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Emotional recognition is a way of detecting, evaluating, interpreting, and

responding to others’ emotional states and feelings, which might range from

delight to fear to disgrace. There is increasing interest in the domains of

psychological computing and human-computer interface (HCI), especially

Emotion Recognition (ER) in Virtual Reality (VR). Human emotions and mental

states are e�ectively captured using Electroencephalography (EEG), and there

has been a growing need for analysis in VR situations. In this study, we

investigated emotion recognition in a VR environment using explainablemachine

learning and deep learning techniques. Specifically, we employed Support

Vector Classifiers (SVC), K-Nearest Neighbors (KNN), Logistic Regression (LR),

Deep Neural Networks (DNN), DNN with flattened layer, Bi-directional Long-

short Term Memory (Bi-LSTM), and Attention LSTM. This research utilized

an e�ective multimodal dataset named VREED (VR Eyes: Emotions Dataset)

for emotion recognition. The dataset was first reduced to binary and multi-

class categories. We then processed the dataset to handle missing values and

applied normalization techniques to enhance data consistency. Subsequently,

explainable Machine Learning (ML) and Deep Learning (DL) classifiers were

employed to predict emotions in VR. Experimental analysis and results indicate

that the Attention LSTM model excelled in binary classification, while both

DNN and Attention LSTM achieved outstanding performance in multi-class

classification, with up to 99.99% accuracy. These findings underscore the

e�cacy of integrating VR with advanced, explainable ML and DL methods for

emotion recognition.

KEYWORDS

emotion recognition, deep learning, machine learning, virtual reality, EEG, explainable

artificial intelligence (XAI)

1 Introduction

Emotion plays a crucial role in interpersonal interactions, knowledge insight,

perception, and daily life activities (1, 2). Understanding emotions is essential for

effective social interaction, making Affective Computing (AC) methods vital for enhancing

human-computer interaction by identifying and assessing human emotional states

(3). The intersection of technology, emotion, and human experience has led to

significant breakthroughs, particularly in VR and emotion recognition, which continue to

advance rapidly.

ER involves detecting human emotions using features extracted from various

datasets, followed by ML and DL methods. Traditional methods use text, speech, body
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posture, facial expressions, and physiological signals like

Electrocardiograms (ECGs) and Electroencephalograms (EEGs)

(4). EEGs are particularly advantageous in ER research due

to their cost-effectiveness, objectivity, temporal precision, and

non-invasive nature (5). While classical ER studies often use 2D

stimuli, VR has emerged as a superior medium for eliciting genuine

emotional responses, offering immersive experiences that enhance

the authenticity of emotion experiments (6).

VR’s application extends to fields such as education (7),

architectural design (8), and virtual tourism, especially amid the

pandemic (9). In the field of education, VR facilitates immersive

learning experiences that can lead to better understanding and

retention of complex subjects (10). In medicine, VR is used for

patient rehabilitation and surgical training, providing a safe and

controlled environment for practice and recovery (11).

Recent advancements in Natural Language Processing (NLP)

and computer vision have furthered the capabilities of ER systems.

NLP techniques allow for the analysis of textual data to infer

emotional states, while computer vision methods analyze facial

expressions and body movements (12). The fusion of these

modalities with physiological signals such as EEG and ECG

enhances the accuracy and robustness of ER systems (13). The

continuous evolution of VR and ER technologies promises to

deliver more sophisticated and intuitive interactions between

humans and machines, facilitating a range of applications from

mental health assessments to customer service automation (14).

The integration of these technologies into everyday devices and

applications signifies a future where technology can seamlessly

understand and respond to human emotions, improving both user

experience and functionality.

1.1 Research motivation and contributions

Despite significant advancements, emotion recognition in

immersive technologies like VR remains challenging. There is a

growing need to develop robust methods that can accurately detect

and respond to users’ emotional states in real-time, enhancing

user experiences across various applications. Leveraging ML and

DL approaches to detect user emotions can significantly enhance

user experiences by adjusting interactions and visuals based on

emotional feedback. This study proposes a binary and multi-class

approach using ML classifiers (KNN, SVC, LR) and DL classifiers

(DNN, DNN with a flattened layer, Bi-LSTM, and Attention

LSTM) for emotion recognition in VR, utilizing eye-tracking and

physiological data. Compared to previous techniques, our approach

Abbreviations: AC, A�ective Computing; AR, Augmented Reality; Bi-LSTM, Bi-

directional Long-short Term Memory; DNN, Deep Neural Networks; DBN,

Dynamic Bayesian Networks; DL, Deep Learning; ER, Emotion Recognition;

ECG, Electrocardiogram; EEG, Electroencephalography; EDL, Enhanced

Deep Learning; FPR, False Positive Rate; GSR, Galvanic Skin Reaction; HCI,

Human-Computer Interface; HR, Heart Rate; KNN, K-Nearest Neighbors; LR,

Logistic Regression; ML, Machine Learning; MFD-LSTM, Multimodal Fusion

Deep LSTM; ReLU, Rectified Linear Unit; RNN, Recurrent Neural Network;

SVC, Support Vector Classifiers; TPR, True Positive Rate; VR, Virtual Reality;

XAI, Explainable Artificial Intelligence.

demonstrates improved performance and offers a scalable solution

for real-time emotion recognition in VR environments. The main

findings of this study are outlined below.

• Propose an explainable feature selection and deep learning-

based approach for binary and multi-class detection and

categorization of emotions in virtual reality using eye

tracker and physiological data by utilizing a range of ML

classifiers, including K-Nearest Neighbors (KNN), Support

Vector Classifier (SVC), and Logistic Regression (LR), as

well as deep learning (DL) classifiers such as Deep Neural

Networks (DNN), DNN with flattened layers, Bi-directional

Long Short-Term Memory (Bi-LSTM), and Attention LSTM.

These models are trained and evaluated using eye tracker and

physiological data, aiming to improve emotional recognition

accuracy in immersive VR environments.

• Comprehensive data preprocessing techniques are employed,

including handling missing values, data splitting, and z-

score normalization. These steps are crucial to ensure data

quality and model performance consistency across different

classifiers. Evaluation metrics were rigorously applied to

compare and analyze the performance of both ML and

DL models.

• The Attention LSTM model demonstrated exceptional

performance in both binary and multi-class classification

tasks, achieving up to 99.99% accuracy. This highlights its

capability to capture temporal dependencies and contextual

information in VR data effectively. Comparative analyses

with existing techniques showed superior performance of the

proposed approach, underscoring its potential for advancing

emotion recognition methodologies in virtual reality.

