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Children with type 1 diabetes (T1D) frequently have nocturnal hypoglycemia,

daytime physical activity being the most important risk factor. The risk for

late post-exercise hypoglycemia depends on various factors and is di�cult to

anticipate. The availability of continuous glucose monitoring (CGM) enabled

the development of various machine learning approaches for nocturnal

hypoglycemia prediction for di�erent prediction horizons. Studies focusing on

nocturnal hypoglycemia prediction in children are scarce, and none, to the best

knowledge of the authors, investigate the e�ect of previous physical activity.

The primary objective of this work was to assess the risk of hypoglycemia

throughout the night (prediction horizon 9 h) associated with physical activity in

children with T1D using data from a structured setting. Continuous glucose and

physiological data from a sports day camp for children with T1D were input for

logistic regression, random forest, and deep neural networkmodels. Resultswere

evaluated using the F2 score, adding more weight to misclassifications as false

negatives. Data of 13 children (4 female, mean age 11.3 years) were analyzed.

Nocturnal hypoglycemia occurred in 18 of a total included 66 nights. Random

forest using only glucose data achieved a sensitivity of 71.1% and a specificity

of 75.8% for nocturnal hypoglycemia prediction. Predicting the risk of nocturnal

hypoglycemia for the upcoming night at bedtime is clinically highly relevant, as

it allows appropriate actions to be taken—to lighten the burden for children with

T1D and their families.

KEYWORDS

diabetesmanagement, digital health,machine learning, supervised learning, biomedical

signal processing

1 Introduction

Type 1 Diabetes (T1D) affects more than 8 million people worldwide,

1.5 million of them being younger than 20 years of age (1, 2). The disease

results from autoimmune destruction of pancreatic beta cells leading to

insulin deficiency. The missing hormone insulin needs to be replaced

several times a day, either with subcutaneous injections or an insulin pump.
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Good blood glucose control is important to avoid acute and long-

term complications (3). However, especially for young children

and adolescents, this represents an everyday challenge (4). Low

blood sugar (hypoglycemia) is the most feared and common acute

complication of T1D (5, 6), and the constant risk of hypoglycemia

represents a great burden, in particular for children and their

caregivers (7).

Bachmann et al. (8) showed that asymptomatic nocturnal

hypoglycemia is frequent, and episodes often are prolonged for

several hours. The most important risk factor for hypoglycemia

during the night was physical activity during the day. The

risk of nocturnal hypoglycemia increased with vigorous-intensity

physical activity (8, 9). On the other hand, regular physical

activity is essential in long-term diabetes treatment (10) and has

many additional beneficial effects (11). Simultaneously, people

with diabetes need to know how to avoid exercise-induced

hypoglycemia, as physical activity has a direct and delayed glucose-

lowering effect (12). Physical activity induces different glucose

responses in different individuals and depends on characteristics

of the activity itself, like type, duration, and intensity (10).

Therefore, with the current state of knowledge, it is challenging

to provide the right personalized recommendations to prevent

exercise-associated hypoglycemia, in particular, late onset post-

exercise hypoglycemia. Developing preventive measures to avoid

such nocturnal hypoglycemia can increase the children’s safety

overnight, improve sleep quality, and quality of life of the children

and caregivers.

Several machine learning approaches exist in the literature

to determine hypoglycemia—the review of (13) summarizes

the current state-of-the-art, considering in total 79 studies. 31

of them focused on T1D. The most used machine learning

method for hypoglycemia prediction was logistic regression (in

28 studies), followed by random forest (in 14 studies). Further

applied algorithms incorporated support vector machines (SVMs),

autoregressive and neural networks, and XGBoost. About 50% of

the considered studies used continuous glucose monitoring (CGM)

data or CGM-derived parameters for hypoglycemia prediction.

Of these studies, twelve included parameters of physiological

signals, and seven included parameters of exercise and physical

activity. Previous work focused on different prediction horizons for

hypoglycemia, such as short-term (< 180min), mid-term (180 min

to 24 h), and long-term (several days, months, or even years)

(13). In the area of nocturnal hypoglycemia prediction, prediction

horizons between 15 min and 7 h or nighttime without an exact

length or start and end time were considered: 15 min (14–16),

30 min (14–17), 45 min (15, 16), 1 h (15, 16, 18), 3 h (19), 6 h (19–

26), 7 h (27), or nighttime without an exact length or start and end

time (28).

