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Background: Dry age-related macular degeneration (AMD) is a retinal disease, 
which has been the third leading cause of vision loss. But current AMD 
classification technologies did not focus on the classification of early stage. This 
study aimed to develop a deep learning architecture to improve the classification 
accuracy of dry AMD, through the analysis of optical coherence tomography 
(OCT) images.

Methods: We put forward an ensemble deep learning architecture which 
integrated four different convolution neural networks including ResNet50, 
EfficientNetB4, MobileNetV3 and Xception. All networks were pre-trained and 
fine-tuned. Then diverse convolution neural networks were combined. To 
classify OCT images, the proposed architecture was trained on the dataset from 
Shenyang Aier Excellence Hospital. The number of original images was 4,096 
from 1,310 patients. After rotation and flipping operations, the dataset consisting 
of 16,384 retinal OCT images could be established.

Results: Evaluation and comparison obtained from three-fold cross-validation 
were used to show the advantage of the proposed architecture. Four metrics 
were applied to compare the performance of each base model. Moreover, 
different combination strategies were also compared to validate the merit of the 
proposed architecture. The results demonstrated that the proposed architecture 
could categorize various stages of AMD. Moreover, the proposed network could 
improve the classification performance of nascent geographic atrophy (nGA).

Conclusion: In this article, an ensemble deep learning was proposed to classify 
dry AMD progression stages. The performance of the proposed architecture 
produced promising classification results which showed its advantage to provide 
global diagnosis for early AMD screening. The classification performance 
demonstrated its potential for individualized treatment plans for patients with 
AMD.
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1 Introduction

AMD is a retinal disease that is a major cause of blindness around 
the world (1). According to the World Health Organization, it was 
estimated that 288 million people globally suffered from intermediate or 
late-stage AMD (2). As the global population aged, AMD was expected 
to affect more people. Therefore, it was important to detect and screen 
AMD, especially for early stage of AMD. Based on the clinical appearance 
of AMD, it could be classified into early stage, intermediate stage and late 
stage (3). Early and intermediate AMD, also known as non-advanced dry 
AMD, were described by a slow progressive dysfunction of the retinal 
pigment epithelium (RPE) and presence of drusen. The late stage was 
defined by presence of geographic atrophy (GA) (4).

A recent approval released by the U.S. Food and Drug 
Administration highlights the importance of early detection of GA, 
which demonstrated that nGA was a pivotal marker for the prediction 
of the development of GA (5). It could help clinicians to better detect 
and screen AMD in the early stage. However, nGA has drusen with a 
diameter larger than 63 μm without atrophy or neovascular disease. 
This condition made it difficult to detect nGA accurately. Moreover, 
complex interference factors of nGA in shape, size and location 
exacerbated the difficulty to differentiate it from other retinal lesions (6).

In traditional retinal images, OCT images enabled visualization of 
thickness, structure and detail of various layers of the retina (7). In 
addition, when the retina developed a disease, OCT enabled the 
visualization of abnormal features and damaged retinal structures (8). 
Therefore, retinal OCT images were used in this article to detect 
nGA. In OCT images, spectral-domain OCT features unique in these 
areas included: subsidence of the outer plexiform layer (OPL) and inner 
nuclear layer (INL), and development of a hyporeflective wedge-shaped 
band within the limits of the OPL. These characteristics were defined as 
nGA, describing features that portended the development of drusen-
associated atrophy. Cross-sectional examination of participants with 
bilateral intermediate AMD revealed that independent risk fact (9). The 
hypo-reflective wedge in nGA represented the presence of a 
hyporeflective wedge-shaped band within the limits of the OPL that 
subsequently developed as the characteristic feature of this stage. There 
was also typically drusen regression that was accompanied by a 
vortexlike subsidence of the INL and OPL at this stage. Different stages 
of dry AMD in OCT images were shown in Figure 1.