1.2 Research organization

The next sections of this article are carefully structured to help

readers in comprehending the study’s methodology. Background

information and an overview of the results of the current

investigation are presented in Section 2. Section 3 goes into great

depth on the technical aspects of the suggested framework, the

dataset preliminaries, data preprocessing techniques, and ML and

DL models. In Section 4, the experimental data are provided

together with a summary of the majority of the study’s conclusions.

Section 6 of the research offers a comprehensive analysis and

findings derived from the suggested work. This part also presents

the future directions of the current work.

2 Related work

In this section, we examine earlier research that applied

machine learning and deep learning classifiers for emotion

recognition. The study Rahman et al. (15) explored machine

learning techniques, using publicly available electroencephalogram

and heart rate variability datasets to predict arousal levels.

Detecting anxiety-induced arousal enables timely interventions

to manage distress. They discuss methods for effective machine

learning model selection and propose a tailored pipeline for VRET
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that is applicable to various contexts requiring arousal detection.

Talaat (16) introduces an emotion identification framework

tailored for autistic children. An Enhanced Deep Learning (EDL)

technique leveraging convolutional neural networks is proposed

for emotion classification, with the framework benefiting from

fog and IoT technologies to minimize latency and enhance real-

time detection and location awareness. Results demonstrate EDL’s

superior performance, achieving 99.99% accuracy, with genetic

algorithms utilized to optimize hyperparameters for the CNN.

Yang and Ismail (17) presented a Multimodal Fusion Deep

LSTM (MFD-LSTM) model to introduce a fresh concept for tea

packaging. By using this method, tea packaging becomes more

dynamic and immersive, appealing to all senses and highlighting

the combination of VR, emotion recognition, and the MFD-

LSTM model. Tea packaging may now dynamically tell brand

tales and elicit strong feelings from customers thanks to this

connection. With its ability to integrate many sensory inputs

at once, the MFD-LSTM model influences the unfolding VR

experience by facilitating real-time emotion identification. The

goal of this study is to create a multimodal and emotionally

engaging relationship between tea brands and customers by

promoting the widespread use of interactive tea packaging that

makes use of virtual reality, emotion recognition, and the MFD-

LSTM model. The analysis results show that the suggested MFD-

LSTM model is useful for assessing emotions and improving

packaging performance. Emotion prediction utilizing Heart Rate

(HR) signals through common classifiers like SVM, KNN, and RF

in a VR setting is explored in Bulagang et al. (18). Experimentation

with Empatica E4 wristbands and VR headsets showed promising

results, with SVM, KNN, and RF achieving 100% accuracy

in intra-subject classification and moderate accuracy in inter-

subject classification. This highlights the potential of using HR

classification for emotion prediction in various VR applications,

including interactive gaming, affective entertainment, and VR

health rehabilitation.

An emotive cue detection method for an adaptive music

system (LitSens) in virtual reality environments is presented

by Ibá nez et al. (19), with the goal of improving immersion.

A hybrid one-dimensional convolutional neural network and

a multi-layer perceptron-based system are the two neural

network-based iterations that are examined. For soundtrack

adaption, the second iteration is preferred as it is more

accurate but takes longer to recognize fear than the first.

Positive results are generally obtained from an experiment

that supports the gesture recognizer’s ability to identify

fear in participants. Savchenko et al. (20) article delve into

the analysis of students’ behavior within the e-learning

environment, proposing a novel approach centered around

video facial processing. Initially, techniques such as face

detection, tracking, and clustering are employed to extract

sequences of individual students’ faces. This network undergoes

pre-training for face identification and is finely tuned for

recognizing facial expressions, leveraging static images from

AffectNet alongside a specially devised optimization technique

for robustness. The study demonstrates the efficacy of these

facial features in swiftly predicting students’ engagement levels,

their emotional states, and the overall effect of the group.

FIGURE 1

Proposed approach for emotion recognition in virtual reality

environment.

Importantly, this model facilitates real-time video processing

directly on each student’s mobile device, eliminating the necessity

of transmitting facial video data to remote servers or the

teacher’s PC.

3 Proposed framework

This section provides the details of the implementation of

the proposed approach using various methodologies and metrics

for performance evaluation, including data preliminaries and

preprocessing. Figure 1 illustrates the entire process employed

in this study for emotional recognition in virtual reality. We

utilized the VREED (VR Eyes: Emotions Dataset), a multimodal

affective dataset for emotional recognition in virtual reality.

Machine learning and deep learning models are applied to the

preprocessed dataset.
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3.1 Dataset preliminaries

Dataset description: The dataset used in this study is the

VREED (VR Eyes: Emotions Dataset), a multimodal affective

dataset sourced from 360 video-based virtual environments (360-

VEs) provided via VR headsets. It includes recordings of eye

tracking, ECG, Galvanic Skin Reaction (GSR), and self-reported

responses from 34 healthy individuals. Participants experienced

360-VEs for one to three minutes each, contributing to the dataset’s

diverse physiological and behavioral signals.

Dataset size and source: VREED consists of 50 features,

encompassing a variety of data types aimed at identifying emotions.

The dataset is publicly available on Kaggle, facilitating accessibility

and reproducibility for researchers (21).

Features of different classes: The dataset consists of 50

features in which one feature, Quad_Cat, is a target feature that

has four classes. In this research, we implement this dataset with

2 classes and 4 classes to check the performance of the model. After

uploading the data, firstly, we used a .replace() method to change

the values in the Quad_Cat column. Specifically, all occurrences of

1 are replaced with 0, and all occurrences of 2 and 3 are replaced

with 1. After that, correlated variables are dropped to reduce the

number of features in the dataset. Dataset features are reduced to

44 features after removing correlated variables.

3.2 Dataset preprocessing

Preparing unprocessed data for analysis or modeling is known

as data preparation. To properly transform and clean the data for

statistical analysis, machine learning, and other data-driven tasks, a

number of processes must be taken. This can enhance the efficacy

and precision of other data-driven algorithms, such as machine

learningmodels. Several preprocessing techniques were used in this

study to modify, standardize, and identify the key data features.

Data scientists can make sure that the data is clear, consistent, and

formatted correctly for analysis or modeling by carrying out these

pretreatment procedures.

The dataset is subjected to various modifications for individual

columns using the “ColumnTransformer” class. This is especially

helpful if you wish to apply distinct preprocessing processes to each

type of data, such as when you have a combination of numerical

and categorical features. Next, we applied a “pipeline” class a set of

actions sequentially applied to your data-to the data. Typically, an

estimator (such as a machine learning model) or a transformation

(such as scaling or imputation) make up each pipeline stage.

