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Sjogren’s syndrome (SS) is a chronic autoimmune disease. Mainly due to the 
infiltration of lymphoplasmic cells into the exocrine glands, especially the 
salivary glands and lacrimal glands, resulting in reduced tear and saliva secretion. 
Reduced tear flow can trigger Sjogren’s syndrome dry eye (SSDE). Although 
the pathophysiology of SSDE xerosis remains incompletely understood, recent 
advances have identified aquaporin-5 (AQP5) as a critical factor in dysregulation 
of the exocrine gland and epithelium, influencing the clinical presentation of 
SSDE through modulation of inflammatory microenvironment and tear secretion 
processes. This review aims to explore AQP5 regulatory mechanisms in SSDE 
and analyze its potential as a therapeutic target, providing new directions for 
SSDE treatment.
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1 Introduction

Sjogren’s syndrome (SS) is a systemic autoimmune disease that primarily targers exocrine 
glands, particularly the lacrimal and salivary glands, leading to symptoms such as dry eyes 
(xerophthalmia) and dry mouth (xerostomia) due to chronic lymphoplasmacytic infiltration 
(1, 2). SS is classified into primary SS (pSS) and secondary SS (sSS), with pSS occurring 
independently and sSS often associated with other autoimmune connective tissue diseases (3, 
4). As a systemic condition, SS can also impact various organs, potentially causing severe 
complications such as keratitis, corneal dystrophy, and scleritis, which may result in significant 
visual impairment (5–9). Despite advancements in understanding the SS’s pathobiology, many 
cases of SS-related dry eye disease (SSDE) remain undiagnosed, posing challenges for effective 
diagnosis and treatment (10).

Recent research highlights immune system dysregulation, particularly the interferon (IFN) 
pathway and persistent B-cell activation, plays a central role in SS pathogenesis (11–13). 
Additionally, epithelial cell dysfunction has garnered attention, with inflammation in these 
cells being critical in reducing tear production in SSDE (14). Aquaporin 5 (AQP5), a key 
protein in exocrine glands, has emerged as an important factor in this process. Alterations in 
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AQP5 distribution and expression may worsen SSDE by impairing the 
function of affected glands (15). This review explores the role of 
AQP5 in epithelial cell inflammation in SSDE and its potential as a 
therapeutic target.

2 Overview of SSDE

SSDE is mainly marked by dry eye or keratoconjunctivitis sicca 
(KCS), resulting from lacrimal gland dysfunction that disrupts the tear 
film and exacerbates chronic ocular surface inflammation (8). The 
symptoms of SSDE are diverse, including photosensitivity, erythema, 
itching, or foreign body sensation, are often worsen with prolonged 
activities that reduce blinking, such as reading, driving, and watching 
TV (16).

While the clinical manifestations of SSDE, such as blurred vision, 
are more severe than those of non-Sjögren’s syndrome dry eye 
(NSSDE), no clear clinical features currently differentiate SSDE from 
NSSDE (17). SSDE is marked by significant lymphocytic infiltration 
in the lacrimal and salivary glands, initiating an autoimmune response 
that results in the gradual destruction of these glands (18). This 
infiltration frequently results in the formation of ectopic germinal 
centers (GC) -like structures in the affected tissues, found in 18–59% 
of SS patients, which disrupts glandular structure, intensify local 
inflammation, and promote autoantibody formation, culminating in 
reduced tear secretion and severe ocular surface damage (19–23). 
Corsiero confirmed that these GC-like structures mainly drive the risk 
of lymphoproliferative disease by promoting prolonged B-cell 
activation and clonal expansion (24).