Studies focusing on nocturnal hypoglycemia prediction in

children and adolescents are scarce (16, 18, 22, 23). Sampath et

al. (22) and Tkachenko et al. (23) used the ChildrenData dataset

that contains data from about 179 children, however, no CGM

data were available. The available n = 476 records contained

nine blood glucose measurements of the following distinct time

points within 24 h: 08:00, 11:30, 13:30, 16:00, 18:00, 21:00, 00:00,

03:00, and 06:00. The three measurements at 00:00, 03:00, and

06:00 were used to identify if nocturnal hypoglycemia was present,

while the other measurements of the day formed the input for the

nocturnal hypoglycemia prediction. Both used a method consisting

of aggregating ranking algorithms with a stochastic model. Dave

et al. (16) and Duckworth et al. (18) used data with CGM for

a prediction horizon of up to 60 min. The dataset used by (16)

consisted of 112 participants (aged 1–21 years). They used logistic

regression and random forest on data collected over 90 days. The

dataset used by (18) contained 153 participants (aged 14–24 years).

They obtained best results with the XGBoost framework that uses

an ensemble of weak learners which are trained stagewise through

gradient boosting.

In this study, the primary objective was to predict nocturnal

hypoglycemia associated with physical activity in children with

T1D using CGM and physiological data acquired during day

and night in a structured setting. We incorporate the children’s

particularities like longer sleep duration, focusing on the entire

night (prediction horizon of 9 hours), or investigating the effect

of previous physical activity. Second, as the children performed

various structured physical activities during the day in the dataset

that we are considering, we want to analyze if including data

from a wearable device improves the outcomes. Third, as more

advanced machine learning techniques such as deep learning are

currently underrepresented in literature, we want to investigate

the performances of Deep Neural Network (DNN) models like

Recurrent Neural Networks (RNNs) and Multilayer Perceptron

(MLP) compared to the most used approaches in literature like

logistic regression and random forest.

2 Materials and methods

This part describes the used data and presents the implemented

machine learning pipeline (Figure 1).

2.1 Data

Data of children with T1D participating in a one-week

sports day camp were considered (29). The responsible Ethics

Committee [Ethikkommission Nordwest- und Zentralschweiz

(EKNZ)], Gesuchsnummer: 2020 - 00543, approved the study.

For the data acquisition, the hardware equipment contained

of a glucose sensor [intermittently scanned continuous glucose

monitoring (isCGM), Freestyle libre 2 (Abbott Diabetes Care Inc.,

Alameda, US) or a CGM device, Dexcom (Dexcom, San Diego,

US)] where the sensor was put into the subcutaneous tissue on

the abdomen or the upper arm. The CGM device saved data every

5 min, and the isCGM device every 15 min. With all glucose

sensors used, intersitital glucose was measured continuously. With

the intermittent scanning system, however, the values are only

displayed on demand, while they are visible constantly with the

CGM systems. The accuracy of the sensors is comparable with

mean absolute relative difference (MARD) values between 9.0%

(Dexcom) and 9.7% (Freestyle libre 2) (30–34). The values are

therefore reliable and comparable, even if different devices were

used. Also, we trusted the devices. The alarms were not used

during the day because hypoglycemia was well perceived by the

participants and glucose checks were performed regularly.
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FIGURE 1

Machine learning pipeline implemented to predict nocturnal hypoglycemia (10 pm to 7 am) using data from the day (10 am–10 pm).

In addition to CGM devices, the children were equipped with

a physiological wearable sensor (Everion, Biofourmis, Boston, US).

This sensor is a CE-certified research device and captured 22 signals

and seven associated quality measures in real-time. In this work,

we selected ten signals—and their associated quality measures,

if available—for further processing (marked in bold in Table 1).

The sampling rate was 1 Hz. Two sensors were used for each

study participant and worn alternately. At the beginning of each

study day (around 9 am), the Everion sensors were changed. The

Everion sensor was attached to the upper arm (right or left) with an

appropriately sized armband.

The glucose sensor and the Everion sensor were worn day

and night, and the Everion sensor had to be taken off for

showering and water-based activities. Additionally to sensor

glucose measurements, self-monitoring blood glucose (SMBG)

were performed hourly during exercise sessions, in each case

of symptoms of hypoglycemia, and in case of sensor glucose

values below 70 mg/dl or above 270 mg/dl. Self-monitoring of

blood glucose was performed hourly during exercise i.e. at the

beginning of each exercise session as recommended in the exercise

management guidelines (35). As it was mandatory to perform

a capillary blood glucose measurement in case of symptoms

of hypoglycemia or a sensor glucose value below 70 mg/dl, a

proportion of children had to do a fingerprick testing. It turned out

to be more convenient/practical to do so for all participants.

Preprocessing was necessary for combining the glucose sensor

data with the SMBG from the logbook and for the signals of the

Everion sensor. The preprocessing steps are illustrated in Figure 2.

