
Frontiers in Medicine 01 frontiersin.org

Accurate pneumoconiosis staging 
via deep texture encoding and 
discriminative representation 
learning
Liang Xiong 1,2, Xin Liu 3,4, Xiaolin Qin 1* and Weiling Li 3*
1 Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu, China, 
2 University of Chinese Academy of Sciences, Beijing, China, 3 School of Computer Science and 
Technology, Dongguan University of Technology, Dongguan, China, 4 Chongqing Prevention and 
Treatment Hospital for Occupation Diseases, Chongqing, China

Accurate pneumoconiosis staging is key to early intervention and treatment planning 
for pneumoconiosis patients. The staging process relies on assessing the profusion 
level of small opacities, which are dispersed throughout the entire lung field 
and manifest as fine textures. While conventional convolutional neural networks 
(CNNs) have achieved significant success in tasks such as image classification 
and object recognition, they are less effective for classifying fine-grained medical 
images due to the need for global, orderless feature representation. This limitation 
often results in inaccurate staging outcomes for pneumoconiosis. In this study, 
we propose a deep texture encoding scheme with a suppression strategy designed 
to capture the global, orderless characteristics of pneumoconiosis lesions while 
suppressing prominent regions such as the ribs and clavicles within the lung field. 
To further enhance staging accuracy, we incorporate an ordinal label distribution to 
capture the ordinal information among profusion levels of opacities. Additionally, 
we employ supervised contrastive learning to develop a more discriminative feature 
space for downstream classification tasks. Finally, in accordance with standard 
practices, we evaluate the profusion levels of opacities in each subregion of the 
lung, rather than relying on the entire chest X-ray image. Experimental results 
on the pneumoconiosis dataset demonstrate the superior performance of the 
proposed method confirming its effectiveness for accurate pneumoconiosis staging.
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1 Introduction

Pneumoconiosis is caused by the long-term inhalation of harmful dust particles, leading 
to lung fibrosis and inflammation (1). This condition permanently damages the patients’ 
respiratory system and weakens their physical strength. Accurate pneumoconiosis staging is 
crucial for facilitating early intervention and providing necessary welfare protection for 
affected individuals. At present, pneumoconiosis staging in clinical settings is conducted by 
well-trained radiologists who visually identify abnormalities on chest radiography, following 
guidelines established by organizations such as the International Labor Organization (ILO) 
(2) and the National Health Commission of China (NHC). Based on the shape, density, and 
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distribution of pneumoconiotic opacities, the staging results are 
categorized into stages I, II, and III, as illustrated in Figure 1.

Organizations such as the ILO and NHC have developed 
standardized pneumoconiosis staging standards to guide the 
diagnostic process. These protocols provide a systematic approach. 
First, the lung field is divided into six subregions, as shown in Figure 2. 
Second, authorized diagnostic radiologists evaluate the profusion level 
of opacities in each subregion and categorize them into levels 1, 2, or 
3. Finally, the overall pneumoconiosis stage is determined by 
summarizing the subregion-based results according to the criteria 
outlined in Table 1. However, this manual process is labor-intensive 
and prone to significant inter- and intra-rater variability. As a result, 
there is an urgent need for a computer-aided diagnosis system that 
adheres to these standards to evaluate pneumoconiosis staging more 
efficiently and consistently.

Building on the remarkable success of deep learning in computer 
vision, recent methods (3, 4) have applied deep convolutional neural 
networks (CNNs) to improve the accuracy of pneumoconiosis staging. 
However, several challenges remain:

 (1) Most previous studies treat pneumoconiosis staging as a simple 
image classification task, using chest radiographs and their 
staging results as input to train the classification model. 
However, this approach neglects the fundamental role of 
evaluating the profusion levels of opacities in subregions, 
which is essential for determining the final stage.

 (2) Opacities of various sizes are not concentrated in a single 
region but are randomly dispersed throughout the lung field, 
showing a global orderless texture. The convolutional layer of 
CNNs functions as local feature extractors using a sliding 
window approach, which preserves the relative spatial 
arrangement of the input image in the output feature maps. 
While this is effective for recognizing large, whole objects, it is 
less suitable for classifying fine-grained medical images that 
require global, orderless feature representation.

 (3) Additionally, since pneumoconiosis lesions are fine-grained, 
statistical-based representation learning models may 
be distracted by prominent but irrelevant regions, such as ribs 
and clavicles, leading to overfitting, especially in 
low-data scenarios.