Although OCT images were widely applied into the treatment and 
diagnosis of AMD (10–13), the process was time-consuming due to 
manual operation and analysis. Ophthalmologists may provide incorrect 
results even if they had great expertise. With the development of 
artificial intelligence, machine learning and deep learning algorithms 
had been used in the diagnosis and treatment tasks, such as classification, 
detection and segmentation of AMD (14). Deep Learning (DL) had 
been widely used in the medical field to monitor information in medical 
images for the diagnosis of various diseases (7, 15–18). Recently, DL 
integrated with OCT imaging analysis, had been utilized for intelligent 
and accurate classification of AMD (19). However, most of previous 

DL-based retinal OCT detection technologies focused primarily on the 
advanced stage. The main limitation came from the datasets which were 
mainly comprised of intermediate and late stages of AMD. Additionally, 
the challenge from the OCT image noise, the accuracy of diagnosis and 
the division among diverse stages increased the difficulty of early 
detection (20). A detection architecture based on a two-stage 
convolution neural network (CNN) with OCT images was proposed by 
He (21). In the first stage, ResNet50 CNN model was employed to 
categorize OCT images. Then image feature vector set was accepted by 
the local outlier factor algorithm in the second stage. This model was 
tested on the external Duke dataset which consisted of 723 AMD and 
1,407 healthy control volumes. This architecture was able to achieve the 
performance of sensitivity of 95.0% and specificity of 95.0%. Similarly, 
a two-stage DL architecture was proposed by Motozawa (22). The first 
stage was capable of distinguishing healthy controls from OCT images. 
Then AMD with and without exudative changes could be detected in 
the second stage. This architecture was able to achieve a performance of 
98.4% sensitivity, 88.3% specificity and 93.9% accuracy.

Similarly, a visual geometry group CNN architecture was developed 
by Lee for the categories of retinal diseases (23). This CNN model was 
trained and tested on 80,839 OCT images to evaluate the performance. 
The performance of AUC of 92.7% with an accuracy of 87.6% could 
be  obtained. CNN models with fully automated technology were 
proposed by Derradji to segment retinal atrophy lesions in dry AMD 
(24). Due to segmentation technologies, this architecture was able to 
achieve a performance of 85% accuracy and 91% sensitivity.

To better differentiate AMD from healthy controls, Holland 
developed a pre-trained self-supervised deep learning architecture (25). 
The performance of 92% AUC was able to be achieved on the test images. 
However, it was difficult to distinguish between early stage and 
intermediate stage. To overcome this challenge, Bulut applied Xception 
models to the detection of AMD based on color fundus images (26). 
Through analysis of 50 different parameters, this architecture could obtain 
the highest performance of accuracy of 82.5%. Moreover, Chakravorti 
proposed an efficient CNN for AMD classification (27). This network 
trained on fundus images could categorize them in four types of AMD, 
reducing computational complexity with high performance. Instead of 
training networks on fundus images, Tomas developed an algorithm for 
the diagnosis of AMD in retinal OCT images. This algorithms was able 
to perform the detection of AMD based on the estimate of statistical 
approaches and randomization (28). Additionally, Zheng extended a five-
category intelligent auxiliary diagnosis architecture for common retinal 
diseases. For the 4 common diseases, the best results of sensitivity, 
specificity, and F1-scores were 97.12, 99.52 and 98.21%, respectively (29). 
Vaiyapuri presented a new multi-retinal disease diagnosis model to 
determine diverse types of retinal diseases. Experimental results 
demonstrated that this architecture outperformed the exiting technologies 
for advanced AMD with the performance of accuracy 0.963 (30). Inspired 
by nature language processing, Lee presented CNN-LSTM and 
CNN-Transformer. Both deep learning architectures used a Long-Short 
Term Memory and a Transformer module, respectively with CNN, to 
capture the sequential information in OCT images for classification tasks. 
The proposed architecture was superior to the baseline architectures that 
utilized only single-visit CNN model to predict the risk of late AMD (31). 
Combining a multi-scale residual convolutional neural network and a 
vision transformer, Kar featured a generative adversarial network for the 
detection of AMD (32). Rigorous evaluations on multiple databases 
validated the architecture’s robustness and efficacy.