In case of two different glucose values at the same timestamp,

sensor data was overwritten with SMBG and the lower glucose

sensor data were kept (Figure 2A). We decided to keep the lower

value as hypoglycemia detection was the focus of this work. We

curated all time series such that they have a sampling frequency of

5 min, where we use time-weighted linear interpolation to assign

the glucose measurements to a time stamp. All data gaps in the

glucose were filled with the respective mean of the corresponding

data of the day. For data from the Everion sensor, we replaced

values of duplicated timestamps with their mean (Figure 2B). For

signals with an associated quality measure, we ignored values when

TABLE 1 The obtained signals when measuring with the physiological

wearable sensor (Everion).

Measured signal

Activity classification*

Activity score

Barometer pressure

Blood pulse wave

Core temperature∗

Energy*

Galvanic Skin Response (GSR) electrode

Health score

Heart rate∗

Heart rate variability*

Motion activity

Number of steps

Oxygen saturation∗

Perfusion index

Relax stress intensity score

Respiration rate*

Richness score

Sleep quality index score

Temperature barometer

Temperature local

Temperature object

Training effect score

The signals marked in bold were considered in this work. The ∗ next to the signals states if an

associated quality measure exists.

the quality measure was less than 50% as this percentage was

recommended by the manufacturer (36). Further, we considered

only days with at least 30% of available data. To obtain uniform
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FIGURE 2

Illustration of the preprocessing steps for glucose data (A) and Everion data (B).

temporal data, we set the sampling interval to 5min (corresponding

to a sampling frequency of 3.33 mHz) by calculating the mean

in windows of 5 min length, with no overlap of the individual

windows. Similar to the glucose data, all data gaps were filled with

the respective mean of the corresponding data of the day.

This above described procedure led to the exclusion of a child

as not enough Everion data were measured. These processing steps

resulted in using data from 13 children with a total of 66 days

(ranging from 9 to 12 children per day) in this work. Of them eight

children used an isCGM device and five a CGM device.

The activity classes of the parameter activity classification

(Table 1) were transferred to Metabolic Equivalent of Task (MET)

values (Table 2) (37) with 1 MET = 1 kcal / kg / h.

2.2 Machine learning algorithm

The general idea of this work was to develop a classification

system to answer the research question whether nocturnal

hypoglycemia can be predicted with physiological and glucose data

collected during the day. The night was defined between 10 pm and

7 am. The day was defined between 10 am and 10 pm.

A hypoglycemic event was defined as either (1) a single or

multiple SMBG <3.9 mmol/l or (2) an interval greater than 15 min,

in which all continuous glucose measurements were <3.9 mmol/l

(14, 16, 38). In the present data, 48 nights were found without

nocturnal hypoglycemia and 18 with nocturnal hypoglycemia.

Figure 1 gives an overview of the different steps of the designed

machine learning system. In this work, we use a supervised learning

approach. In the training phase of a supervised machine learning

system, the information about the actual label is known to the

classifier. Then in the testing phase, the actual labels are predicted.

The standard pipeline of a supervised machine learning model

consists of the following four steps: (1) data, (2) preprocessing,

(3) features, and (4) classification (39). These steps were also

used in this work (Figure 1). For the last step, the classification,

we decided to use two baseline classifiers, logistic regression and

random forest, as these are the most used algorithms in literature

for hypoglycemia prediction (13). In case of the DNN models,

the third steps (features) was left out as the complete data were

directly used.

We used glucose measurements, the logbook, the Everion

sensor, and participant information as data sources (Section 2.1).

The sensor glucose measurements and the logbook data (SMBG)

were combined to form the glucose data (details also available in

Figure 3). The chosen signals of the Everion sensor (Table 1) form

the physiological data. From the available participant information,

the age, weight, height, Body mass index (BMI), and gender (male

or female) were extracted to form the static data.

With the available temporal and static data, four dataset

combinations were chosen as input data for the algorithms:

(1) glucose data only, (2) glucose and static data, (3) glucose and

physiological data and (4) glucose, physiological, and static data.

In the case of the DNN models, these four input datasets were

directly used in the following two scenarios:
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TABLE 2 The signal “Activity classification” of the Everion sensor

consisted of 27 distinct activities.

Activity Assigned MET
values

Undefined NaN

Resting 1.5

Walking flat 3

Running flat 7

Biking flat 7

Walking up 5.5

Running up 13

Biking up 10

Rowing 6

Other NaN

Biking 7

Running 7

Walking 3

Walking down 3.5

Running down 6

Biking down 3

Sitting 1.5

Standing 2

Driving car 2.5

Driving public 1.5

Sleeping 1

Awake 1.5

Ctrl rest med ee NaN

Measured and relevant improvement in Relax NaN

Measured and relevant improvement in Sleep NaN

Measured and relevant improvement in

Exercise

NaN

Measured and relevant improvement in

Move

NaN

We assigned, according to the “compendium of physical activities” (37) the following

Metabolic Equivalent of Task (MET) values to single activities with 1 MET = 1 kcal / kg / h.