In our study, rigorous data preprocessing was implemented to

ensure the credibility of our proposed method. Initially, missing

values in the dataset were identified and handled using appropriate

techniques such as imputation or deletion based on the extent and

context of missingness. Following this, a Z-score normalization

process was applied to standardize the scale and distribution of

features. This involved computing themean and standard deviation

for each feature across the dataset and transforming each feature to

have a mean of zero and a standard deviation of one. Additionally,

feature scaling techniques were employed to adjust the range of

values to a uniform scale, further enhancing model convergence

and performance. These steps were crucial in preparing the data

for robust modeling and ensuring consistent and reliable results

across experiments.

Pipelines guarantee that the stages involved in data

preprocessing and model training are systematically carried

out, which facilitates the development and implementation of

machine learning workflows. Next, we imputed missing values

from the dataset using a “SimpleImputer” class. It makes it

possible to substitute a given strategy like the mean, median,

or most frequent value for any missing values in the data.

The “StandardScaler” class, a preprocessing transformer that

standardizes features by eliminating the mean and scaling them

to unit variance, was the last thing we added. This is frequently

required for machine learning methods like SVMs and k-means

clustering, which are sensitive to the size of the features.

The machine learning technique known as SHAP (SHapley

Additive Explanations) is used to comprehend and analyze the

predictions made by models. It is predicated on the theory of

cooperative games, more precisely on the idea of Shapley values,

which were first presented in order to divide rewards among

participants in cooperative games equitably. SHAP provides a way

to attribute an ensemble model’s prediction to its variety of input

features within the context of machine learning. It takes into

account all potential feature combinations and their effects on

the forecast to determine each feature’s contribution to the final

prediction. This enables a more sophisticated comprehension of

the ways in which every attribute influences the model’s decision-

making procedure.

SHAP values shed light on the relative relevance of various traits

as well as how they interact. This can be essential to comprehending

intricate models like deep neural networks. Practitioners can

uncover potential biases, improve model interpretability, and

obtain important insights into their models by knowing which

features contribute favorably or unfavorably to a prediction.

The predictions of the model are explained by the SHAP

“TreeExplainer” class. Calling the shap_values method on the

TreeExplainer object creates the shap_values variable. The feature

importance of the model is then visualized using the summary_plot

function from SHAP (Figures 2, 3). The importance of each feature

is visualized using a SHAP summary plot, and the mean absolute

SHAP values are calculated for each feature. selected_features are

these 28, 2, 34, 11, 40, 0, 37, 33, 23, 4, 25, 12, 17, 26, 42, 6, 38, 24,

10, and 22. After feature selection, 20% of the data are used for

the testing, and the remaining 80% are used for the training. The

random_state parameter is used to initialize the internal random

number generator. By setting it to a fixed value (in this case, 42), we

ensure that the same random split is generated each time the code

is run, which makes the results reproducible.

3.3 Classification models

Algorithms that are trained to classify data points into one or

more predetermined groups or classes according to their features

are calledmachine learning classifiers. This research used LR, KNN,

SVC, DNN, Deep flattened layers, DNN, Bi-LSTM, and classifiers

for the evaluation.
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FIGURE 2

Selected features in binary label dataset.

Deep neural network: Multi-layered hidden layers sit between

the input and output layers of deep neural networks (DNNs),

which are general-purpose neural networks (22). The last layer’s

employment of the sigmoid and softmax activation functions

indicates that this research employed the model for binary and

multi-classification. Following an input layer with 256 nodes, the

model consists of three hidden layers of 128, 64, and 64 nodes.

With the exception of the final layer, which employs the sigmoid

activation function and softmax function for multi-classification,

each hidden layer uses the rectified linear unit (ReLU) activation

function. To avoid overfitting, dropout regularization is used after

each hidden layer, with a dropout rate of 0.3. Additionally, batch

normalization is used following every hidden layer to enhance the

stability and performance of the model. The binary cross-entropy

loss function, accuracy as the evaluation metric, and a learning

rate of 0.001 are all features of the Adam optimizer used in the

compilation of the model.

Deep flatten layers DNN: For classification tasks like image

classification, a flattened layer in deep learning reshapes the output

of convolutional layers (usually multidimensional arrays) into a 1-

dimensional vector, making the transition to fully connected layers

easier (23). The sigmoid and softmax activation functions included

in the final layer suggest that binary and multi-classification are

the model’s intended uses. The amount of features in the array

determines the form of an input layer in the model. Next, two

distinct branches of dense layers with 128 nodes apiece and ReLU

activation functions are coupled to the input layer. Following

concatenation, the outputs of the two branches are routed via a

fully connected layer, including 32 nodes and a ReLU activation

function. After being flattened, the output of this layer is routed

through a second fully connected layer that has 128 nodes and

a ReLU activation function. Lastly, the output layer for binary

classification and multi-classification softmax activation function

is added. It has a single node and a sigmoid activation function.

The model is compiled using the Adam optimizer with a learning

rate of 0.001, the evaluation measure being accuracy, and the

binary cross-entropy loss function for binary classes and categorical

cross-entropy for multi-classes.

Bi-LSTM: Bidirectional Long Short-Term Memory is referred

to as Bi-LSTM. This kind of Recurrent Neural Network (RNN)

architecture simultaneously processes input sequences forward and

backward. Thus, by collecting relationships and patterns in the

input sequence from both past and future contexts, the network

can interpret and represent sequential data more effectively (24).

The architecture of the Bi-LSTM model consists of three stacked

Bi-LSTM layers, each consisting of 128, 64, and 32 units. A dropout
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FIGURE 3

Selected feature in multi-label dataset.

layer is positioned after the layers to prevent overfitting. The binary

cross-entropy loss function and Adam optimizer are used to create

the model.