Abbreviations: AMD, Age-related macular degeneration; OCT, Optical coherence 

tomography; nGA, Nascent geographic atrophy; INL, Inner nuclear layer; OPL, 

Outer plexiform layer; DL, Deep Learning; CNN, Convolutional neural network; 

ROC, Receiver operating characteristics curve; Acc, Accuracy; Sen, Sensitivity; 

Spc, Specificity; F1, F1-score.
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In summary, many of the mentioned studies had focused on the 
application of deep learning and OCT for classifcation of AMD, 
achieving impressive accuracy rates. However, these studies lacked a 
comprehensive prediction for nGA. In this paper, we  aimed to 
diagnose early stage of AMD with strong predictor nGA. We provided 
an ensemble deep learning architecture consisting of four components 
(ResNet50, EfficientNetB4, MobileNetV3 and Xception) to analyze 
OCT images. In order to accurately detect the early stage of AMD, an 
OCT-based ensemble DL architecture was proposed in which the 
images would be classified into four categories: normal, Drusen, nGA 
and GA. The main contributions of this work were as follows:

 1. To the best of our knowledge, this was the first investigation to 
use ensemble DL technologies to detect and classify nGA.

 2. The proposed architecture showed its advantage and provided 
detection results which could be utilized as a useful computer-
aided diagnostic tool for clinical OCT-based early 
AMD diagnosis.

 3. This paper proposed an ensemble technique by combining the 
predictions of four base CNNs—ResNet50, EfficientNetB4, 
MobileNetV3 and Xception. Based on the knowledge gained 
from ImageNet dataset, each base CNN was fine-tuned for the 
specific OCT image classification task.

2 Methods

2.1 Datasets

Although there were some public OCT datasets, they were not 
suitable for the detection of early stage of AMD. This study was 
retrospective. We used OCT images collected in 2019–2023 which 

were gathered from 1,310 patients (male and female) of diverse age 
groups and ethnicity from Shenyang Aier Excellence Eye Hospital. The 
images in this dataset had been divided into four different classes: 
normal, drusen, nGA and GA. The training set and the test set were 
about 80 and 20% of the patients, respectively. All OCT images were 
captured from Heidelberg Spectralis HRA which was able to provide 
6 mm × 6 mm B-scan length. The quality of OCT images were analyzed 
by ophthalmologists. All OCT images were clear and free of artifacts. 
Every OCT image was either normal or AMD without other retinal 
diseases. According to the judgment of ophthalmologists, OCT images 
that met the selection criteria were stored in the database. Any 
participant with any other ocular, systemic or neurological disease that 
could have an impact on the assessment of the retina, was excluded.

To improve the generalizability and reduce the risk of overfitting 
of the proposed architecture, this paper employed three-fold cross-
validation to evaluate the performance. In one epoch of cross-
validation, two-fold OCT images were used for training while the rest 
of OCT images were used for test. The training and test process would 
be performed three times and the average of results could be utilized 
to assess the performance of the proposed architecture. The number 
of training and test images were detailed in Table 1.

2.2 Image enhancement

The aim of OCT images enhancement was to provide high quality 
images which would improve the performance of the proposed 
architecture. The visibility of significant features would be enhanced 
by image enhancement algorithms, such as diffusion filtering, linear 
enhancement and exponential enhancement. Results of different 
image enhancement algorithms were displayed in Figure 2, where the 
original OCT image was shown in Figure  2A. To start with, a 

FIGURE 1

Different stages of dry AMD in OCT imaging. (A) Normal. (B) Drusen. (C) nGA. (D) GA.
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diffusion filtering algorithm (33) was applied to reduce noise from 
the original OCT image, as presented in Figure  2B. Then linear 
enhancement (34) was employed to highlight the contrast between 
background and retinal layers, as shown in Figure 2C. At last, the 
OCT image was processed based on exponential enhancement (35) 
to further accentuate contrast between different layers. With the 
enhancement procedure, the final result could be obtained, as shown 
in Figure 2D.

2.3 Ensemble deep learning architecture

In this article, we built an ensemble deep learning architecture 
which consisted of four base models (ResNet50, EfficientNetB4, 
MobileNetV3 and Xception). After image enhancement, OCT images 
were further processed via image preprocessing, such as reshaping, 
normalization and augmentation. Then the OCT images were fed to 
every base model which was pre-trained on ImageNet and connected 
to full-connection layers. The prediction scores iY  (i = 1,2,3,4) were 
obtained from four models. The weights would also be calculated 
based on these scores. As distributing weights to base models, 
we could obtain the final prediction through adding and normalizing 

these prediction scores. The global ensemble architecture was 
presented in Figure 3.

