducted by Dunn and Sriram (57), Gilmore et al. (22), and Fealy 
et al. (58) explored the influence of various dialysis catheters, revealing 
no statistically significant association between the lifespan of the filter 
circuit and the type of vascular catheter utilized. In Fealy et al. (58) 
investigation, 26 patients (140 circuits) employed the Niagara catheter, 
while 20 patients (114 circuits) selected the Medcomp catheter. The 
circuit lifespan associated with the Niagara catheter proved markedly 
superior to that of the Medcomp catheter, with respective durations 
of 11 h and 7.3 h (p < 0.01). In a recent study (59), the performance of 
surface modified dual lumen catheters (smDLC) and standard dual 
lumen catheters (sDLC) was compared in 236 critically ill patients 
undergoing CVVHDF, indicating that smDLC exhibited superior 
performance in terms of prolonged duration before removal (131 ± 38 
vs. 113 ± 21 h, p = 0.004), lower rates of temporary catheter dysfunction 
(5% vs. 14%, p = 0.001) and thrombosis (2.3 episodes per 1,000 
TC-days,4.2 episodes per 1,000 TC-days, p = 0.021), higher blood flow 
rates (221 ± 29 vs. 187 ± 36 mL/min, p = 0.012), and a lower relative risk 
of premature removal [0.43 (95% CI, 0.13–0.98, p = 0.041)] compared 
to sDLC [2.51 (95% CI, 1.04–9.22, p = 0.034)], highlighting its 
potential clinical advantages over sDLC. However, caution is 
warranted due to the increased risk of catheter-related bacteremia 
associated with sDLC (p = 0.008). Cumulatively, the literature suggests 
that a nuanced approach to catheter selection is paramount for 
maintaining extracorporeal circuit patency and optimizing the 
prospects of long-term recovery.

Second, the placement site of the catheter can also influence the 
lifespan of the filter. Traditionally, the internal jugular vein has been 
preferred for vascular access in CRRT due to its association with lower 
catheter dysfunction and infection risks (60, 61). However, following 
the CATHEDIA study (62), a multicenter RCT involving patients 
undergoing intermittent hemodialysis or CRRT, there have been 
reports suggesting a comparable risk of infection, catheter dysfunction, 
and dialysis performance between femoral and right jugular vein 
catheterization. Brian’s analysis (27) indicated a shorter filter lifespan 
with the subclavian route compared to the femoral vein, while 
temporary internal jugular vein catheters showed no significant 
difference. Recent guidelines now recommend both femoral and right 
jugular veins as the initial sites for vascular access in critical care 
settings, while discouraging the use of left jugular and subclavian veins 
(62–64). In practice, the femoral vein is preferred for CRRT, 
particularly in sicker patients due to its faster and more successful T
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vascular access. Dugué AE mentioned in their report that, compared 
to internal jugular vein catheterization, although there was no 
difference in the first attempt success rate on the side (63.9% vs. 62.3%, 
p = 0.88), the femoral vein catheterization required less time (10 min 
vs. 12 min, p < 0.01) (63). Additionally, catheter tip location impacts 
dysfunction risk, with placement in the right atrium or inferior vena 
cava reducing it (65, 66). Selecting an appropriately sized dialysis 
catheter is crucial, with catheters ideally placed in the superior vena 
cava (SVC) or inferior vena cava (IVC) via the recommended routes. 
During catheter placement, bedside ultrasound enables precise 
assessment and adjustment of the catheter tip position to optimize 
placement accuracy. Moreover, the tunneled access (14.5Fr) tended to 
be associated with a longer filter lifespan, and a direct connection with 
extracorporeal membrane oxygenation (ECMO) provided the longest 
filter lifespan (27, 67, 68). In summary, the choice between the femoral 
and right jugular veins, along with optimal catheter tip positioning, 
plays a crucial role in the lifespan of the filter and the overall 
effectiveness of CRRT. This highlights the importance of adhering to 
the latest guidelines in the critical care setting to enhance vascular 
access outcomes.

Several studies emphasize the importance of considering the 
characteristics of hemofilter membranes in the lifespan of CRRT 
circuits. These filters are typically composed of materials such as 

polyamide, polysulfone, or polyethylene. These materials exhibit 
excellent biocompatibility and dialytic performance, effectively 
removing waste products and excess fluids from the body during the 
CRRT process. One multiple regression analysis revealed a trend 
indicating longer filter life associated with polysulfone membranes 
compared to cellulose triacetate (69). Another study found no 
significant disparity in filter life between the newer surface-treated 
AN69ST membrane and a polysulfone membrane. The number of 
sessions interrupted for circuit clotting was 8 (15%) with AN69ST and 
10 (19%) with polysulfone (p = 0.60) (70). Interestingly, research 
indicated that the AN69ST membrane, despite its heparin-binding 
properties, did not outperform non-surface-treated AN69 membranes 
in CRRT without anticoagulation regarding filter life (71). For other 
types of filters, including those with more fibers and shorter fibers, 
hollow fiber or flat fiber filters, as well as filters with larger membrane 
surface areas, there is no reliable evidence indicating their impact on 
filter life (72). Currently, investigations into filter materials 
predominantly rely on single-center studies with limited sample sizes, 
posing challenges in delivering robust evidence for evidence-based 
medicine. There is a pressing demand for extensive multicenter RCTs 
to substantiate these observations.