Attention LSTM: An attention mechanism and the Long

Short-Term Memory (LSTM) architecture are coupled to form

an Attention LSTM, or LSTM with Attention Mechanism. An

Attention LSTM enables the model to dynamically pay to distinct

portions of the input sequence at each time step as the attention

mechanism is embedded into the LSTM architecture (25). This

makes it possible for the model to represent dependencies better

and generate predictions, particularly in situations where specific

input sequence elements are more crucial than others. In this

work, we integrate an attention mechanism for representation

learning with the LSTM and GRU layers, and then we proceed

to fully linked layers for transfer learning and self-supervised

learning. A 64-unit LSTM layer is defined, and its result is passed

through an attentionmechanism. The attentionmechanism returns

a weighted sum of the LSTM output after receiving both itself and

the LSTM output as inputs. The output of a 16-unit GRU layer

is defined and concatenated with the attention output. There are

two completely connected layers defined, one for the GRU output

and one for the attention output, both with sixteen units. The

TimeDistributed wrapper is used to apply these layers, applying the

same layer to the input sequence at each time step. The flattened

layer is used to flatten the output of the fully linked layers, and

the concatenate layer is used to concatenate the two flattened

outputs. For binary classification, a final output layer with a single

unit and sigmoid activation is defined after a fully connected

layer with 64 units with ReLU activation. The binary cross-

entropy for binary classes, categorical cross-entropy for multi-class

classes, and the Adam optimizer are used in the compilation of

the model.

Algorithm 1 describes an Emotional Recognition system in

Virtual Reality (ER-VREEG) that makes use of both ML and

DL classifiers. The ER-VREEG dataset is the input, while the

Emotional Recognition in Virtual Reality (ER) dataset is the

output. The first function takes in the ER-VREEG dataset and

returns a reduced dataset with binary and multi-label targets.

The second function normalizes the data and deals with missing

values. It returns the preprocessed data after receiving the

reduced dataset as input. The third function defines several

machine learning classifiers, including SVC, KNN, and LR. It

returns the ML classifiers after training. Bidirectional Long Short-

Term Memory (Bi-LSTM), Attention Long Short-Term Memory

(attention LSTM), DNN, and DNNwith flattened layers are among

the DL classifiers defined by the third function. The trained DL

classifier is returned. The function finally returns the ML and DL

classifiers’ performance.
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1: Input: Ds ←ER-VREEG Dataset

2: Output: ER (Emotional Recognition in Virtual

Reality)

3: Function Reduce Dataset according to target labels

(Ds)

4: DBinary → dataset with binary Label

5: DBinary → dataset with multi label

6: Return Rd ← Reduced Dataset

7: Dsplit ← Dataset split into training and test set

(Rd)

8: Function Data Preprocessing (Rd)

9: Handle Missing Value()

10: Normalization()

11: Return Predata

12: Function ML Machine Learning Classifiers (Predata)

13: SVC ← Support Vector Classifier

14: KNN ← K-Nearest Neighbor

15: LR ← Logistic Regression

16: Return TrainMLClassifiers

17: Function DL Deep Learning Classifier (Predata )

18: DNN ← Deep Neural Network

19: DNN with Flatten Layer← DNN

20: Bi-LSTM ← Bidirectional LSTM

21: Attention LSTM ← Attention LSTM

22: Return TrainDLClassifier

23: Function EM ← Evaluation Metrics

24: Output ER

Algorithm 1. Pseudo code for emotional recognition in virtual reality

environment.

4 Experimental result and discussion

This section presents the experimental analysis, results and

discussion of the proposed approach. A model for virtual reality

emotion recognition that integrates ML and DL classifiers is

presented. It uses 20% of the dataset for testing and 80%

of the dataset for training. Performance is evaluated using

predetermined metrics, including F1-score, accuracy, precision,

recall, and loss. For effective development, Jupyter Notebook and

Evaluation criteria such as accuracy, precision, recall, and F1-

score were employed to assess the efficacy of the model. Each of

the mathematical formulae for the prediction and classification

problems is given below. The assessment measurements are used

to evaluate the problems. The accuracy of the classifier is used to

determine its overall correctness. Out of all the cases, it shows the

proportion of cases that were successfully classified. The accuracy of

the classifier can be assessed by dividing the total number of positive

predictions by the proportion of actual positive predictions. Stated

differently, it assesses the classifier’s ability to avoid producing

false positives.

The classification report of a number of machine learning

classifiers, such as KNN, SVC, and LR, is displayed in Table 1.

Along with the overall accuracy and weighted average, performance

parameters of each classifier are provided for each class (0 and 1),

including precision, recall, F1-score, and support. For both classes,

SVC classifiers perform well. The classifiers for KNN, SVC, and LR

TABLE 1 Classification report of ML classifiers for binary classes.

Labels Precision Recall F1-
support

Support

LR 0 0.76 0.77 0.76 118

1 0.79 0.78 0.78 131

Accuracy - - 0.78 249

Wei. Avg 0.78 0.78 0.78 249

SVC 0 0.86 0.90 0.88 118

1 0.90 0.87 0.89 131

Accuracy - - 0.88 249

Wei. Avg 0.88 0.88 0.88 249

K-NN 0 0.71 0.77 0.74 118

1 0.78 0.72 0.75 131

Accuracy - - 0.74 249

Wei. Avg 0.75 0.74 0.74 249

TABLE 2 Classification report of DL classifiers for binary classes.

Labels Precision Recall F1-
support

Support

DNN C0 0.90 0.90 0.90 118

C1 0.91 0.91 0.91 131

Accuracy - - 0.90 249

Wei. Avg 0.90 0.90 0.90 249

Deep

flatten

layers

DNN

C0 0.93 0.97 0.95 118

C1 0.97 0.93 0.95 131

Accuracy - - 0.95 249

Wei. Avg 0.95 0.95 0.95 249

Bi-Lstm C0 0.85 0.95 0.90 118

C1 0.95 0.85 0.90 131

Accuracy - - 0.90 249

Wei. Avg 0.90 0.90 0.90 249

Attention

LSTM

C0 1.00 1.00 1.00 113

C1 1.00 1.00 1.00 118

Accuracy - - 1.00 249

Wei. Avg 1.00 1.00 1.00 249

all perform well, with F1 scores, recall, and precision ranging from

0.71 to 0.90. High accuracy, weighted average scores, and macro

averages are attained by all classifiers, demonstrating strong overall

performance over the dataset.

The classification report of several DL classifiers, such as

Attention LSTM, Bi-LSTM, DNN, and DNN with deep flattened

layers, is shown in Table 2. Performance parameters for each

classifier, including precision, recall, F1-score, and support, are
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TABLE 3 Classification report of ML classifiers for multi-classes.