1. A RNN for the temporal data.

The RNN included a masking layer followed by a bidirectional

Gated Recurrent Unit (GRU) (40) layer, a dropout layer, a Long

Short-Term Memory (LSTM) (41) layer, and another dropout

layer.

2. A RNN for the temporal data, and a MLP for the static data.

Both were combined afterward. The output of both the MLP

and the RNN were concatenated and processed by an additional

MLP. The RNN included a single LSTM layer.

Considering every distinct combination of input datasets, four

different architectures were designed by composing individual

network blocks. The RNN is predominantly used for sequential and

temporal data, whereas the MLP finds applications in all domains

of machine learning (42). Here, we can only pass data according to

a predefined time-window into the MLP, which can not consider

data outside of the window. RNNs on the other hand, continuously

update a hidden state while processing the data. Therefore, the

hidden state can potentially capture long-ranging dependencies.

To find the best architectures, considering each composition

individually, the neural networks were subject to hyperparameter

optimization using the Hyperband algorithm, introduced by Li

et al. (43). The grid of hyperparameters to be optimized included

the number of layers, number of nodes per layer, application of

GRU or LSTM units, addition of bidirectionality to the recurrent

units, addition of dropout layers, and masking zero-values. In

order to properly treat the missing values of the input data, which

have been substituted with the parameter-specific mean values, the

masking ignores the mean values. Since all parameters have been

standardized, the mean values are equal to zero. We introduced

class weights to the loss function during training to account

for the class imbalance (18 nights with nocturnal hypoglycemia,

48 nights without nocturnal hypoglycemia). We chose the class

weights inversely proportional to their respective frequencies. This

led to increased attention to the underrepresented class samples

and forced the model to improve equally in both classes during the

training phase.We used the Rectified Linear Unit (ReLU) activation

function throughout the dense layers to avoid computational

complexity and vanishing gradients, as suggested in literature (44,

45). The hyperbolic tangent (tanh) activation function was used for

the recurrent layers based on research conducted by Chung et al.

(46) and Hochreiter and Schmidhuber (41), as it has the property

of limiting the issue of exploding gradients while still providing

a strong gradient. We used adaptive moment estimation (Adam)

as the optimizer with a learning rate of 0.001 since the optimizer

Adam performs on average better on deep learning task than than

Stochastic Gradient Descent (SGD) (47, 48). We set the batch size

to 1 due to the small number of samples in the dataset and the

intention to counteract for overfitting and poor generalization (49).

Although, Adam with batch size 1 reduces to an update rule similar

to the vanilla SGD algorithm, it still preserves the features regarding

the moments of the gradient (47).

In the case of the baseline classifiers, features were engineered

from the four input datasets and selected before being the input to

either logistic regression or random forest. Logistic regression uses

a logistic function (the sigmoid function) to model the probability

that a given input belongs to a particular class (50). Random forest

is an ensemble learning method that operates by constructing

multiple decision trees and using the majority vote of these trees

to determine the correct class (50).

For the glucose data, we calculated eight features from

literature (14) to reflect glucose dynamics. These were coefficient of

variation, lability index, low blood glucose index, 1 h continuous

overlapping net glycemic action, minimal value, the difference

between the last two values, acceleration over the last values,

and linear trend coefficient. In addition, we used for all four

input datasets the Python library tsfresh to calculate time series

characteristics, which was followed by a feature selection step.

This library was specifically developed to create new features

aggregated on temporal dependencies. With tsfresh, approximately

800 new features for every single initial feature were engineered.
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FIGURE 3

Schematic visualization of the algorithm from literature (14) that we applied to the data of this study. We additionally implemented a Deep Neural

Network (DNN) [Multilayer Perceptron (MLP)] not mentioned in literature.

To reduce the number of features to the best 15 features, we

conducted a performance-based, sequential feature selection using

the Python library scikit-learn. The options of scikit-learn were set

in accordance to the classifier that was used afterward.

This resulted in five different feature-data-combinations that

were used for the following two baseline classifiers:

1. Logistic regression with Least Absolute Shrinkage and Selection

Operator (LASSO) regularization

2. Random forest with 10 trees.

We chose to focus on these two classifiers because they are the

most commonly used algorithms in the literature for hypoglycemia

prediction (13), and are also applied in the field of nocturnal

hypoglycemia prediction (14, 16).

2.3 Comparison to algorithm in literature

To assess the quality of our dataset, we decided to re-

implemented an algorithm in literature (14). Berikov et al. (14)

applied the two most used algorithms for hypoglycemia prediction

(logistic regression and random forest) in the field of nocturnal

hypoglycemia and obtained best results with a prediction horizon

of 15 min, which was much shorter than the used prediction

horizon of 9 h in this work. Still, we considered it valuable

to evaluate the quality of our dataset. We reimplemented the

algorithm as described in the associated manuscript (14), adapted

where necessary, and applied it to the described data of this

work. Additionally, we used an adapted version using elements

of the published algorithm and the algorihm of this work. More

details about the reimplemented algorithm and the adapted version

is given in the next paragraph. Figure 4 illustrates the steps

of the algorithm from (14) applied in this work. The glucose

measurements, the logbook, and participant information were

included as data sources.