In the OCT image pre-processing step, all OCT images were 
converted into gray values which ranged from 0 to 1. In order to 
obtain optimal classification performance, we tested OCT images with 
different shapes. We found that input images with 320 × 320 could 
provide the best performance. The visibility of AMD features were 
emphasized to accentuate contrast between different retinal layers. 
Moreover, data augmentation could improve the generality of the 
proposed method. The size of training data could be augmented. The 
number of original images was 4,096. Every original image was rotated 
90 , 180, and 270 respectively. Besides all original images could 
be  flipped. After augmentation, the total number of images was 
16,384. 80% of the total images were used for training and the unseen 
images were employed for test purpose. The whole dataset was labeled 
by two ophthalmologists. Then the proposed architecture was 
comprised of four fine-tuning models. To reduce training time, 
transfer learning technology was used. The base models were 
pre-trained on ImageNet dataset. The weights before ‘FC’ were kept 
frozen. Then the training process would fine-tune weights between 
‘FC’ layers with a learning rate 0.001. To further avoid overfitting and 
reduce computation, ‘dropout layer’ with a dropout rate of 0.4 had also 

TABLE 1 The detail of three cross-fold training and test datasets.

OCT Datasets Fold 1 Fold 2 Fold 3

Train Test Train Test Train Test

Patients (%) 1,040 (80%) 270 (20%) 1,040 (79%) 270 (21%) 1,040 (80%) 270 (20%)

Images (16384) 13,107 3,277 12,943 3,441 13,107 3,277

Normal (3072) 2,455 617 2,427 645 2,455 617

Drusen (5120) 4,094 1,024 4,045 1,075 4,094 1,024

nGA (4096) 3,277 819 3,236 860 3,277 819

GA (4096) 3,277 819 3,236 860 3,277 819

FIGURE 2

Results comparison from image enhancement. (A) The original image. (B) The OCT image from (A) with diffusion filtering. (C) The OCT image from 
(B) with linear enhancement. (D) The OCT image from (C) with the exponential enhancement.
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been added between ‘FC’ layers. Because classification of AMD was 
performed with four categories, soft-max activation with four 
categories had been added after ‘FC’ layer for classification task of 
AMD. The training process of transfer learning was shown in Figure 4.

The proposed architecture could be formed with the following 
steps: First, different base models, also known as CNNs, were analyzed 
after fine-tuning. Based on the performance of different base models, 
it could be found that the ResNet50, EfficientNetB4, MobileNetV3 and 
Xception had better performance compared to other CNN models on 
the test dataset. Then a comparative analysis of the weights 
combination strategies among different base models were performed. 
These strategies contained simple averaging, weighting function, 
majority voting and stacking methods. The weighting function was 
proportional to the performance of base models on test dataset. From 
these comparison results, the weighting function strategy could obtain 
the best performance for the classification of early AMD. The 
combination strategy of the proposed ensemble-based architecture 
was shown in Figure 5.

It could be found that four base models produced four prediction 
scores iY  (i = 1,2,3,4). The final prediction score could be calculated 
based on weights which were proportional to the performance of base 
models. At last, the accuracy of diagnosis was compared with the 
ground truth to evaluate the performance of the ensemble deep 
learning architecture. The weights could be calculated based on the 
following mathematical formulation, as shown in Equation 1:

 ( ) ( ) ( ) ( )( )1 2 3 4, , ,comF Y x Y x Y x Y xω =  (1)

Where comF  was the combination function which represented an 
aggregation strategy with various weights ω. If the the prediction 
probabilities from ith model was iY , then the weight iω could be 
expressed as Equation 2:
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i
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Y

Y
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=
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The weights which denoted the significance of every base model. 
The final prediction probability P on the test dataset could be obtained 
based on the weights combination strategy, as shown in Equation 3:

 

4

1
i i

i
P Yω

=
=∑

 
(3)

The experimental results would be obtained and analyzed based 
on the proposed architecture in the next section.

3 Results

All experiments were conducted in Pytorch and the 
hardware was composed of 64 hyper-thread processors, 8 × RTX 
2080 Ti, and windows10. All OCT images were set to the 
shape 320 320× .

Base CNN models were evaluated on the test dataset. The 
classification task was performed for four categories of dry AMD 
(normal, drusen, nGA, and GA). Diverse metrics were used to 
evaluate the efficacy of base models, including accuracy (Acc), 
sensitivity (Sen), specificity (Spc) and F1-score (F1) for overall 
classification performance. Sen described how well the test caught 
all of positive cases and Spc described how well the test classified 
negative cases as negatives. F1 was a metric that offered an overall 
measure of the model’s accuracy. These metrics could be expressed 
from Equations 4–7:

FIGURE 3

The global ensemble architecture.