Labels Precision Recall F1-
support

Support

LR 0 0.76 0.77 0.76 118

1 0.79 0.78 0.78 131

Accuracy - - 0.78 249

Wei. Avg 0.78 0.78 0.78 249

SVC 0 0.86 0.90 0.88 118

1 0.90 0.87 0.89 131

Accuracy - - 0.88 249

Avg 0.88 0.88 0.88 249

K-NN 0 0.71 0.77 0.74 118

1 0.78 0.72 0.75 131

Accuracy - - 0.74 249

Wei. Avg 0.75 0.74 0.74 249

Key: Weighted-Wei.

given for each class (0 and 1) in addition to the overall accuracy

and weighted average. Strong performance is demonstrated by

all DL classifiers, with excellent recall, F1 scores, and precision

for both classes. An F1-score of 0.90 is obtained by DNN and

DNN with deep flattening layers, suggesting equal performance

across precision and recall for both classes. The Bi-LSTM effectively

captures long-range relationships in the input sequence, as

evidenced by its F1-score of 0.90. For both classes, Attention

LSTM receives perfect scores (1.00) for everymetric, demonstrating

remarkable performance and the capacity to choose and focus on

pertinent segments of the input sequence.

Table 3 the classification report for multi-class of all ML

classifiers for each class (0 and 1), as well as for the overall accuracy

and weighted average. LR, SVC and K-NN classifiers exhibit good

performance, with precision, recall, and F1-score ranging from 0.71

to 1.00. All classifiers achieve high accuracy and weighted average

scores, indicating robust overall performance across the dataset.

Table 4 the classification report for all DL classifiers in a multi-

class setting for each class (0, 1, 2, and 3). DNN achieves perfect

precision, recall, and F1-score (1.00) for all classes, indicating

excellent performance. In all classes, with minor deviations, Deep

Flatten Layers DNN shows good precision, recall, and F1-score.

With a weighted average F1-score of 0.93, the total accuracy

increases to 0.93. While significantly less than other models, Bi-

LSTM performs well with excellent recall, precision, and F1-score.

With a weighted average F1-score of 0.89, the total accuracy is

0.89. For every lesson, Attention LSTM attains flawless precision,

recall, and F1-score (1.00), signifying remarkable performance.

With a weighted average F1-score of 1.00, the overall accuracy

is 1.00.

The machine learning model for the binary class is shown

graphically in Figure 4. CM of the LR model, which is shown in

Figure 4; the model performed well, as seen by the greater value

of TP, where the true and predicted label was 0 with a value of

91, and TN, where the true and predicted label was 1, with a

value of 102. In the case of FP, where the real label was 1, and

TABLE 4 Classification report of DL classifiers for multi-classes.

Labels Precision Recall F1-
support

Support

DNN C0 1.00 1.00 1.00 63

C1 1.00 1.00 1.00 55

C2 1.00 1.00 1.00 65

C3 1.00 1.00 1.00 66

Accuracy - - 0.81 249

Wei. Avg 1.00 0.81 0.81 249

Deep

flatten

layers

DNN

C0 0.91 0.98 0.95 63

C1 0.88 0.91 0.89 55

C2 0.92 0.89 0.91 65

C3 1.00 0.92 0.96 66

Accuracy - - 0.93 249

Wei. Avg 0.93 0.93 0.93 249

Bi-

LSTM

C0 0.87 0.95 0.91 63

C1 0.82 0.84 0.83 55

C2 0.89 0.85 0.87 65

C3 0.98 0.92 0.95 66

Accuracy - - 0.89 249

Wei. Avg 0.89 0.89 0.89 249

Attention

LSTM

C0 1.00 1.00 1.00 63

C1 1.00 1.00 1.00 55

C2 1.00 1.00 1.00 65

C3 1.00 1.00 1.00 66

Accuracy - - 1.00 249

Wei. Avg 1.00 1.00 1.00 249

the predicted label was 0, with a value of 29, and FN, where the

true label was 0, and the expected label was 1, with a value of

27, the LR model incorrectly predicted a lower value. CM of the

SVC model, the model performed well, as seen by the greater value

of TP, where the true and predicted label was 0 with a value of

106, and TN, where the true and predicted label was 1, with a

value of 114. In the case of FP, where the real label was 1, and

the predicted label was 0, with a value of 17, and FN, where the

true label was 0, and the expected label was 1, with a value of

12, the LR model incorrectly predicted a lower value. CM of the

K-Nearest Neighbors model, the model performed well, as seen

by the greater value of TP, where the true and predicted label

was 0 with a value of 91, and TN, where the true and predicted

label was 1, with a value of 94. In the case of FP, where the

real label was 1, and the predicted label was 0, with a value of

37, and FN, where the true label was 0, and the expected label
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FIGURE 4

ML-CM for binary classes. (A) CM of logistic regression. (B) CM of SVC. (C) CM of KNN.

FIGURE 5

Performance visualization of DNN model. (A) Train accuracy. (B) Train loss. (C) CM. (D) ROC.

was 1, with a value of 27, the LR model incorrectly predicted a

lower value.

The DNN classifier’s performance evaluation is shown in

Figure 5, which includes training and validation loss and accuracy.

Figure 5A displays the accuracy graph for training and validation

curves. The DNN classifier’s training accuracy begins at 0th epoch

and is 0.40%. This study evaluates the result in 100 epochs, and

after some fluctuation of increases and decreases, the last value we

get is 0.89% at 100th epoch. The validation accuracy starts at 0th
epoch with a value of 0.50% and after some fluctuation of increases,

decreases, and sometimes remains constant value, then at last value

we get 0.70% at 100th epoch.The training and validation loss graph
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FIGURE 6

Performance visualization of DNN with flatten layer. (A) Train accuracy. (B) Train loss. (C) CM. (D) ROC.

is shown in Figure 5B. The training loss of the DNN classifier starts

at 0th epoch with a value of 1.0. It decreases up to 0.27. at 100th
epoch, and the validation loss starts at 0th epoch with a value of

0.7 and decreases up to 0.65 at 100th epoch. CM of the DNN

model, which is shown in Figure 5C, the model performed well,

as seen by the greater value of TP, where the true and predicted

label was 0 with a value of 106, and TN, where the true and

predicted label was 1, with a value of 119. The lower values of FP

and FN, where the real label was 0 and the predicted label was 1

with a value of 12, respectively, were incorrectly predicted by the

DNN model. The ROC curve illustrates the model’s performance

at various classification thresholds. A True Positive Rate (TPR) or

Sensitivity graph is plotted on the y-axis, while an x-axis indicates

the False Positive Rate (FPR). Indicating how successfully the

model discriminates across classes, the curve displays the trade-off

between sensitivity and specificity. It is better if the performance

curve is closer to the upper-left corner. The orange line indicates

the performance of the DNN model in the ROC curve for binary

class with value 0.96% in Figure 5D.

Figure 6 illustrates the performance evaluation of the DNN

with a flattened layer with training and validation loss and accuracy.