The choice of treatment modality plays a significant role in 
determining the lifespan of CRRT circuits. While clinical needs 

FIGURE 2

Intervention mechanism of non-pharmacological factors in CRRT. CRRT, continuous renal replacement therapy.

https://doi.org/10.3389/fmed.2024.1442065
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Hu et al. 10.3389/fmed.2024.1442065

Frontiers in Medicine 09 frontiersin.org

primarily dictate modality choice, it is important to note that different 
modalities can impact circuit longevity. Existing studies predominantly 
recommend CVVHDF or CVVHD over CVVH, as it significantly 
prolongs filter lifespan (73, 74). Recently, Mann et al. (74) reported a 
median filter life (with interquartile range) of 21.8 (11.4–45.3) for 
pre-filter CVVH, compared to 26.6 (13.0–63.5) for CVVHD, with a 
higher percentage of filters remaining active for over 72 h in the 
CVVHD group (11.8% vs. 21.2%). Currently, there is a lack of large 
RCTs investigating the impact of pre- and post-dilution on filter life 
in CVVH. The conclusions drawn from the existing three studies are 
still inconsistent (75–77). van der Voort et al. (75) and de Pont et al. 
(76) suggest that pre-dilution CVVH exhibits a longer filter run time 
(FRT) compared to post-dilution CVVH. However, Nurmohamed 
et al. (77) argues that there is no significant difference between the 
two. The filter life (median ± interquartile range [IQR]) in predilution 
modes was 24 ± 38 h, and in post-dilution modes, it was 29 ± 46 h 
(p = 0.58). In summary, the existing research on the correlation 
between treatment modalities in CRRT and filter lifespan is 
characterized by a lack of high-quality evidence. Consequently, there 
is an immediate imperative for extensive multicenter RCTs to furnish 
high-quality evidence in the realm of evidence-based medicine.

In considering the intricate interplay between treatment 
parameters in CRRT, the relationship among “Effluent volume,” blood 
flow, and filter lifespan holds significant clinical relevance. “Effluent 
volume” refers to the total amount of waste and solutes removed from 
the patient’s body during the treatment process in CRRT. In 2009, a 
comprehensive RCT (78) revealed that increasing CRRT effluent 
volume from 25 to 40 mL/kg/h did not reduce mortality or dialysis 
dependence. Meanwhile, they utilized 0.93 ± 0.86 filters per day in the 
high-intensity group, as opposed to 0.84 ± 0.81 in the lower-intensity 
group (p < 0.001). In Castillo’s study (79), he observed that there was 
no difference in filter lifespan between groups with an effluent volume 
greater than 25 mL/kg per h and those with less than 25 mL/kg per h. 
Prescribing a treatment intensity exceeding 25 mL of effluent flow per 
kg per h is unlikely to yield significant benefits. On the contrary, it may 
shorten filter life and even expose patients to the risk of 
hypophosphatemia. Additionally, existing studies suggest (57, 80) that 
blood flow rate influences the lifespan of the filter. In CRRT, 
maintaining an optimal blood flow of 200 mL/min through the 
hemofilter is considered ideal. Circuit clotting is a concern if blood 
flow falls below 100 mL/min (81) while exceeding 300 mL/min can 
shorten the filter circuit lifespan (57). Hence, selecting an appropriate 
blood flow velocity is crucial to prevent premature clotting due to filter 
fiber resistance.

Effective teamwork plays a pivotal role in prolonging the lifespan 
of vascular conduits. “Continuous” therapy is not truly continuous. 
Uchino et  al. reported a median downtime of 3.0 h (1.0–8.3) in 
patients undergoing CRRT (82). Therefore, prescribing physicians 
need to be mindful of the impact of downtime on the quality of renal 
replacement therapy and filter lifespan. Simultaneously, the 
provision of high-quality CRRT requires the management of a highly 
skilled team. With the implementation of simulation-based 
education for CRRT training, Mottes observed a sustained, clinically, 
and statistically significant increase in filter life (66.4 h vs. 59.4 h, 
p = 0.008) (83). A well-organized specialized CRRT team could 
enhance clinical outcomes by improving the quality of care for 
patients requiring CRRT treatment in the ICU (84). In summary, 
simulation-based education in CRRT training resulted in a sustained 

increase in filter life, while the presence of a well-organized 
specialized CRRT team demonstrated potential benefits in 
improving clinical outcomes for ICU patients undergoing 
CRRT treatment.