As described previously, the glucose data consisted of a

combination of the glucose measurements and the SMBG entries

of the logbook. From the participant information, age, BMI, and

gender formed the selected static data. The glucose data was

processed in sliding windows of the acquired nights, in the time

frame of 0 am (midnight) to 6 am. Each sliding window had

a duration of 45 min. The next window started 20 min after

the start of the previous window. Single windows were used to

predict a hypoglycemic event exactly 15 min after the end of the

window. In each window for the glucose data, we extracted the

same eight features from literature (14) as mentioned in Section 2.2.

These features were combined with the selected static data to form

the feature set. Similar to (14), a logistic regression with LASSO

regularization and random forest were trained with this feature set.

Additionally, not mentioned by (14), we decided to train a MLP

with the same feature set.

2.4 Performance measures and evaluation

We compared all predicted nocturnal hypoglycemic events with

all true nocturnal hypoglycemic events (Table 3).

The classification systems were compared regarding six

evaluation metrics: the specificity, the sensitivity, the precision,

the F2 score, the F1 score, and the Area Under the Receiver

Operating Characteristic Curve (AUC) score (Table 4).

The specificity represents the proportion of nights without

nocturnal hypoglycemia, which were correctly classified as

nights without nocturnal hypoglycemia. The sensitivity (also

known as recall) gives the proportion of nights with nocturnal

hypoglycemia, which were correctly classified as nights with

nocturnal hypoglycemia. The precision (also known as positive

predictivity) gives the proportion of correctly classified nights with

nocturnal hypoglycemia over all nights predicted as nights with

nocturnal hypoglycemia.

The F1 score gives precision and sensitivity the same

weight, is broadly used in literature, and is known to be

a good metric for imbalanced classification tasks (51, 52).

The Fβ score is a generalization of the F1 score adding the

configuration parameter β . In the F2 score, β is set to 2,

giving more weight to sensitivity than to precision (52).

In the present case and generally in medical settings, the

misclassification as false negative (underestimation) is worse
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FIGURE 4

Illustration of preparing the data for the evaluation using fictitious data of three children. For each subject individually, the data is divided into distinct

days (10 am to 10 pm) and nights (10 pm to 7 am). Data of the nights is used to determine if a hypoglycemic event occurred. In the ML algorithm,

data of the day with the corresponding label were used.

TABLE 3 Confusion matrix for the two classes Nocturnal Hypoglycemia

(NH) and No Nocturnal Hypoglycemia (no NH).

Predicted

no NH NH

True no
NH

True Negatives (TN)

(correct rejection)

False Positives (FP)

(overestimation)

NH False Negatives (FN)

(underestimation)

True Positives (TP)

(hit)

TABLE 4 Definition of metrics for assessing the performance of the

implemented classifiers.

Metric Definition

Specificity TN
TN+FP

Sensitivity TP
TP+FN

Precision TP
TP+FP

Fβ score (1+ β2) ·
Precision·Sensitivity

(β2 ·Precision)+Sensitivity
, with either β = 2 (F2 score) or

β = 1 (F1 score)

AUC

score

Area Under the Receiver Operating Characteristic Curve

TN, true negatives; FP, false positives; FN, false negatives; TP, true positives.

than the misclassification as false positive (overestimation).

We decided to use the F2 score as the metric on the

validation set when it came to stopping the training or in

determining the relevant parameteres and features. The

AUC score gives the area under the receiver operating

characteristic curve.

Each machine learning model was subjected to six-fold

cross-evaluation to counteract the small sample size and to

support reliable and reproducible results. The available data after

preprocessing (Figure 3) was divided into individual days with

their corresponding label from the following night (Figure 5).

66 days with available label from the night formed the dataset.

The dataset was shuffled and divided into six-folds, with five

folds forming the training set and one fold forming the test

set. In each case, 20% of the training set was subtracted to

form the validation set for the DNN models (Figure 6). We

considered a population-based approach and it was possible,

that data from the same child was in the training, validation

and test set. The shuffle and split were done in a stratified

fashion so that classes were distributed almost identically

among the different sets. This above mentioned procedure

was executed five times, using the same randomly generated

partitions of the data for all dataset combinations. The results

are given averaged over all executions with the belonging

standard deviation.
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FIGURE 5

Schematic presentation of six-fold cross-evaluation for one of the five executions. Exemplary folds and splits of the dataset into training, validation,

and test set are given. Class 0 comprises all nights without nocturnal hypoglycemia (NH). Class 1 represents all nights with NH.