 (4) Pneumoconiosis also progresses gradually, with the number of 
opacities increasing over time. As a result, the profusion levels 
of opacities are not independent but follow an ordered 
sequence. However, traditional single-label learning overlooks 
the correlations between adjacent grades.

 (5) To address these challenges, we  propose a framework that 
adheres to standards for evaluating the subregion’s profusion 
levels of opacities in specific lung subregions on chest films. 
First, we  construct a deep texture encoding scheme with a 
suppression strategy to learn the global, orderless characteristics 
of pneumoconiosis lesions while suppressing prominent 
regions such as the ribs and the clavicles in the lung field. Then, 
based on the observation that pneumoconiosis is a gradual 
process and similar texture images of pneumoconiosis tend to 
be  grouped into close profusion levels, we  adopt label 
distribution learning (5) to take advantage of the ordinal 
information among classes. Additionally, we  employed 
supervised contrastive learning (6) to obtain a discriminative 
feature representation for downstream classification.

The main contributions of our study are as follows:

 (1) We used a tailored deep texture encoding and suppressing 
module to extract the global orderless information of 
pneumoconiosis lesions in chest X-rays.

 (2) We adopted label distribution learning to leverage the 
ordinal information among profusion levels of opacities and 
use supervised contrastive learning to obtain a discriminative 
feature representation for downstream classification.

 (3) Extensive experiments on the pneumoconiosis dataset show 
the superior performance of the proposed method.

2 Related studies

The study of computer-aided diagnosis of pneumoconiosis 
dates back to the 1970s. It can be  categorized into traditional 
machine learning methods and deep convolutional neural network 
methods. The traditional methods extract shallow features from 

FIGURE 1

Examples of pneumoconiosis stage.
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chest X-rays and then pass the features to a classifier for 
classification. Savol et al. (7) investigated the AdaBoost model to 
distinguish small, rounded pneumoconiosis opacities based on 
image intensity.

Zhu et  al. (8) trained a Support Vector Machine (SVM) 
classifier using a wavelet-based energy texture feature, showing 
good potential for detecting and differentiating pneumoconiosis 
stage I and II from normal. Yu et al. (9) adopted an SVM classifier 
to diagnose pneumoconiosis by extracting the texture feature of 
chest X-rays by calculating the statistical characteristics of the 
gray-level co-occurrence matrix. Okumura et al. (10) employed 
power spectra and artificial neural networks for pneumoconiosis 
staging. In a later study, Okumura et al. (11) proposed a three-stage 
network to improve classification accuracy. These traditional 
methods with handcrafted feature extractors benefit from model 
interpretability. However, the diagnostic accuracy of these methods 
has not yet met practical requirements. Recently, CNN-based 
methods have successfully diagnosed pneumoconiosis and staging 

by learning complex features automatically. Wang et  al. (12) 
analyzed the character of pneumoconiosis and identified it with 
Inception-V3, achieving an AUC of 0.878. Devnath et  al. (3) 
adopted an ensemble learning method with features from the 
CheXNet-121 model to detect pneumoconiosis included in 71 
CXRs and obtained promising results. Zhang (13) explored a 
discriminant method for pneumoconiosis staging by detecting 
multi-scale features of pulmonary fibrosis trained with the Chest 
X-ray14 data set and a self-collected data set including 250 
pneumoconiosis DR samples. To solve the problem that training 
data is insufficient, Wang et al. (14) augmented the data set using 
a cycle-consistent adversarial network to generate plentiful 
radiograph samples. Then, they trained a cascaded framework for 
detecting pneumoconiosis with both real and synthetic 
radiographs. Yang et al. (4) proposed a classification model with 
ResNet34 as the backbone to stage 1,248 pneumoconiosis digital 
X-ray images. The accuracy of diagnosis is 92.46%, while 70.1% is 
in grading of pneumoconiosis. According to the routine diagnostic 
procedure, Zhang et al. (15) developed a two-stage network for 
pneumoconiosis detection and staging. The accuracy for staging 
surpasses 6% higher than that gained by two groups of radiologists. 
To alleviate the problem of model overfitting caused by noisy labels 
and stage ambiguity of pneumoconiosis, Sun et al. (16) proposed a 
full deep learning pneumoconiosis staging paradigm that 
comprised an asymmetric encoder-decoder network for lung 
segmentation and a deep log-normal label distribution learning 
method for staging, and achieved accuracy and AUC of 90.4 and 
96%, respectively.