The destruction of glandular tissue leads to tear film instability 
and triggers an inflammatory cascade within epithelial cells through 

pathways such as MAPK and NFκB. This cascade leads to the release 
of pro-inflammatory cytokines, which sustain not only the 
inflammatory state but also induce apoptosis of secretory acinar cells, 
leading to reduced production of the aqueous component of the tear 
film (25–27). Additionally, meibomian gland dysfunction and the 
apoptosis of goblet cells and epithelial cells compromise the lipid and 
mucin layers of the tear film, leading to increased tear evaporation and 
decreased ocular surface wettability (9, 28). Neurogenic inflammation 
and corneal nerve disorders further contribute to the vicious cycle of 
tear deficiency and chronic ocular surface inflammation by 
diminishing corneal sensation and impairing the blinking reflex (25).

The pathogenesis of SSDE is intricate, and some researchers have 
summarized it into four stages (Figure 1) (29):

 1 Interaction between genetic susceptibility and 
environmental exposure.

 2 Development of autoimmunity.
 3 Destruction of lacrimal glands leading to aqueous 

tear deficiency.
 4 Affection of the functional lacrimal unit, initiating the vicious 

cycle of dry eye disease (DED).

3 Aquaporin 5

Aquaporins (AQPs) are membrane proteins that efficiently 
facilitate the rapid transport of water and small molecules across 
cellular membranes (30). To date, 13 AQP subtypes have been 
identified in humans and categorized into three subfamilies based on 
functional and structural similarities. The first group consists of 

FIGURE 1

Four steps in the pathological process of SSDE. This figure outlines the four key steps involved in the pathological process of primary Sjögren’s 
Syndrome Dry Eye, highlighting the progression from initial susceptibility to the establishment of a chronic dry eye state (SSDE, Sjögren’s Syndrome Dry 
Eye; ATD, Aqueous Tear Deficiency; DED, Dry Eye Disease).
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classical water-selective AQPs (AQP0, AQP1, AQP2, AQP4, AQP5, 
AQP6, and AQP8), which primarily function as water transport 
channels. The second group includes glycerol channel proteins (AQP3, 
AQP7, AQP9, and AQP10), which transport not only water but also 
other small uncharged molecules such as ammonia, urea, and 
particularly glycerol. In some literature, these glycerol channels are 
also referred to as the “heretical” AQPs (31). The final subfamily, 
known as superaquaporins (AQP11 and AQP12), facilitates the 
transport of glycerol, water, and hydrogen peroxide (H2O2) (32). These 
channels exhibit minimal homology with the other subfamilies and 
are found exclusively in multicellular organisms, excluding fungi and 
plants (33).

Aquaporin-5 (AQP5) is a crucial member of the aquaporin family, 
playing a pivotal role in facilitating cellular water transport and 
participating in various cellular processes (34). AQP5 is widely 
expressed in diverse human tissues, particularly in the salivary and 
lacrimal glands, making it highly significant in the context of SSDE 
(35–39). Composed of 256 amino acids, AQP5 functions as a tetramer 
consisting of four identical monomers. Each monomer forms a water 
pore with six transmembrane alpha helices connected by five loops, 
with both the amino and carboxyl ends located in the cytoplasm. The 
folding of the B and E loops creates a half-helix that surrounds two 
highly conserved NPA motifs (asparagine-proline-alanine) (40, 41), 
which are situated in the narrow central constriction region of the 
channel and are crucial for ensuring the high selectivity of water and 
solutes through the pores (41). The transport function of AQP5 is 
regulated by various independent mechanisms, including 
phosphorylation at the Ser156 site, protein kinase A activity, and 
extracellular osmotic pressure (42).

The principal role of AQPs is closely linked to their molecular 
configuration. These monomers assemble into functional units, each 
with an independent water transport pathway, functioning 
autonomously within the AQP tetramer (43). By facilitating water 
permeability across the plasma membrane, AQPs enable the flow of 
intracellular fluid (44). Furthermore, post-translational modifications 
such as phosphorylation, ubiquitination, glycosylation, subcellular 
localization, degradation, and protein interactions play a critical role 
in regulating the physiological functions of AQPs.