Additionally, the primary disease condition of patients is another 
crucial factor influencing CRRT filter lifespan. As mentioned earlier, 
the lifespan of CRRT filters is notably reduced in COVID-19 ICU 
patients compared to a control group of non-COVID-19 patients with 
pulmonary infectious shock (44). In addition, Agarwal et  al. (85) 
conducted a study comparing filter lifespan among patients with acute 
liver failure, decompensated chronic liver disease, liver transplant 
recipients, sepsis, or hematological disorders. They observed that 
patients with hematological disorders had a significantly longer filter 
lifespan (mean = 21.7 h ± 19.7 h), whereas the filter lifespan in all other 
groups was shorter, with an average duration of less than 12 h. Apart 
from the hematological group, no other factors, including patient 
demographics (age, sex, and weight), Apache II score, anticoagulation, 
type of fluid used (lactate or bicarbonate), or the rate of ultrafiltration 
and fluid replacement, had a significant impact on the duration of the 
CRRT circuit. Meanwhile, Chua et al. (86) found that patients with 
elevated baseline APTT or serum bilirubin, those not mechanically 
ventilated, or those experiencing peri-circuit thrombocytopenia or a 
higher international normalized ratio had prolonged filter lifespan. 
Nonetheless, these patients also experienced more bleeding 
complications. Furthermore, research (87) indicates that anemia and 
the need for blood transfusions are prevalent among critically ill 
patients requiring CRRT for AKI, with an incidence rate reaching 
50%. In the study, it was observed that a shorter (<20 h) vs. a longer 
CRRT filter lifespan was not associated with an increased requirement 
for packed red blood cell (PRBC) transfusions. However, Sun et al. 
(88) prospective study results clearly demonstrate that FFP 
transfusions, both under PRCTP and DTP, have a significant impact 
on reducing APTT(96.62 ± 42.10 vs. 55.30 ± 29.91, p < 0.001, 
106.30 ± 63.90 vs. 56.97 ± 42.08, p = 0.001), indicating an increase in 
CRRT circuit clotting risk. The effect of platelet transfusions on APTT 
is significant under PRCTP but not under DTP, potentially due to the 
small sample size (74.76 ± 50.49 vs. 71.06 ± 52.24, p = 0.016; 49.70 
(45.33, 147.68) vs. 51.10 (39.30, 148.33), p = 0.564). Overall, FFP 
appears to have a more consistent and pronounced effect on APTT 
reduction compared to platelet transfusions, highlighting its 
importance in managing anticoagulation strategies in patients 
requiring blood product transfusions. Therefore, during CRRT 
treatment, it is imperative to choose an appropriate anticoagulation 
strategy based on the patient’s clinical characteristics to minimize the 
occurrence of adverse reactions and administer blood transfusion 
promptly as needed.

CRRT is a commonly utilized technique in the ICU. However, 
patients undergoing CRRT often face issues of restricted mobility, 
particularly those utilizing femoral vein catheters. Over the past 
decade, research has consistently demonstrated that early mobilization, 
encompassing passive positioning, low-level activities, such as sitting 
on the edge of the bed and shifting positions, and high-level activities, 
such as standing and in-place movements, is safe and viable for ICU 
patients undergoing CRRT (89–92). However, does mobilization 
during CRRT impact filter pressure, what is its safety profile, and does 
it affect the lifespan of the filter? In a prospective cohort study led by 
Wang, involving 33 patients, no instances of filter occlusion or failure 
were observed during any of the mobilizations, and there were no 
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reported adverse events. The mobilization group exhibited a 
significantly prolonged filter lifespan compared to the control group 
(regression coefficient = 13.8, robust 95% confidence interval (CI) = 5.0 
to 22.6, p = 0.003). Sensitivity analyses indicated that patients 
undergoing more position changes experienced extended filter life 
(regression coefficient = 2.0, robust 95% CI = 0.6 to 3.5, p = 0.007) (93). 
Early mobilization, particularly activities within and around the 
hospital bed, seems to be safe and largely feasible for ICU patients 
undergoing CRRT (94, 95). Currently, there is a lack of substantial 
large-scale multicenter studies to validate the research findings and 
further reinforce conclusions, especially those related to filter lifespan.

5 Conclusion

CRRT is crucial in ICU treatment, where circuit lifespan 
profoundly impacts patient outcomes. This review synthesizes 
evidence on factors affecting CRRT longevity, focusing on 
pharmacological and non-pharmacological strategies. RCA reduces 
bleeding risks while maintaining filter lifespan. UFH is cost-effective, 
particularly in COVID-19, with rapid reversibility benefits. LMWH 
may benefit COVID-19 patients with prolonged treatment. NM is 
effective for high-bleeding risk patients. Catheter selection and 
placement in femoral or right jugular veins are critical for circuit 
patency. Surface-modified dual-lumen catheters offer advantages. 
Material composition, such as polysulfone membranes, influences 
filter lifespan. CVVHD or CVVHDF modalities extend filter life. 
Strategic management of effluent volume, blood flow, and downtime 
is crucial. Simulation-based education and specialized teams improve 
outcomes. Disease condition impacts filter lifespan; COVID-19 
reduces it, while hematological disorders extend it. Early mobilization 
during CRRT is safe and feasible, potentially extending filter life. 
Larger studies are needed. This review guides clinical practices to 
improve outcomes and reduce costs. Future research should innovate 
CRRT approaches to enhance efficacy and safety.
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