FIGURE 6

Mean values of Specificity, Sensitivity, and Precision for the overnight prediction (prediction horizon: 10 pm to 7 am) given for logistic regression,

random forest and the deep neural network models. The bars are calculated as average values of the five runs for the six-fold cross-validation. The

error bars belong to the mean of the standard deviation of the five runs.

3 Results

Table 5 gives the characteristics of the 13 children that were

included in the data analysis. Table 6 shows the mean values with

standard deviation of three performance measures (Table 4) for the

developed machine learning pipeline (Figure 1). Figure 6 displays

the three remaining performance measures, the specificity, the

sensitivity, and the precision, to the samemachine learning pipeline

as in Table 6. Table 6 gives the obtained results for the (adapted)

implemented algorithm from literature (14) (Figure 4).

In the implemented machine learning pipeline, different

feature-data-combinations were the input for the classification

task using logistic regression, random forest or DNN. Best results

(F2 score 64.4%) were obtained with time series characteristics

of glucose data using random forest (Table 6). Time series

characteristics of glucose, physiological, and static data with logistic

regression (F2 score 63.0%) achieved a similar F2 score then

TABLE 5 Participant characteristics for all N = 13 children (4/13 ≃ 30.7%

female).

Mean ± SD Range

Age (years) 11.3± 2.2 [7.5, 13.9]

BMI (kg/m2) 19.8± 4.4 [13.2, 27.7]

Diabetes duration

(years)

4.1± 2.8 [0.9, 9.5]

HbA1c (%) 7.1± 0.9 [5.1, 8.5]

Diabetes duration is the time since Type 1 Diabetes (T1D) diagnosis. HbA1c refers to glycated

hemoglobin measured in the range of 54 days before the first study day and 74 days after the

first study day. SD, Standard deviation; BMI, Body mass index.

the DNN with glucose and physiological data (F2 score 62.0%)

(Table 6). Single high values (above 80%) were also reached for

specificity and sensitivity for a variety of options (Figure 6).
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TABLE 6 Mean values ± standard deviation (in percent) of the performance measures (F2 and F1 scores, and AUC) for the overnight prediction (10 pm to

7 am) given for the baseline models logistic regression (LR) and random forest (RF) and the Deep Neural Network (DNN) models.

Time series characteristics

Data sets Glucose literature
features

Glucose Glucose &
static

Glucose &
physiological

Glucose, physiological &
static

LR F2 56.4 ± 20.9 50.6± 24.0 52.1± 19.8 56.3± 27.8 63.0 ± 23.7

F1 56.0± 12.0 42.7± 18.6 43.6± 15.4 49.3± 24.2 54.8± 20.3

AUC 68.3± 13.1 59.4± 15.4 58.9± 14.0 66.0± 17.2 69.0± 16.2

RF F2 40.8± 23.1 64.4 ± 26.0 56.0± 26.3 61.3± 30.3 56.6± 29.6

F1 47.3± 25.2 58.3± 22.6 48.3± 22.3 60.9± 27.6 55.4± 25.9

AUC 66.4± 11.9 73.5± 14.5 65.3± 15.3 75.2± 16.6 72.6± 14.9

DNN F2 n.a. 57.5± 19.1 59.5 ± 12.9 62.0 ± 11.3 49.1± 22.3

F1 n.a. 41.9± 14.1 40.4± 7.5 42.1± 6.9 37.6± 16.6

AUC n.a. 53.9± 13.7 48.2± 8.6 51.0± 7.6 51.7± 14.0

The standard deviations are calculated as average values of the five runs. For LR and RF, different features were calculated (Literature Features or Time Series Characteristics). The used machine

learning pipeline is illustrated in Figure 1. AUC, Area Under the Receiver Operating Characteristic Curve; n.a., not applicable. Best F2 scores per data set are marked in bold.

TABLE 7 Mean values of the performance measures for the 15 min

prediction during the night (only data considered midnight to 6 am).

Logistic
regression

Random
forest

Multilayer
perceptron

Specificity 90.4% 98.9% 77.1%

Sensitivity 90.4% 20.5% 61.1%

Precision 29.2% 45.0% 50.0%

F2 score 63.9% 23.0% 58.5%

F1 score 43.3% 35.8% 55.0%

AUC score 90.7% 59.7% 69.1%

The models logistic regression and the random forest are exact re-implementations of (14).

The Multilayer Perceptron (MLP) as Deep Neural Network (DNN) model was additionally

implemented. The used procedure is illustrated in Figure 3. Best performance measures per

ML model are marked in bold.

4 Discussion

The focus of this work was the prediction of nocturnal

hypoglycemia (prediction horizon 9 h) concentrating on children

with T1D. We used CGM, physiological data from a wearable

device, and children characteristics.