3 Methods

Inspired by the deep texture encoding network (17), which has 
proven to be efficient in texture/material recognition, we construct a 
tailored model for pneumoconiosis staging via deep texture extracting 
and discriminative representation learning. The overall architecture of 
the model is shown in Figure 3. A ResNet (18) network is employed 
as a feature extractor.

Then, features are fed into the texture encoding and suppressing 
module (TES) to obtain a global orderless representation of 
texture details.

The outputs from the TES module are supervised using contrastive 
learning, followed by a fully connected layer for classification via label 
distribution learning.

3.1 Texture encoding and suppressing

Texture encoding integrates the whole dictionary learning and 
visual encoding to provide a global, orderless representation of 
texture information. Here, we  briefly introduce prior work for 
completeness. Given a feature map W H CX × ×∈ , where W, H, and 
C are the width, height, and channel, it can be  expressed as 

{ }1, , NX x x= … , where N=W × H. The codebook { }1, , KD d d= …  
contains K learnable codewords. The corresponding residual vector 
of the feature map X  is computed by ij i jr x d= − , where 1 C

ix ×∈ , 

FIGURE 2

Example of subdivision of the lung fields.

TABLE 1 Final staging decision based on GBZ70-2015.

Stage Description

Normal No opacities or profusion level 1 of 

opacities occurred in one subregion.

Stage I Profusion level 1 of opacities occurred in 

more than two subregions.

Stage II Profusion level 2 of opacities occurred in 

more than four subregions, or profusion 

level 3 of opacities occurred in four 

subregions.

Stage III Profusion level 3 of opacities occurred in 

more than four subregions, and opacity 

aggregation occurred.
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1, ,i N= …  and 1 C
jd ×∈ , 1, ,j K= … . The residual encoding for 

codeword jd  can be expressed by the following Equation 1:
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,

N N
j ij ij ij

i i
e e rω

= =
= =∑ ∑

 
(1)
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Equation 2:
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where { }1, , KS s s= …  are the learned smooth factors.
Therefore, a set of encoding vectors { }1, , KE e e= …  is generated 

to represent the global orderless features of the feature mapX .
Due to the similar anatomical structure of chest X-rays and the 

fine-grained nature of pneumoconiosis lesions, we  employ a 
suppression strategy (19) to diminish the prominence of salient 
regions such as ribs and clavicles, encouraging the network to focus on 
opacities that are critical for pneumoconiosis staging. Let K

lP ∈  be 
the non-maximal vector corresponding to the lth channel of residual 
encoding lE . The form can be expressed by the following Equation 3:
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where 1,l C=  , ( )max lE  is the maximum value of lE  and λ is the 
suppression factor.

Then, we suppress the maximal value in the lth channel of residual 
encoding by the following Equation 4:

 ,ο=l l lE P E  (4)

where ο represents element-wise multiplication.

3.2 Supervised contrastive learning

Supervised contrastive learning (6) allows us to effectively exploit 
label information by extending traditional contrastive loss, thereby 
learning a discriminative feature representation by pulling together 
samples of the same class and pushing apart those of different classes 
in embedding space. Specifically, let us denote a batch of samples with 

C classes as
1

Ì
C

c
c

M
=

=∪ , here, cM  is the subset belonging to a single 

class and cM  is its cardinality. The supervised contrastive loss can 
be calculated by the following Equation 5:
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(5)

where iz  denotes the residual encoding vectors of the ith sample in 
subset cM , mz represents the residual encoding vector of a sample in 
subset cM  where the ith sample is exclusive, jz  denotes the residual 
encoding vector of a sample in the batch M where the ith sample is 
exclusive, ( )·sim  is the cosine similarity function, andτ  is a scalar 
temperature parameter.