Figure 6A presents the training and validation accuracy graphs. The

training accuracy of the DNN classifier starts at 0th epoch with a

value of 0.48%. This study evaluates the result in 100 epochs, and

after some fluctuation of increases and decreases, the last value

we get is 100% at 100th epoch. The validation accuracy starts at

0th epoch with a value of 0.56% and after some fluctuation of

increases, decreases, and sometimes remains constant value, then

at the last value we get 0.74% at 100th epoch. Figure 6B presents the

training and validation loss graph. The training loss of the DNN

with flattened layer classifier starts at 0th epoch with a value of

0.71. It decreases up to 0.01. at 100th epoch, and the validation loss

starts at 0th epoch with a value of 0.71 and decreases up to 1.78

at 100th epoch. CM of the DNN model with flattened layer, which

is shown in Figure 7C, the model performed well, as seen by the

greater value of TP, where the true and predicted label was 0 with a

value of 114, and TN, where the true and predicted label was 1, with

a value of 122. The lower values of FP and FN, where the real label

was 0 and the predicted label was 1 with a value of 4, respectively,

were incorrectly predicted by the DNNmodel. A TPR or sensitivity

graph is plotted on the y-axis, while an x-axis indicates the FPR.

Indicating how successfully the model discriminates across classes,
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FIGURE 7

Performance visualization of Bi-LSTM. (A) Train accuracy. (B) Train loss. (C) CM. (D) ROC.

the curve displays the trade-off between sensitivity and specificity.

It is better if the performance curve is closer to the upper-left

corner. The orange line indicates the performance of the DNN

model with a flattened layer in the ROC curve for binary class with

value 0.97% in Figure 6D.

Figure 7 illustrates the performance evaluation of the Bi-LSTM

with training and validation loss and accuracy. In Figure 7A, the

training accuracy of the Bi-LSTM classifier starts at 0th epoch with

a value of 0.58%. This study evaluates the result in 100 epochs,

and after some fluctuation of increases and decreases, the last value

we get is 0.98% at 100th epoch. The validation accuracy starts at

0th epoch with a value of 0.53% and after some fluctuation of

increases, decreases, and sometimes remains constant value, then

at the last value we get 0.70% at 100th epoch. Figure 7B presents the

training and validation loss graph. The training loss of the Bi-LSTM

classifier starts at 0th epoch with a value of 0.7. It decreases up to

0.18. at 100th epoch, and the validation loss starts at 0th epoch with

a value of 0.7 and decreases up to 1.19 at 100th epoch. CM of the Bi-

LSTM, which is shown in Figure 7C, the model performed well, as

seen by the greater value of TP, where the true and predicted label

was 0 with a value of 112, and TN, where the true and predicted

label was 1, with a value of 112. The lower values of FP and FN,

where the real label was 0 and the predicted label was 1 with a

value of 6, respectively, were incorrectly predicted by the Bi-LSTM

model. Indicating how successfully the model discriminates across

classes, the curve displays the trade-off between sensitivity and

specificity. It is better if the performance curve is closer to the

upper-left corner. The orange line indicates the performance of the

Bi-LSTMmodel in the ROC curve for binary class with value 0.95%

in Figure 7D.

Figure 8 illustrates the performance evaluation of the Attention

LSTMwith training and validation loss and accuracy. In Figure 8A,

the training accuracy of the Attention LSTM classifier starts at 0th
epoch with a value of 0.52%. This study evaluates the result in 100

epochs, and after some fluctuation of increases and decreases, the

last value we get is 100% at 100th epoch. The validation accuracy

starts at 0th epoch with a value of 0.61% and after some fluctuation

of increases, decreases, and sometimes remains constant value, then

at the last value we get 100% at 100th epoch. Figure 8B presents

the training and validation loss graph. The training loss of the
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FIGURE 8

Performance visualization of attention LSTM. (A) Train Accuracy. (B) Train loss. (C) CM. (D) ROC.

Attention LSTM classifier starts at 0th epoch with a value of 0.69.

It decreases up to 0.01. at 100th epoch, and the validation loss

starts at 0th epoch with a value of 0.68 and decreases up to 0.01

at 100th epoch. CM of the Attention LSTM, which is shown in

Figure 8C, the model performed well, as seen by the greater value

of TP, where the true and predicted label was 0 with a value of 118,

and TN, where the true and predicted label was 1, with a value of

131. The lower values of FP and FN, where the real label was 0

and the predicted label was 1 with a value of 0, respectively, were

incorrectly predicted by the Attention LSTM model. Indicating

how successfully the model discriminates across classes, the curve

displays the trade-off between sensitivity and specificity. It is better

if the performance curve is closer to the upper-left corner. The

orange line indicates the performance of the Attention LSTM

model in the ROC curve for binary class with value 100% in

Figure 8D.

Figure 9 shows the confusion matrix of the ML multi-class

label. The diagonal cells of the matrix show the number of

occurrences correctly identified, and the off-diagonal cells show

the proportion of instances that were wrongly classified. Figure 9A

presents the CM of LR. The x-axis shows the predicted labels and

the y-axis represents the true labels, which are 0, 1, 2, and 3. 47

instances were projected for label 0, 34 for label 1, 45 for label 2 and

47 for label 3 accurately anticipated. Figure 9B presents the CM of

SVC. The x-axis shows the predicted labels and the y-axis represents

the true labels, which are 0, 1, 2, and 3. 60 instances were projected

for label 0, 41 for label 1, 52 for label 2 and 47 for label 3 accurately

anticipated. Figure 9C presents the CM of KNN. The x-axis shows

the predicted labels and the y-axis represents the true labels, which

are 0, 1, 2, and 3. 47 instances were projected for label 0, 42 for label

1, 43 for label 2 and 26 for label 3 accurately anticipated.

Figure 10 illustrates the performance evaluation of the DNN

classifier. Figure 10A presents the training and validation accuracy

graph. The training accuracy of the DNN classifier starts at 0th
epoch with a value of 0.23%. After some fluctuations of increase and

decrease. It increases up to 0.78% at 100th epoch. The validation

accuracy starts at 0th epoch with a value of 0.3%, and after some

fluctuations increase and decrease and remain constant, it increases

up to 0.59% at 100th epoch. Figure 10B presents the training and

validation loss graph. The training loss of the DNN classifier

starts at 0th epoch with a value of 0.89.After some fluctuations

of increase and decrease. It decreases up to 0.32 at 100th epoch,

and the validation loss starts at 0th epoch with a value of 0.77,

and after some fluctuations, it decreases up to 0.46 at 100th epoch.
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FIGURE 9

ML-CM of multi-classes. (A) CM of logistic regression. (B) CM of SVC. (C) CM of KNN.