Base Model

Global max pooling

Full-connected  layer

Dropout

Full-connected  layer

So�Max layer

Predic�on probality

FIGURE 4

The training process of transfer learning.
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Where TP, TN , FP, and FN  represented true positives, true 
negatives, false positives, false negatives, respectively. The 
performance of each base model and the proposed architecture 
would be compared and evaluated using above performance metrics. 
80% of the sample images were employed for training and the rest 
of images were used for testing. Different base models were assessed 
on the test dataset. The performance results were presented in 
Table 2.

Different ensemble strategies were also compared, such as 
majority voting, stacking, simple averaging, and weighting function 
(the proposed method). Majority voting meant that the prediction 
result from every base model was defined as a “vote.” The most votes 
were used as the final prediction result. Stacking could be conducted 
by training classifiers on the combined classification scores in an 
ensemble architecture. Then the ensemble architecture would classify 
test images based on the trained classifiers. Simple averaging 
overlooked the effect from weights. It used an average weight to 
process every prediction scores. Instead of obtaining an average 
weight, the weighting function would allocate weights to various base 
models. The weights were proportional to the performance of base 
models on the train dataset. The prediction scores would be further 
processed to get the final prediction result. The comparison results 
were detailed in Table 3.

Based on the F1 score in Table 3, the confusion matrix was also 
utilized to further show overall classification results with different 
architectures, as shown in Figure 6.

The performance between the proposed ensemble architecture 
and base models were also analyzed. The training epoch was set to 
400. In every epoch, the corresponding results were recorded. The 
comparison results were shown in Figure 7. Four categories of dry 
AMD were used to analyze the performance of classification. The 

FIGURE 5

The combination strategy of the proposed ensemble-based architecture.

TABLE 2 The performance comparison among different methods.

Methods Sen (%) Spc (%) F1 (%) F1 
(average)

Fold1 Fold2 Fold3 Fold1 Fold2 Fold3 Fold1 Fold2 Fold3

ResNet50 92.67 92.16 91.45 93.52 93.33 92.95 92.82 93.29 92.17 92.76

EfficientNetB4 90.23 90.15 91.06 92.44 91.22 92.15 92.63 91.29 91.18 91.71

MobileNetV3 92.54 90.33 93.08 93.11 87.15 91.22 92.25 89.93 92.54 91.57

Xception 92.71 89.66 92.13 91.08 90.53 84.57 91.12 91.56 90.81 91.16

VGG19 90.33 92.58 90.87 91.54 91.25 91.53 91.85 89.92 87.75 89.84

InceptionResNetV2 92.31 87.88 90.21 89.66 90.18 89.55 89.48 89.76 89.73 89.66

EfficientNetB0 90.55 90.28 88.93 84.57 91.16 90.15 88.61 89.28 87.63 88.51

NASNetMobile 91.56 89.15 90.23 86.43 90.22 87.38 87.33 88.07 89.06 88.15
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classification Acc from base models and ensemble architecture were 
presented in Table 4.

To give a comprehensive analysis from true positive rate and false 
positive rate, receiver operating characteristics curve (ROC) was also 

plotted for four categories: normal, drusen, nGA and GA, as shown in 
Figure 8.

The visualization of heatmaps could also be generated to improve 
the interpretability in OCT images based on Grad-CAM. To show the 
classification basis, heatmaps of drusen, nGA, GA were generated 
respectively, as shown in Figure 9.

4 Discussion

In this study, an ensemble deep learning architecture was 
proposed. To choose base models, different base models were tested 
and the performance results were shown in Table 2. The results were 
sorted in descending order based on F1 score since it offered a 

TABLE 3 The performance comparison from different ensembling 
strategies.

Strategy Acc (%) Sen (%) Spc (%) F1 (%)

majority voting 93.15 88.56 92.54 92.37

stacking 94.32 95.49 86.25 92.22

simple averaging 90.11 88.23 89.25 84.33

weighting function 96.51 93.31 94.56 97.45
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FIGURE 6

The confusion matrix of overall classification results. (A) Majority voting. (B) Stacking. (C) Simple averaging. (D) Weighting function.
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comprehensive evaluation of different models. Therefore F1 score 
could provide a basis for base models selection. Notably, four CNN 
models (ResNet50, EfficientNetB4, MobileNetV3 and Xception) could 
produce better results due to the consideration of local detail features 
and global semantic features. These base models would be served as 
base components in the ensemble architecture.