3.3 Label distribution learning

Traditional classification models usually use single-label learning 
to guide model training. Label distribution learning (5) is proposed to 
solve the issue of label ambiguity, e.g., age estimation (20), emotion 
classification (21), and acne grading (22), which covers a certain 
number of labels and each label represents a different degree to 
describe the instance. Thus, this paradigm can leverage both the 
ground-truth label and its adjacent labels to provide more guidance for 
model learning. As the profusion levels of opacities of pneumoconiosis 
obey an ordered sequence, we utilize an ordinal regression method 

FIGURE 3

The overall framework of the proposed method.
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(23) to obtain the label distribution of an instance. In particular, let 
{ }1 2, , , Cr r r  be the scope of profusion levels with ordinal sequence. 
Given a pneumoconiosis image ia  labeled with profusion level tr , then 
the single ground-truth label can be  transformed to a discrete 
probability distribution throughout the label range as Equation 6:

 1

, 1,2, ,
t j

i t c

r r
j

a C r r
c

ey j C
e

− −

− −
=

= =
∑



 

(6)

where 
i

j
ay  means the degree to describe the pneumoconiosis 

image ia  by the jth profusion level.
For instance ia , the predicted probability distribution of each level 

can be expressed as Equation 7:

 1

j
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j
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θ

θ
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where jθ  denotes the predicted score concerning the jth profusion 
level outputted from the last FC layer.

We employ the Kullback–Leibler (KL) divergence to measure the 
information loss between the predicted and the ground-truth label 
distribution. Meanwhile, since there exists a serious class imbalance 
distribution, we use class reweighting (24) to deal with the imbalance 
problem of pneumoconiosis datasets, which is defined as the following 
Equation 8:
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where 
trπ  represents the label frequency of class tr  in the training set.

3.4 Loss function

Therefore, the loss function for model training is the combination 
of supervised contrastive loss and label distribution loss. It can 
be formulated as the following Equation 9:

 sup klL α β= +   (9)

where α  and β  are the hyperparameters.
At the testing stage, the label distribution of the given 

pneumoconiosis image can be  predicted, where the label 
corresponding to the highest probability is considered the predicted 
profusion level of opacities.

4 Experiment

4.1 Datasets and evaluation metrics

It is important to note that a pneumoconiosis dataset that does not 
adhere to established standards, such as GBZ70-2015, has no practical 
value. Currently, there is no publicly available pneumoconiosis dataset 
that complies with GBZ70-2015. Therefore, we have collaborated with 

an occupational disease prevention and control hospital to construct 
a dataset that meets the GBZ70-2015 standard, with approval from the 
ethics committee. The dataset comprises 160 pneumoconiosis digital 
radiograph samples, each with a resolution of 2,304 × 2,880, and the 
profusion level of each subregion labeled by experienced radiologists. 
To increase the number of normal samples, we incorporated 93 chest 
X-rays of healthy patients from the public JSRT dataset (25), each with 
a resolution of 2048 × 2048.

According to the diagnostic standard, we first segmented the lung 
field using a pre-trained U-Net model (26), then divided it into six 
subregions, as shown in Figure  2. We  removed the redundant 
background and resized each subregion to 256 × 256 pixels. Given the 
general symmetry of chest anatomy, we recombined the subregions of 
the left and right lungs to form data cases C1-C3. The statistics on the 
profusion levels of opacities for each data case are listed in Table 2.

In this study, accuracy (Acc), precision (Pre), sensitivity (Sen), and 
F1 score are used as evaluation metrics to assess the performance of 
each method. Accuracy refers to the proportion of correctly classified 
samples, precision indicates the proportion of correct predictions 
within the positive category, sensitivity (or recall) represents the 
model’s ability to detect positive category samples, and the F1 score 
balances precision and sensitivity to provide an overall measure of the 
model’s performance.

4.2 Implementation details

An instantiation of the proposed model is shown in Table 3. The 
size of input images is 256 × 256. The number of codewords is set to 
be 8. An 18-layer ResNet (18) with the global average pooling layer 
removed is used as a feature extractor, and a 1 × 1 convolutional layer 
is employed to reduce the number of channels. Then, output from the 
texture encoding and a suppressing module is supervised with 
contrastive learning, followed by L2 normalization and an FC layer 
for classification.

We implement all the methods using the Keras 2.6 framework and 
train the models with a GPU RTX 2080i. Adam optimizer with a 
learning rate of 0.0001 is used to optimize the networks. Batch size and 
epoch are set to be 16 and 300. Hyperparameters α, β, and τ are set to 
be  0.5, 0.5 and 0.1, respectively. Data augmentation approaches, 
including horizontal flipping and rotating (10 degrees), are used 
during the model training. Five-fold cross-validation is used for 
each experiment.