The translocation of AQP from intracellular vesicles to the apical 
membrane of the cell is a complex process triggered by a combination 
of various stimuli, including post-translational modifications, 
neurotransmitter binding to G protein-coupled receptors (GPCRs), 
and interactions with multiple partner proteins along microtubules or 
within the membrane scaffold (45–47). This process regulates the 
transmembrane transport of water and small molecules. AQP2, a renal 
aquaporin, has been identified as a key player in renal water 
reabsorption following vasopressin stimulation. Due to the significant 
sequence similarity between AQP5 and AQP2, numerous studies have 
focused on elucidating the transport mechanism of AQP2 to lay the 
groundwork for understanding AQP5 translocation (48–50). Current 
knowledge of AQP5 transport in the salivary glands suggests that 
para-acetylcholine and norepinephrine must bind to M3 muscarinic 
and β-adrenergic receptors, respectively, to trigger an AQP5 response 
and facilitate its transfer to the apical membrane (51, 52).

Similarly, AQP5 exhibits a regulatory mechanism in the transport 
processes within the salivary and lacrimal glands. Upon stimulation 
by neuropeptides, AQP5 translocates from intracellular vesicles to the 
apical membrane, thereby enhancing water transport for secretions 

and facilitating saliva or tear secretion (52). Although two consensus 
PKA sites are present in loop D (Ser156) and the carboxyl-terminal 
(Thr259) of AQP5’s cytoplasmic structure, their phosphorylation does 
not directly influence protein transport (53). Instead, it has been 
suggested that regulation involves three independent mechanisms: 
phosphorylation at Ser156, protein kinase activity, and extracellular 
tonicity (42). However, further research is necessary to fully elucidate 
the molecular pathways governing AQP5’s translocation and function 
in tear secretion, especially in the context of SSDE. A deeper 
understanding of these mechanisms could provide valuable insights 
into therapeutic strategies aimed at restoring proper AQP5 function 
and alleviating symptoms in SSDE patients.

4 The expression of aquaporin 5 in the 
lacrimal glands

The lacrimal gland (LG) is a crucial component of the lacrimal 
duct system, primarily responsible for tear production and secretion, 
maintenance of ocular moisture, provision of essential nutrients, and 
cleansing and protection of the eye. The human LG consists of two 
distinct parts: the principal LG, located in the anterolateral lacrimal 
fossa at the orbit apex, and the accessory LG, found in the superior 
fornix of the eyelid. The primary LG is composed of three key 
elements: acinar cells, ductal units, and myoepithelial cells. The 
Lacrimal Gland Functional Unit (LFU) predominantly regulates tear 
generation, transportation, and elimination to maintain ocular 
homeostasis (54–56). The LFU includes primary and accessory 
lacrimal glands, meibomian glands, conjunctival goblet cells, surface 
epithelium, eyelids, the lacrimal drainage system, the glandular and 
mucosal immune systems, and interconnected innervation (57). The 
tear film consists of an aqueous mucin layer, overlaid by a lipid layer 
containing liquid and soluble components produced by the lacrimal 
gland and mucins secreted by goblet cells. The combination of water 
and mucin forms a single layer known as the mucinous hydrogel or 
mucinous water layer (58). Tears contain a diverse array of lipids, 
proteins, and glycoproteins that synergistically maintain ocular 
surface cleanliness, lubrication, and stability and are produced at an 
average daily rate of approximately 5 mL (58).

AQPs are widely distributed across the plasma membranes of 
various cell types, including the lacrimal glands, and play a pivotal role 
in water and tear secretion. AQP5, in particular, is predominantly 
found in the ductal epithelial cells and apical membranes of acinar 
cells within the human lacrimal gland, where it regulates primary 
saliva and tear production (59–61). The proper localization and 
function of AQP5 are crucial for the normal physiological activity of 
these glands. Studies have demonstrated that AQP5’s distribution 
varies depending on individual’s health. In healthy individuals or 
those with NSSDE, AQP5 is primarily localized to the apical surface 
of acinar cells. However, in patients with SSDE, AQP5’s distribution is 
more diffuse, suggesting that abnormal localization may contribute to 
reduced tear secretion (62, 63). This altered distribution of AQP5 has 
been further supported by knockout mouse models, where the 
absence of AQP5 leads to impaired salivary gland function, 
underscoring its critical role in exocrine gland physiology (62).