FIGURE 10

Performance visualization of DNN. (A) Train accuracy. (B) Train loss. (C) CM. (D) ROC.

Figure 10C shows the confusion matrix of the DNN. 58 instances

were projected for label 0, 41 instances for C1, 54 instances for

C2, and 49 instances for C3 are accurately anticipated. Indicating

how successfully the model discriminates across classes, the curve

displays the trade-off between sensitivity and specificity. It is better

if the performance curve is closer to the upper-left corner. Here,
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categorization is done using four classifications. C0 is represented

by the orange line, C1 is represented by the green line, C3 is

represented by the red line, and C4 represents the blue line.

The ROC curve for each class in the LR model is displayed in

Figure 10D. The studies are conducted in four classes: C0 scored

0.98%, C1 scored 0.92%, C2 scored 0.94%, and C3 scored 0.96%.

Figure 11 illustrates the performance evaluation of the DNN

with a flattened layer classifier. As shown in Figure 11A, the

DNNflatten classifier’s training accuracy begins at 0ht epoch and has

a value of 0.23%. It eventually stays consistent after experiencing

some ups and downs. A maximum growth of 1.0% occurs at 100th
epoch. The validation accuracy has a value of 0.36% at 0th epoch.

After some variations that rise, fall, and stay constant, it rises to

0.53% at 100th epoch. The training and validation loss graph is

shown in Figure 11B. The training loss of the DNNflatten classifier

starts at 0th epoch with a value of 1.4, it decreases up to 0.0 at

100th epoch, and the validation loss starts at 0th epoch with a

value of 1.4. After some fluctuations, it increases up to 2.4 at 100th
epoch. Figure 11C shows the confusion matrix of the DNNflatten.

Sixty two instances were projected for label 0, 50 instances for

C1, 58 instances for C2, and 61 instances for C3 are accurately

anticipated. Indicating how successfully the model discriminates

across classes, the curve displays the trade-off between sensitivity

and specificity. It is better if the performance curve is closer

to the upper-left corner. Here, categorization is done using four

classifications. The ROC curve for each class of the DNNflatten

model is displayed in Figure 11D. The studies are conducted in four

classes: C0 scored 0.99%, C1 scored 0.96%, C2 scored 0.97%, and C3

scored 0.99%.

Figure 12 illustrates the performance evaluation of the Bi-

LSTM classifier. In Figure 12A, the training accuracy of the Bi-

LSTM classifier starts at 0th epoch with a value of 0.2%. After some

fluctuations increase and decrease, it increases up to 1.0% at 170th
epoch and the validation accuracy starts at 0st epoch with a value of

0.42%. After some fluctuations increase and decrease and remain

constant, it increases up to 1.0% at 70th epoch. Figure 12B presents

the training and validation loss graph. The training loss of the Bi-

LSTM classifier starts at 0th epoch with a value of 0.7. It decreases up

to 0.0 at 70th epoch and the validation loss starts at 0st epoch with a

value of 0.62. It decreases up to 0.0 at 70th epoch. Figure 12C shows

the confusion matrix of the Bi-LSTM. 63 instances were projected

for label 0, 55 instances for C1, 65 instances for C2, and 66 instances

for C3 are accurately anticipated. Indicating how successfully the

model discriminates across classes, the curve displays the trade-off

between sensitivity and specificity. It is better if the performance

curve is closer to the upper-left corner. Here, categorization is done

using four classifications. The ROC curve for each class of the Bi-

LSTMmodel is displayed in Figure 12D. The studies are conducted

in four classes. C0 scored 0.98%, C1 scored 0.95%, C2 scored 0.95%,

and C3 scored 0.99%.

The Attention LSTM classifier’s performance evaluation is

shown in Figure 13, which also includes CM and ROC graphs,

training and validation loss and accuracy. The training and

validation accuracy graph is shown in Figure 13A. At 0th epoch,

the Attention LSTM classifier’s training accuracy begins at 0.2%.

After some fluctuations increase and decrease, it increases up to

0.92% at 100th epoch, and the validation accuracy starts at 0th epoch

with a value of 0.49%. After some fluctuations increase and decrease

and remain constant, it increases up to 0.62% at 100th epoch. The

training and validation loss graph is shown in Figure 13B. The

training loss of the Attention LSTM classifier starts at 0th epoch

with a value of 1.4. After some fluctuations increase and decrease,

it decreases up to 0.2 at 100th epoch, and the validation loss starts

at 0th epoch with a value of 1.4. After some fluctuations, it increases

up to 1.6 at 100th epoch. Figure 13C displays the Attention LSTM’s

confusion matrix. The matrix’s diagonal cells display the number

of cases that were correctly identified, while the off-diagonal cells

display the percentage of instances that were incorrectly classified.

The predicted labels are represented by the class labels 0, 1, 2, and

3. Sixty instances were projected for label 0, 46 instances for C1, 55

instances for C2, and 61 instances for C3 are accurately anticipated.

Indicating how successfully the model discriminates across classes,

the curve displays the trade-off between sensitivity and specificity.

It is better if the performance curve is closer to the upper-left

corner. Here, categorization is done using four classifications. The

ROC curve for each class of the Attention LSTMmodel is displayed

in Figure 13D. The studies are conducted in four classes. C0 scored

1.00%, C1 scored 1.00%, C2 scored 1.00%, and C3 scored 1.00%.

The area under the curve for all classes is 100% in the Attention

LSTM classifier.

4.1 Discussion and findings

The performance variations between different classifiers and

classes can be attributed to several factors. The Attention LSTM

model’s superior performance in binary classification may result

from its ability to capture temporal dependencies and contextual

information in the data effectively. This model focuses on relevant

parts of the data, allowing it to handle the intricate nature of

the VR dataset better than simpler models. In contrast, simpler

models like SVC, KNN, and LR may struggle with the complex,

high-dimensional nature of the VR dataset, leading to lower

performance. The 100% accuracy achieved by the DNN and

Attention LSTM models in multi-class classification suggests that

these models can effectively learn and generalize from the dataset’s

features. The DNN, with its deep architecture, excels in capturing

complex data relationships, achieving high accuracy and F1 scores

in multi-class classification. However, the high performance might

also indicate overfitting, necessitating further validation with

diverse datasets to ensure robustness.