4.3 Ablation experiments

To thoroughly analyze the proposed model, we  conducted 
ablation experiments on data case C1 to highlight the effectiveness of 
its critical components. Table 4 shows the results of the model with 

TABLE 2 Statistics on profusion level of opacities in each data case.

Data cases Level 0 Level 1 Level 2 Level 3

C1(L1 + R1) 225 157 90 34

C2(L2 + R2) 243 162 84 17

C3(L3 + R3) 327 122 52 5
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different components. From Table 4, we observe that compared to the 
baseline model trained with the cross-entropy loss function, the 
model incorporating ordinal label distribution learning improves 
accuracy from 78.2 to 79.4% and the F1 score from 66.8 to 67.2%. 
These results indicate that multiple labels provide more informative 
guidance for model learning than single labels.

Compared to the baseline, the results presented in row 3 of Table 4 
show that the addition of deep texture encoding and suppressing 
modules boosts accuracy by 4.4% and the F1 score by 3.3%. This 
significant improvement demonstrates that the TES module effectively 
extracts the texture features of pneumoconiosis lesions. The 
comparison between rows 3 and 4 of Table  4 indicates that 
incorporating label distribution learning further increases accuracy 
by 0.7% and the F1 score by 0.8%. When all modules are combined, 
the model’s accuracy and F1 score improve to 84.9 and 73.0%, 
respectively, proving the effectiveness of the proposed method for 
evaluating the profusion levels of opacities in lung subregions.

Similar to classic dictionary learning, increasing the number of 
learnable codewords K allows the encoding module to capture more 
texture details. The results for different codewords K are displayed in 
Table 5. It indicates that the model achieves the best performance 

when K = 8. The possible reason is that there are mainly different sizes 
of rounded opacities dispersing in the chest X-ray of pneumoconiosis 
except for the ribs and clavicles. The texture encoding module, with 
an appropriate number of codewords, can effectively aggregate 
these features.

To verify the effectiveness of supervised contrastive learning, 
we randomly selected 80% of the examples from data case C1 as 
the training set and visualized the distribution of feature 
representation output by the TES module using t-SNE (27). As 
shown in Figure 4, the model with supervised contrastive learning 
achieves a more discriminative representation, characterized by 
large interclass variations and small intraclass differences. 
Notably, the visualization shows a clear separation between 
normal images and images with profusion level 1, where lesions 
are subtle and difficult to detect.

We also conducted experiments on parameter sensitivity analysis 
of suppression factors λ. The results of different suppression factors 
are shown in Figure 5. The findings indicate that the model performs 
better when keeping λ a small value than it does without using a 
suppressing strategy (λ = 1). The results also show that the texture 
encoding module can effectively aggregate salient regions’ features, 

TABLE 3 Architecture of the proposed model based on ResNet18.

Layer Name Filter Type Output Size

conv1 7 × 7, stride 2 128 × 128 × 64

Res1

3 × 3 max pool, stride 2

64 × 64 × 64
3 3,64

2
3 3,64
× 

× × 

Res2 3 3,128
2

3 3,128
× 

× × 

32 × 32 × 128

Res3 3 3,256
2

3 3,256
× 

× × 

16 × 16 × 256

Res4
3 3,512

2
3 3,512
× 

× × 

[ ]1 1,256 1× ×

8 × 8 × 256

Texture encoding Eight codewords 8 × 256

Classification FC Four classes

The input image size is 256×256.

TABLE 4 Ablation studies for the proposed model on data case C1.

ResNet18(base) TES LDL SCL Acc Pre Sen F1

√ 0.782 0.687 0.640 0.668

√ √ 0.794 0.690 0.654 0.672

√ √ 0.826 0.705 0.657 0.701

√ √ √ 0.833 0.726 0.693 0.709

√ √ √ √ 0.849 0.742 0.718 0.730

TES represents deep texture encoding and suppressing modules. LDL denotes ordinal label distribution learning. SCL is supervised contrastive learning.
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such as the ribs and the clavicles. Specifically, 0.2λ =  leads to the best 
performance on data case C1.

4.4 Comparison with the state-of-the-art 
methods

We compared the performance of the proposed method with five 
state-of-the-art image classification models based on CNN 

architectures. As shown in Table 6, the proposed method outperforms 
others in three of the data cases. It is important to note that while all 
the comparative models perform well in natural image classification 
tasks, they struggle with classifying texture-based images, such as 
those in the pneumoconiosis dataset.