In the human lacrimal gland, AQP5 is predominantly expressed 
in ductal epithelial cells and is primarily localized to the apical 
membrane of acinar cells. AQP5 exhibits similar apical membrane 
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localization in the lacrimal glands of rats (64, 65), mice, humans (66), 
and rabbits (67). However, there are variations in its expression levels 
across different species. For instance, in rat lacrimal glands, AQP5 
proteins are mainly localized to the ducts and endothelial cells of acini, 
where they are more frequently expressed than other AQPs (68). 
Immunolabeling studies have revealed the presence of AQP5 on the 
basolateral membranes of both ductal and acinar cells in mouse 
lacrimal glands (69). Additionally, in rabbit lacrimal glands, AQP5 
levels are significantly higher than AQP4 levels by orders of magnitude 
in acinar cells, as well as in interlobular and intralobular ducts (70). 
Another study found that AQP5 is present in both acinar and ductal 
epithelial cells at the tip of the lacrimal gland in healthy dogs (71).

LG functions similarly to other exocrine glands. Active ion 
pumping into the acinar cells initiates passive osmosis, which drives 
water flow to generate tight isotonic ultrafiltration (72). The epithelial 
cells further stimulate the secretion of fluid within the acinar cavity, 
facilitating the release of electrolytes and other substances, resulting 
in the production of an isotonic fluid rich in potassium and chloride 
(73). Tear secretion begins with the production of primary secretion 
at the secretory tip or acinus, which is then modified into the final 
secretion as it passes through the ductal system (73).

Tear production is tightly regulated by the nervous system and 
both basolateral and apical aquaporins may play a role in s water 
movement and tear formation within the LG. In rat salivary glands, 
AQP8 is present in basolateral acinar cells, while AQP5 is found in 
apical acinar cells both are involved in the passage of water during 
primary saliva production (74). Reduced expression of AQP5 has been 
correlated with impaired salivary gland function in samples from 
patients with Sjögren’s syndrome (75). The neural response package 
stimulates the efferent sympathetic and parasympathetic neural 
networks innervating the LG, as well as the sensory nerves of the 
cornea and conjunctiva. Activation of the parasympathetic and 
sympathetic nerves leads to the release of neurotransmitters, which in 
turn triggers the secretion of water, electrolytes, and proteins from the 
surface of the LG and the eye (76). In BALB/c mice, unilateral 
sympathetic nerve transection resulted in bilateral LG iron death, 
down-regulation of AQP5, and decreased tear secretion through the 
VIP/Hif1a/TfR1 pathway (77).

5 Inflammation plays a crucial role in 
the involvement of AQP5 in SSDE

AQP5 plays a crucial role in fluid secretion within exocrine 
glands, and its dysregulation is closely associated with the pathogenesis 
of SSDE. Numerous studies have emphasized the impact of 
inflammation on AQP5 expression and localization, which 
significantly contributes to the hallmark symptoms of dry eye 
observed in SSDE (78, 79). Inflammation has been shown to alter 
AQP5 expression in the lacrimal glands, leading to impaired secretion. 
This abnormal expression of AQP5 in SSDE is believed to be a direct 
result of inflammation (Figure  2). For instance, studies have 
demonstrated that blocking pro-inflammatory cytokines like IL-7 or 
administering anti-TNF antibodies can restore AQP5 levels and 
improve symptoms in SS models, suggesting a strong connection 
between inflammation and AQP5 dysregulation (80, 81).

The nuclear factor kappa-light-chain-enhancer of activated B 
cells (NFkB) plays a dual role in regulating AQP5 during 

inflammation (82). NFkB can either enhance AQP5 mRNA levels in 
response to hyperosmolar stress or inhibit AQP5 transcription 
through interactions with other inflammatory mediators (83). 
Additionally, the proper trafficking and localization of AQP5 are 
dependent on interactions between prolactin-induced protein (PIP) 
and the ezrin domain with AQP5’s C-terminus (84). Disruption of 
these interactions due to inflammation leads to abnormal AQP5 
distribution, which is associated with glandular dysfunction and 
reduced tear secretion.