The performance disparities observed among different

classifiers and across various classes in this study can be

attributed to several factors. The Attention LSTM model’s superior

performance in binary classification stems from its adeptness in

capturing temporal dependencies and contextual nuances within

the VR dataset. By focusing on salient data components, the

Attention LSTM effectively manages the dataset’s intricate nature,

which simpler models like SVC, KNN, and LR struggle with due to

their limitations in handling high-dimensional and complex data.

Conversely, deep learning models such as DNN and Attention

LSTM achieve notable success in multi-class classification, evident

from their 100% accuracy, showcasing their capability to generalize

and learn intricate dataset features. However, these models may
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FIGURE 11

Performance visualization of DNN flatten layer. (A) Train accuracy. (B) Train loss. (C) CM. (D) ROC.

exhibit signs of overfitting, necessitating validation across diverse

datasets to ensure robust performance.

For instance, the SVC classifier, effective in smaller datasets,

faltered when faced with high-dimensional VR data, resulting in

reduced accuracy and precision. KNN’s performance was adversely

affected by noise sensitivity and dataset size, impacting its recall

and F1 scores. LR, while straightforward, lacked the sophistication

to capture nuanced patterns, leading to moderate performance

across metrics. Bi-LSTM is proficient in sequential data handling

and has improved recall but at the cost of increased computational

intensity. These algorithmic differences, coupled with architectural

complexities and dataset characteristics, collectively contribute

to the performance variations observed across classifiers and

classes. The superior performance of DNN and Attention LSTM

underscores their ability to discern and exploit intricate data

patterns effectively.

Ethical considerations are paramount when utilizing

physiological and behavioral data for emotion recognition in

virtual reality (VR) environments. This study acknowledges the

sensitive nature of such data, including electrocardiogram (ECG),

galvanic skin response (GSR), and eye-tracking information, which

can provide deep insights into an individual’s emotional state. It is

essential to ensure that the collection, storage, and utilization of this

data adhere to rigorous ethical standards to protect participants’

privacy and rights.

Firstly, informed consent procedures were meticulously

followed during data acquisition from the VREED dataset, which

involved 34 healthy individuals participating voluntarily through

focus groups and pilot experiments. Participants were informed

about the nature of data collection, the purpose of the study,

and their rights regarding data privacy and confidentiality. This

transparency is crucial in establishing trust and ensuring that

participants understand how their data will be used. Secondly,

measures were implemented to safeguard user privacy throughout

the data handling process. Data anonymization techniques were

employed to remove personally identifiable information, ensuring

that individual identities remain protected. Additionally, strict

protocols were followed to secure data storage and transmission,

utilizing encryption methods and access controls to prevent

unauthorized access.

Furthermore, ethical guidelines were adhered to in the

processing and analysis of physiological and behavioral data. Data
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FIGURE 12

Performance visualization of Bi-LSTM. (A) Train accuracy. (B) Train loss. (C) CM. (D) ROC.

handling procedures were designed to minimize risks of data

breaches or misuse. The study also considered potential biases

in the dataset and addressed them through careful selection and

preprocessing of features, aiming to enhance fairness and equity in

emotion recognition outcomes across diverse demographic groups.

In conclusion, while leveraging physiological and behavioral data

offers promising insights for emotion recognition in VR, it is

imperative to uphold ethical principles rigorously. This includes

obtaining informed consent, ensuring data anonymity and security,

and mitigating potential biases. By adhering to these ethical

considerations, this study strives to advance emotion recognition

research responsibly and ethically.

4.2 Limitations and future direction of the
study

One limitation of the current study is the initial simplification

of the dataset into binary and multi-class categories, which might

have resulted in the loss of nuanced emotional information,

potentially affecting the model’s ability to recognize subtle

variations in emotions. Additionally, while processing for missing

values and normalization was necessary, it might have introduced

biases or inaccuracies in the dataset, impacting the overall

performance of the models. The complexity of the Attention

LSTM model, despite its high performance, poses challenges

for interpretability and real-world deployment, particularly

in understanding the decision-making process of the model.

Furthermore, the study’s focus on a specific dataset within a

controlled VR environment might limit the generalizability of

the findings to other settings or real-world scenarios where data

variability is higher. Lastly, the deployment of deep learning

models, especially those involving attention mechanisms, requires

significant computational resources, which might be a constraint

in resource-limited environments.

Future research could enhance the current study by

incorporating additional modalities such as physiological

signals (e.g., heart rate, skin conductance) and voice analysis. These

modalities could provide a more comprehensive understanding of

emotions and improve model accuracy and robustness. Developing

real-time emotion recognition systems for VR applications is
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FIGURE 13

Performance visualization of attention LSTM. (A) Train accuracy. (B) Train loss. (C) CM. (D) ROC.

another important direction, as it could enhance user experiences

and provide immediate feedback. This requires optimizing models

for speed and efficiency without compromising accuracy. Ensuring

that emotion recognition systems are compatible across various VR

platforms and devices is crucial for broader applicability. Future

work should focus on creating adaptable models that maintain

performance across different hardware and software environments.

To address the complexity and interpretability issues of

current models, future research could explore more interpretable

machine learning techniques or develop methods to make deep

learning models more transparent. Collecting and utilizing

larger, more diverse datasets that encompass a wide range

of emotional expressions and contexts can help improve the

generalizability of the models. This includes data from different

demographics, cultures, and settings to ensure the models

are robust and inclusive. Finally, conducting user-centric

studies to assess the practical implications and usability of

emotion recognition systems in real-world VR applications

will provide valuable insights into their effectiveness and areas

for improvement.

5 Conclusion

This study presented an innovative approach for emotion

recognition in VR environments using ML and DL classifiers,

leveraging a multimodal dataset including eye-tracking and

physiological data. Our methodology successfully outperformed

traditional approaches in binary and multi-class classification

tasks, with the Attention LSTM model excelling in binary

classification and the DNN combined with Attention LSTM

achieving up to 99.99% accuracy in multi-class scenarios.

Despite these advancements, our approach has limitations worth

noting: the initial dataset simplification into binary and multi-

class categories may overlook subtle emotional distinctions,

and while rigorous preprocessing was conducted, potential

biases introduced during data handling could impact model

performance. Furthermore, the computational demands of deep

learning models, especially those with attention mechanisms,

pose challenges for real-time deployment in VR settings. Future

research will explore integrating additional modalities like voice

analysis and developing real-time systems to enhance applicability

Frontiers inMedicine 17 frontiersin.org

https://doi.org/10.3389/fmed.2024.1438720
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alharbi 10.3389/fmed.2024.1438720

across diverse VR environments, aiming to improve both the

accuracy and practical usability of emotion recognition systems

in VR.
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