We compared the performance of the proposed method with five 
state-of-the-art image classification models based on CNN 
architectures. As shown in Table 6, the proposed method outperforms 
others in three of the data cases. It is important to note that while all 
the comparative models perform well in natural image classification 
tasks, they struggle with classifying texture-based images, such as 
those in the pneumoconiosis dataset.

From Table  6, ResNet-based models (e.g., ResNet34, 
ResNet101) and DenseNet-based models (e.g., DenseNet101) 

TABLE 5 Accuracy with different codewords.

K 4 8 16 32

Acc 0.825 0.849 0.844 0.838

FIGURE 4

Visualization of feature representation distribution on data case C1. (A) w/o supervised contrastive learning. (B) w/ supervised contrastive learning.
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generally outperform other methods. This may be due to the fact 
that networks with residual or dense connections are better at 
mitigating gradient vanishing during training, allowing them to 
retain more fine-grained details of small opacities associated with 
pneumoconiosis. However, models like Xception, DenseNet101, 
InceptionV3, and ResNet101, despite being deeper networks, do 
not show significantly improved performance. This suggests that 
the pneumoconiosis dataset lacks sufficient volume for these 
larger models to effectively learn the necessary features 
for classification.

Additionally, performance on C3 is the lowest across all 
methods. This is likely because the subregions in C3 represent a 
smaller lung area, resulting in fewer features available for 
extraction. A similar effect is seen with C2, where some lung areas 
overlap with the heart and hilum, further complicating 
feature extraction.

To better illustrate the classification accuracy for each method, 
we  provide confusion matrices for data case C1  in Figure  6. The 
diagonal elements of these matrices indicate the accuracy for each 
class. The proposed method achieves the highest accuracy and offers 
predictions that are closest to the ground truth labels, providing 
valuable insights for clinical diagnosis.

5 Conclusion

Accurate pneumoconiosis staging is a challenging task, as the 
staging result depends on the profusion level of opacities, which 
are randomly dispersed throughout the lung field. However, 
traditional CNNs struggle to directly learn the global, orderless 
feature representation of pneumoconiosis lesions. In this study, 
adhering to established standards, we  propose a deep texture 

FIGURE 5

Accuracy with different suppression factors on data case C1.

TABLE 6 Comparison of different methods for data cases C1-C3.

Methods Chollet (29) Huang et al. (28) Wang et al. (14) Yang et al. (4) Zhang et al. 
(15)

Ours

Backbone Xception DenseNet101 InceptionV3 ResNet34 ResNet101 Reset18

C1

Acc 0.753 0.781 0.749 0.785 0.778 0.849

Pre 0.670 0.675 0.663 0.688 0.692 0.742

Sen 0.613 0.624 0.582 0.634 0.619 0.718

F1 0.646 0.651 0.625 0.658 0.653 0.730

C2

Acc 0.701 0.708 0.685 0.726 0.711 0.819

Pre 0.660 0.679 0.676 0.680 0.676 0.702

Sen 0.548 0.546 0.539 0.553 0.550 0.591

F1 0.601 0.605 0.598 0.608 0.605 0.642

C3

Acc 0.690 0.693 0.682 0.696 0.685 0.776

Pre 0.623 0.620 0.612 0.627 0.633 0.674

Sen 0.527 0.535 0.519 0.538 0.526 0.575

F1 0.570 0.573 0.565 0.579 0.577 0.621
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FIGURE 6

Confusion matrixes on data case C1. (A) Chollet (29). (B) Huang et al. (28). (C) Wang et al. (14). (D) Yang et al. (4). (E) Zhang et al. (15). (F) Ours.
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encoding scheme with a suppression strategy to evaluate the 
profusion levels of opacities in subregions. By incorporating label 
distribution learning to leverage the ordinal relationships among 
profusion levels, our approach achieves competitive performance. 
Additionally, the model enhances its feature representation 
through supervised contrastive learning. Experimental results on 
the pneumoconiosis dataset demonstrate the superior 
performance of the proposed method. A limitation of this study 
is the relatively small number of pneumoconiosis images. In 
future work, we  aim to further improve staging accuracy by 
incorporating multi-modal imaging, such as X-rays and high-
resolution CT scans.
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