In patients with pSS, autoantibodies targeting AQP5 have been 
detected, which are closely linked to decreased salivary secretion, 
suggesting a direct impact on glandular function (85, 86). Malfunction 
in AQP5 transport is hypothesized to contribute to SSDE, where the 
binding of anti-M3R autoantibodies hinders the transport of AQP5 to 
membrane units, thereby disrupting normal secretory processes (62). 
In SS mouse models, AQP5 shows an affinity for a 21 kDa protein 
absent in normal controls, whereas normal mice express a 17 kDa 
AQP5-binding protein not present in SS models, highlighting 
differences in AQP5 interaction and localization under pathological 
conditions (87).

Furthermore, AQP5 leakage into tears is observed in SS patients 
due to the destruction of lacrimal acinar cells by lymphocyte 
infiltration. This leakage also noted in animal models with 
dacryoadenitis but not in normal mice, suggests a strong correlation 
between the presence of AQP5 in tears and lacrimal gland injury (87, 
88). Additionally, studies in rabbits with autoimmune dacryoadenitis 
have shown a decrease in AQP5 expression in acinar cells and an 
increase in ductal cells, indicating that specific duct segments may 
play a significant role in tear secretion (70).

Inflammation has been shown to induce significant changes in 
AQP5 localization. In NOD mice, for example, AQP5 is predominantly 
expressed on the apical membrane of acinar cells in younger, 
inflammation-free animals. However, in older mice with pronounced 
inflammation, there is a marked reduction in apical AQP5 expression 
and a corresponding increase in basolateral expression, suggesting 
that inflammation directly alters AQP5 distribution (89, 90). Similar 
findings have been corroborated in other mouse models, including 
E2f1−/− mice and specific IA phosphoinositol three kinase knockout 
mice, further supporting the role of inflammation in disrupting AQP5 
localization (90–92).

The relationship between inflammation and aberrant AQP5 
localization is further supported by studies showing a decrease in 
apical AQP5 and an increase in basolateral and cytoplasmic 
localization in various mouse models. These changes are believed to 
result from inflammatory infiltration and damage to glandular 
epithelium, underscoring the role of the inflammatory environment 
in disrupting AQP5 transport (90). Treatment with TNF-α has been 
observed to downregulate AQP5 in human salivary gland acinar cells, 
while the injection of TNF-α antibodies in NOD mice reduced 
glandular lesions and increased the expression of tight junction 
proteins and AQP5 (93). Additionally, the neutralization of IFN-γ in 
NOD mice treated with anti-PDL1 improved AQP5 expression and 
salivary secretion, supporting the hypothesis that inflammation plays 
a significant role in AQP5 dysregulation (94).

Therapeutic interventions targeting inflammation have shown 
promise in restoring AQP5 function. In SS mouse models, the delivery 
of an adeno-associated virus (AAV2)-AQP1 vector or the correction 
factor C18 for the cystic fibrosis transmembrane conductance 
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regulator was found to resolve inflammation and restore saliva flow 
(95, 96). Similarly, blocking IL-17 attenuated inflammation and 
enhanced salivary secretion, while the administration of vasoactive 
intestinal peptide reduced IL-17 expression, increased AQP5 
expression, and restored salivary secretion (97, 98).