4.1 General discussion

Despite achieving single high values (above 80%) for specificity

and sensitivity for a variety of options (Figure 6), the selected

and implemented machine learning pipeline could not achieve

values over 65% for the combined F2 score, e.g. due to the small

data set. The high standard deviations for all models and dataset

combinations indicate that, depending on the distribution of the

dataset (cross-validation), it is unclear which model is actually the

best (Table 6, error bars in Figure 6).

Comparing the baseline models to DNNs, it is apparent

that the DNNs achieved smaller standard deviations. This shows

the potential of the DNN models as this indicates the more

consistent performance over all six-folds for the five runs. The

consistency suggests that DNNs better capture complex patterns

and relationships than traditional models. DNN models typically

require large datasets—ideally large in number of samples to

generalize well in tuning the parameters and in the number of

children, study days, and class balance to learn a comprehensive

representation. We assume that either (1) combining different

datasets into a larger one or (2) applying transfer learning would

improve the results for the DNNmodels. In transfer learning, either

this dataset is used to train the model, and fine-tuning is done on

the other dataset, or vice versa.

Investigating the results for incorporating physiological data,

it is visible that there is an improvement in the F2 scores for the

baseline models logistic regression and random forest (Table 6). As

mentioned in the last paragraph, we assume that DNNmodels need

a larger dataset to realize their full potential. An improvement was

not (random forest) or, at most, slightly (logistic regression) visible

when only static data was included. Our assumption here is that

static data describes the children’s general characteristics and could

impact the general risk for hypoglycemia. In contrast, it does not

improve the short-term prediction for the upcoming night. When

assessing the upcoming night, the influence of physiological data

is greater, particularly regarding activity and energy expenditure

during the day, and has a direct impact on blood glucose at night,

which is also reflected in the general trend.

Improvements for future work could be targeted hand-crafted

features, with specific feature selection, and incorporating ML

strategies to enlarge the dataset.

4.2 Comparison to reimplemented
algorithm from literature

For evaluating the quality of our dataset, we reimplemented

an algorithm from literature (14) that uses logistic regression and

random forest for a prediction horizon of 15 min (Figure 4).

berikov et al. (14) achieved best results with random forest

(Specificity 91.4%, Sensitivity 94.5%, AUC score 0.97). Best results

using our dataset were attained with logistic regression (Specificity
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90.4%, Sensitivity 90.4%, F2 score 63.9%, AUC score 90.7%)

(Table 7).

Single values for specificity, sensitivity, and precision range

from 20.5% to 98.9%, for the F2 score from 23.0% to 63.9%. The

previously best performing algorithm random forest achieves the

worst results. Differences between the reimplemented algorithm

and the other algorithm presented in this work are 1) different

prediction horizon, 2) selected hand-crafted features are input to

random forest and logistic regression, and 3) different data were

used. Data between midnight to 6 am were used. Previously this

data served only to determine one of the two classes: Nocturnal

Hypoglycemia and No Nocturnal Hypoglycemia. Hence, more

samples were used in the 15min prediction. This could indicate that

the effect of exercise is relevant whereas cannot be depicted with

data only during the night and emphasizes that the combination—

data, if needed features, and classifiers— is relevant.

Berikov et al. (14) did not present their results using precision

or the F2 score. They used a dataset of 406 adults (aged 18 to 70

years) having a mean CGM duration of each participant of 6.7 days.

Since the sensitivity and specificity in the different works are in

the same ranges, we conclude that our dataset is comparable to

the larger dataset (14) despite the smaller sample size and other

differences (participants were children, mean CGM duration of

5.1 days).

4.3 Comparison with literature

Three studies from the literature (20, 21, 26) concentrated on

nocturnal hypoglycemia prediction (prediction horizon of 6 h for

all three studies) and included wearable data. Bertachi et al. (26)

received best results (78.75% median sensitivity, 82.15% median

specificity) with SVM, evaluating the generated classifiers with

Gmean =
√

Sensitivity · Specificity. Parcerisas et al. (20) used the

same dataset as Bertachi et al. (26) and achieved with SVM a

median sensitivity of 74% and a median specificity of 77% for

their population models, evaluating the generated models with

the F1 score. Veh´ et al.(21) used artificial neural networks and

obtained a mean sensitivity of 44.0% and mean specificity of 85.9%.

In this work, mean sensitivity and specificity to the best F2 score

were 77.8% and 62.5%, respectively (Table 6). If we consider the

differences in the studies, such as children compared to adults or

longer prediction horizon, we conclude that the results in this work

are comparable to or even exceed the results in the literature.

We used data collected during a sports day camp. During the

day, the children were supervised by pediatric endocrinologists.