For the same base models, there were different combination 
strategies. In this study, majority voting, stacking, simple averaging 
and weighting function (the proposed method) were compared. The 
comparison results in Table 3 showed that both stacking and weighting 
function had better accuracy with 94.32% Acc and 96.51% Acc, 
respectively. Stacking strategy had the similar performance of 
sensitivity to the weighting function strategy which had better 
performance with 94.56% Spc. As presented in the column of F1 score, 
it could be found that weighting function had the best performance of 
classification with 97.45% F1 score. Moreover, the confusion matrices 
in Figure 6 demonstrated the advantage of the proposed architecture 
which could provide the best overall classification with less errors.

All base models could be fused based on tasks. Therefore, four 
categories of dry AMD were used to analyze the performance of 
different models. Comparison results were shown in Figure 7. It could 
be found that the proposed architecture and base models had similar 
performance. There were no over-fitting. Besides, the proposed 
architecture had better performance than base models with training 
epochs increasing. From comparison results in Table 4, it could also 
be found that the proposed architecture could generate commendable 
results. Compared with base models, the ensemble architecture could 
significantly improve the classification performance with the highest 
accuracy for all classes, especially for nGA. In terms of sensitivity and 
specificity, the proposed architecture outperformed all base models. It 
demonstrated that the proposed architecture could detect true 
positives and true negatives much better. For base models, F1-score 
were 92.82, 91.71, 91.57, and 91.16%, respectively, while the proposed 
method could archive the highest F1-score (97.45%). The comparison 

results demonstrated that the proposed architecture had better 
robustness and better performance of accuracy due to the combination 
of base models. ROC was provided to analyze overall performance of 
classification. Comparison results in Figure  8 showed that the 
maximum area could be obtained from the proposed architecture. It 
meant that the proposed architecture could provide more accurate 
classification results, especially for nGA.

The heat maps generated through Gram-CAM validated that 
typical features from dry AMD could be  successfully detected. 
Three categories of pathological features (drusen, nGA and GA) 
could be  correctly accentuated. In particular, the early stage of 
AMD with nGA could be correctly highlighted and observed, as 
shown in Figure 9. The heat maps demonstrated that the proposed 
architecture could successfully identify distinctive features and 
relevant lesions.

5 Conclusion

The intention of this article was to provide an architecture for an 
automated diagnosis and classification of AMD using OCT images, 
including the detection of early-stage dry AMD with nGA. The 
proposed architecture did not need to segment biomarkers. By 
combining image enhancement and base CNN models, the 
performance of detection of dry AMD could be  improved. 
Experimental results showed that three categories of pathological 
features could be correctly detected and observed, particularly for the 
nGA feature. The proposed ensemble architecture and base models 
had similar performance. There were no over-fitting. Moreover, the 
proposed ensemble architecture had the best classification 
performance for the present OCT images classification task. It 
suggested that the proposed ensemble architecture was superior in 
classification task for early stage of AMD. In the future, multi-modal 
images such as fundus photography and angiography can be used to 

FIGURE 7

The performance of accuracy in 400 epochs. (A) ResNet 50. (B) EfficientNetB4. (C) MobileNetV3. (D) Xception. (E) Proposed.

TABLE 4 The Acc (%) comparison among different classification results.

ResNet50 EfficientNetB4 MobileNetV3 Xception Proposed

Normal 92.66 93.25 88.64 91.65 96.66

Drusen 92.71 91.64 92.57 87.30 94.85

nGA 91.56 89.66 89.43 85.22 98.21

GA 92.55 93.85 89.64 92.74 96.31

F1 (average) 92.82 91.71 91.57 91.16 97.45
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FIGURE 8

ROC comparison among different methods. (A) Normal. (B) Drusen. (C) nGA. (D) GA.
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FIGURE 9

Heatmaps from dry AMD with pathological features.
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supplement OCT images. Besides the diagnostic performance can 
be improved by integrating other artificial intelligence technologies 
such as segmentation and attention mechanism.
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