The integrity of acini and the proper expression of tight junctions 
between epithelial cells are essential for establishing apicobasal 
polarity and regulating the paracellular flow of ions and water (99). 
In SS, pro-inflammatory cytokines have been demonstrated to 
disrupt the polarity of acinar cells in exocrine glands by inducing the 
apical reorientation of proteins responsible for maintaining cell 
polarity (100–102). Consequently, the aberrant localization of 
AQP5 in acinar cells of the salivary or lacrimal glands may result 
from decreased or absent expression of cell polarity proteins linked 
to local pro-inflammatory cytokine production (63, 103). Other 
mechanisms, such as abnormal B lymphocyte hyperreactivity and the 
production of autoantibodies against M3 muscarinic receptors and 
anti-AQP5 antibodies, may also contribute to the altered distribution 
of AQP5 and the hypofunction of the salivary or lacrimal glands. The 
presence of anti-AQP5 antibodies in patients with pSS is correlated 
with reduced AQP5 function, decreased secretion flow, and 
histopathological changes in the secretory glands (104–106). Mice 
immunized with peptides derived from melanin Prevotella AQP5 
homologous AQP, produce anti-AQP5 antibodies, which 
subsequently lead to reduced salivary flow (107). Overall, 
inflammation and autoimmunity play critical roles in the 
dysregulation of AQP5  in secretory glands, contributing to the 
diminished secretory efficiency observed in SSDE. AQP5’s 
involvement in these processes, influenced by various inflammatory 
molecular pathways is illustrated in Figure 3.

6 Potential therapeutic value of AQP5

The current approach to treating SSDE primarily focuses on 
alleviating the “fatigue-pain-dryness” triad of symptoms, however, the 
outcomes remain unsatisfactory. Initial pharmacological treatments 
for SSDE is centered around artificial tears and lubricating ointments, 
which mainly address symptoms rather than the underlying causes 
(108). Due to potential complications, such as cataracts and glaucoma, 
the use of steroids should be  limited to short-term treatment in 
patients who have not responded adequately to other therapies (8). 
Pilocarpine, an oral medication that stimulates lacrimal and salivary 
gland secretion, has shown efficacy in alleviating dry eye symptoms 
and may also improve objective measures of dry eye (109). For 
patients who are resistant to medication and maximal lubrication may 
benefit from lacrimal occlusion. Local autologous serum can also 
be employed to treat ocular surface injuries, particularly in case of 
severe dry eye and corneal ulcers (8).

Recent studies have demonstrated the potential of targeting 
AQP5 as a therapeutic strategy for SSDE. For instance, ambroxol, a 
mucolytic agent, has been shown to upregulate AQP5 and MUC5AC 
mRNA and protein expression levels in goblet cells, suggesting its 
potential in enhancing tear secretion and treating SSDE by 
modulating AQP5 (110). Neuropathic ophthalmia is a prevalent 
symptom of moderate to severe dry eye, and gabapentin (GBT) has 
been particularly effective in managing ocular surface nerve pain in 
dry eye conditions due to its analgesic, anti-inflammatory, and 
secretory properties. It can enhance the expression of acetylcholine 
and norepinephrine and induce AQP5 expression in lacrimal glands, 
thereby alleviating tear irritation (111). Increased tear secretion 
effectively reduces friction on the ocular surface, making this a 

FIGURE 2

Inflammation affects AQP5 in SSDE. In Sjögren’s Syndrome Dry Eye, chronic inflammation disrupts AQP5 expression and localization. Inflammatory 
cytokines, such as TNF-α, IFN-γ, and IL-17, are released in response to an autoimmune attack on the lacrimal glands. These cytokines interfere with 
AQP5 function by down-regulating its expression and causing its mislocalization from the apical to the basolateral or cytoplasmic regions of the cell. 
This disruption impairs water transport across the acinar cells, reducing tear secretion and contributing to ocular dryness (AQP5, Aquaporin 5; SSDE, 
Sjögren’s Syndrome Dry Eye; TNF-α, Tumor Necrosis Factor-alpha; IFN-γ, Interferon-gamma; IL-17, Interleukin-17).
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valuable mechanism for SSDE therapy. Additionally, PACAP eye 
drops have been shown to elevate AQP5 levels in the LG acinar 
membrane, while treatment with AQP5 siRNA significantly decreases 
tear production induced by PACAP.