The children were supervised by their parents in the evenings and

at night. This study setting is less controlled than an inpatient

hospitalized setting as used in literature (14, 22, 23). Other studies

use an even less controlled outpatient setting, where participants

continue their daily routines and come to the study center only

at agreed times (16, 18, 20, 26). The chosen study setting allows

the imitation of everyday daily life but offers opportunities for

intervention and offers information about meals and insulin doses.

Data from a less supervised setting including a higher number of

participants will also be considered in the future.

Population-based models and individual-based (or

personalized) models are used in the literature (20). Population-

based models describe models in which one or more participants

are not seen by the algorithm in the training phase. Individual-

based models are models that explicitly consider data from the

individual in the training phase to (ideally) produce better results

for the individual. Due to the scarcity of our data, we combined all

available study days and ignored the individual participant. In the

future, we plan to evaluate the performance of population-based

and individual-based models.

4.4 Limitations

In this work, we decided to use logistic regression and random

forest as these were the most used algorithms in literature for

hypoglycemia prediction (13). In principle, no particular classifier

is appropriate for all classification tasks (No Free Lunch Theorem)

(53). Hence it might be that for our research questions and

the specific dataset including children a different classifier would

improve the performance. For example, in future work we want

to incorporate XGBoost or SVM as the algorithms have a lower

complexity than DNN and have shown good performances in

similar work.

We transferred the activity classes to MET values (Table 2)

based on the adult compendium (37). This comprehensive list

included all available activity classes. The ’Youth Compendium

of Physical Activities’ (54) contains only 200 activities and their

assignedMET value for four different age groups (6-9, 10-12, 13-15,

16-18 years). Since not all required activity classes were available in

the “Youth Compendium”, we decided to stay with the established

adult compendium.

For the logistic regression and random forest, we performed

a sequential forward feature selection and limited the number

of features to 15. We did not investigate other feature selection

approaches or perform an extensive search regarding best number

of features. In future work, we will address this issue together with

newly created hand-crafted physiological features.

4.5 Outlook

Vu et al. (19) noted, the difference between the early phases

of sleep and the late phases of sleep has not been widely studied

in the field of predicting nocturnal hypoglycemia. The literature

often distinguishes between the first three hours of sleep (midnight

to 3 am) and the remaining three hours of sleep (3 am to 6 am).

During the beginning of sleep, slow wave sleep (SWS)—like non-

rapid eye movement (REM) sleep—dominates, while REM sleep

becomes more prevalent toward the end of sleep (55). The brain’s

need for glucose is significantly decreased during SWS, reaching a

minimum level that is distinctively lower than during wakefulness

or REM sleep (55). Research studies (55, 56) indicate that more

nocturnal hypoglycemia events are present during late sleep. In

addition, adults and children with T1D report worse sleep quality

than healthy controls (19). In the future, we want to investigate

nocturnal hypoglycemia prediction in the early phases of sleep
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compared to the late phases of sleep, adjusted to data from children

that have a higher sleep requirement. For this, we will also consider

(night) parameters of the wearable sensor like sleep quality index

score (Table 1).

The logbook also contains information about the structured

sports activities that were performed on a daily basis. The inclusion

of this information in combination with the activity classes and

other activity parameters could be used to establish rules for hand-

crafted features for the signals of the Everion sensor. This could

then lead to better results when incorporating physiological data

from the wearable sensor.

Lehmann et al. (57) created a decision tree-based machine

learning method to detect hypoglycemia in unknown individuals

using only data collected by non-invasive wearables. They

concentrated on adults with diabetes. Their pilot study indicates

that wearable data can provide valuable insights into hypoglycemia

prediction, even without using CGM. Analyzing signals from the

Everion sensor separately from CGM data and then combining

them with CGM and child characteristics could be another aspect

of future work.

In addition, there are other options for using the signals of the

Everion sensor (Table 1). Studies (58–60) have shown a relationship

between heart rate variability and hypoglycemia. In future work, we

want to investigate this association. Further, we want to incorporate

insulin and carbohydrates in the future as it was shown in literature

that the inclusion increased the performance (16). We want to also

compare the performance of the developed algorithms on public

datasets, e.g. the OhioT1DM Dataset (61) or data from the CITY

study (18).

5 Conclusion

In this work, we utilized a dataset recorded in a structured

setting to assess the risk of nocturnal hypoglycemia associated with

physical activity in children with T1D. In contrast to previous

studies we aimed for longer-term predictions, i.e. up to 9 h vs.

up to 1 h. From our point of view, the results obtained in this

study are acceptable with a sensitivity of the best F2 score close to

80%. Understanding the hypoglycemia risk for the entire upcoming

“critical” night is clinically relevant as it permits children and

their parents to either sleep soundly or to take appropriate action

such as reducing basal insulin doses, administering additional

carbohydrates, or scheduling a nocturnal glucose measurement.
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