Natural compounds targeting AQP5 have also been explored for 
their potential to modulate glandular secretion abnormalities in SS 
patients. For example, ginsenoside Rb1 activates AQP5 transcription 
by binding to estrogen receptor α, significantly enhancing saliva 
secretion, while Dendrobium extract improves glandular secretion 
and alleviates dryness symptoms by modulating AQP5 expression 
(112). The regulatory effects of these natural compounds on AQP5 
suggest their potential utility in treating SSDE. Interestingly, certain 
non-pharmacological complementary and alternative therapies have 
also demonstrated a regulatory effect on AQP5 in SSDE patients. 
Some researchers have proposed the use of prebiotics, such as highly 
bioavailable polyphenols, to modulate the gut microbiota in SS 
patients as an adjunctive treatment for dry eyes and dry mouth (113). 
These findings suggest that natural compounds and alternative 
therapies may provide complementary strategies for managing SSDE 
by targeting AQP5.

Gene therapy presents a promising avenue to overcome the 
limitations of traditional therapies, particularly for SSDE. With 
advancements in gene transfection technology, gene therapy for 
lacrimal glands has become increasing feasible. For instance, 
delivering the AQP1 gene to the salivary glands of radiation-affected 
rats and miniature pigs has been demonstrated to enhance saliva flow 
(114, 115). Moreover, clinical trials have demonstrated that 
introducing the AQP1 gene into the submandibular glands of patients 
improves salivary gland secretion. Although no clinical trials have yet 
been conducted on AQP5 virus vector transfection for SSDE, this 

approach holds potential as a future treatment for enhancing tear 
secretion in SSDE (116).

7 Conclusion

AQP5 plays a pivotal role in regulating of lacrimal gland 
membrane permeability and is essential for tear production. The 
dysregulation of AQP5  in SSDE is strongly influenced by the 
inflammatory microenvironment, systemic exogenous factors, and 
interactions between lymphocytes and epithelial cells, as evidence in 
both patients and animal models. Furthermore, significant alterations 
in AQP5-related protein interactions may underlie some of the 
pathological features observed in SS patients. Despite the crucial role 
of AQP5 in SSDE, therapeutic strategies specifically targeting AQP5 
are still limited. Although there have been efforts to restore salivary 
secretion by promoting AQP5 transport to the acinar apical 
membrane, achieving complete restoration of AQP5 localization and 
function remains a significant challenge.

Future research should focus on deepening our understanding of 
the mechanisms through which inflammatory cytokines and immune 
cells contribute to AQP5 dysregulation, as these pathways could serve 
as potential therapeutic targets. Nonetheless, it is essential to critically 
evaluate the existing literature to balance the strengths and limitations 
of current studies. While the therapeutic potential of targeting 
AQP5  in SSDE is substantial, there are inherent challenges in 
translating these findings into effective treatments. Continued 
research aimed at refining AQP5-targeted therapies, along with a 
personalized treatment approach, will be crucial in developing more 
effective options for patients with SSDE.

FIGURE 3

Major inflammatory molecular pathways involving AQP5 in SSDE. In Sjögren’s Syndrome Dry Eye, inflammation leads to the dysregulation of AQP5. 
TNF-α interfere with tight junction integrity (e.g., ZO-1, Claudin-1) and down-regulate AQP5 translation via NFkB/CREB pathway. Autoantibodies 
against AQP5 and PDL1 further exacerbate AQP5 dysfunction. Regulatory molecules like VIP can partially affect AQP5 expression and localization. 
The disruption of AQP5 affects tear production, aggravating dry eye symptoms in SSDE (AQP5, Aquaporin 5; TNF-α, Tumor Necrosis Factor-alpha; 
IFN-γ, Interferon-gamma; IL-17, Interleukin-17; NFkB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; CREB, cAMP Response 
Element-Binding Protein; VIP, Vasoactive Intestinal Peptide; ZO-1, Zonula Occludens-1; PDL1, Programmed Death-Ligand 1; PIP, prolactin-induced 
protein; EZR, ezrin).
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