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Clonal MAPK-pathway activating mutations in the MAP2K1 (MEK1) gene are 
present in approximately 9% of cutaneous melanomas. These mutations are 
divided into three classes: RAF-dependent, RAF-regulated, RAF-independent. 
Cell lines with class-2 or RAF-regulated MAP2K1-mutations are most responsive 
to MEK-inhibitors. We present a patient with a class-2 MAP2K1-mutant stage 
IV-M1d melanoma who experienced extra- and intracranial progressive disease 
following treatment with immune-checkpoint inhibitors. The patient was treated 
with the MEK-inhibitor trametinib (2  mg OD) to which a low-dose of dabrafenib 
(50  mg BID) was added to mitigate skin-toxicity. Following documentation of a 
partial response (PR), she developed one new, and increase in volume of two 
pre-existing brain metastases that were treated with stereotactic radiosurgery 
(SRS) while continuing trametinib and dabrafenib. Thereafter, a deep partial 
radiologic and metabolic response both extra-and intra-cranially was achieved 
and is ongoing 88  weeks after initiating trametinib. She experienced no grade  >  2 
adverse events. Focal post-radiation necrosis at site of an irradiated brain 
metastasis developed 9 months after SRS and is successfully being treated with 
low-dose bevacizumab. This is the first published case of a durable intracranial 
disease control with the MEK-inhibitor trametinib of a stage IV-M1d class-2 
MAP2K1-mutant melanoma. This illustrates the utility of NGS profiles that include 
class-1/2 MAP2K1-mutations in patients with melanoma and other malignancies 
to provide valuable information on a potentially active individualized treatment 
option. A prospective clinical trial that further evaluates the efficacy of MEK-
inhibitor therapies in MAP2K1-mutated tumors is justified.
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1 Introduction

Activating mutations of the mitogen-activated protein kinase (MAPK)-pathway drive 
proliferation, invasion and metastasis of melanoma (1, 2). Mutations in BRAF (mostly 
V600E/K), NRAS (mostly Q61R/K/L) and NF1 occur in approximately 50, 30, and 25% of 
cutaneous melanomas, respectively, and are mutually exclusive (3). Patients with triple wild-
type melanoma may carry other oncogenic driver mutations (e.g., KIT, MAP2K1), which 
mostly cause direct or indirect activation of the MAPK-pathway (4).
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Regardless of mutational status, improved overall survival (OS) 
can be achieved in advanced melanoma with immune checkpoint 
blockade (ICB) (5, 6). Additionally, targeted therapy with BRAF-/
MEK-inhibitors increases survival in BRAFV600mutant melanoma 
(7–10). To date, no targeted therapy improves OS in BRAFV600wild-
type melanoma. Preclinical data indicate that MEK-inhibition can 
be effective in triple wild-type melanoma (11). Arm B of the phase II 
clinical trial TraMel-WT evaluated trametinib (competitive MEK1/2-
inhibitor) combined with low-dose dabrafenib (to mitigate 
MEK-inhibitor-induced skin-toxicity) in 24 patients with pretreated 
BRAFV600/NRASQ61wild-type melanoma (NCT04059224). The overall 
response rate was 29%, median progression-free survival (mPFS) and 
mOS were 13.3 and 54.3 weeks, respectively (12).

MAP2K1, also known as MAPK/ERK-kinase-1 (MEK1), is a 
serine/threonine/tyrosine kinase that is activated by upstream RAF 
kinases. Clonal mutations in MAP2K1 are present in approximately 
9% of cutaneous melanomas and activate the MAPK-pathway (4).

In this report, we present in more detail the case of a patient with 
a triple wild-type, class-2 MAP2K1-mutant AJCC stage IV-M1d 
melanoma, treated in the TraMel-WT trial, who had a deep and 
durable response to MEK-inhibitor treatment with excellent treatment 
tolerance (12). The patient provided written informed consent 
for publication.

2 Case description

A 40-year-old Caucasian female was diagnosed with a 
pT4bN1aM0 BRAFV600wild-type cutaneous nodular melanoma on the 
left shoulder. During adjuvant pembrolizumab treatment, a solitary 
subcutaneous metastasis was resected and irradiated. One year after 
diagnosis, [18F]-fluorodeoxyglucose-positron emission tomography 
computed tomography ([18F]FDG-PET/CT) revealed supra- and 
infradiaphragmatic lymph node and bone metastases. Treatment with 
ipilimumab/nivolumab was initiated. She developed immune-related 
colitis after two cycles and progressed with seven new brain metastases 
(AJCC stage IV-1Md) (Figure 1A). Comprehensive genomic profiling 
through next generation sequencing (NGS) revealed a clonal class-2 
RAF-regulated MAP2K1 mutation (Q58_E62del, allele frequency 
37%, in-frame-deletion; the complete NGS results can be found in 
Table 1). The patient initiated trametinib 2 mg once and dabrafenib 
50 mg twice daily in the TraMel-WT trial in September 2022. 
Low-dose dabrafenib was associated upfront to mitigate skin-toxicity 
(12, 13). She did not receive any local intracranial therapy at this time 
for the brain metastases. After 5 weeks, brain MRI revealed no new 
lesions and baseline lesions were considered stable according to 
RANO-BM criteria (14). Response assessment in week 7 with [18F]
FDG-PET/CT showed complete metabolic response of extracranial 
lesions (Figure 1B). After 14 weeks of treatment, brain MRI indicated 
complete regression of five brain metastases. However, there was one 
new lesion (6 mm longest diameter) and an increased diameter of two 
preexisting metastases (Figure  1C). At the patient’s request, close 
surveillance rather than immediate radiotherapy was applied while 
continuing trametinib and dabrafenib. Following confirmed 
progression in these three lesions nearly 2 months later, they were 
treated with stereotactic radiosurgery (1 × 20 Gy) (Figure  1D). A 
follow-up MRI (week 32) showed decrease in all three lesions and no 
new lesions. After 66 weeks of treatment, the patient remained in 

complete metabolic remission extracranially (Figure 1E). The week-59 
brain MRI confirmed a continuing decrease in diameter of one of the 
irradiated lesions, and complete regression of the others (Figure 1E).

Treatment was well tolerated. She intermittently reported 
low-grade nausea, pruritus, epigastric pain and fatigue, but did not 
experience skin-toxicity. No dose reductions of trametinib or 
dabrafenib were required.

While extra- and intracranial responses persisted, the week-59 
brain MRI revealed signs of focal post-radiation necrosis of the brain 
(fRNB) approximately 8 months after SRS for the lesion in the 
paramedian frontal right region (Figure 2A). A brain MRI, repeated 6 
weeks later, showed increase in contrast-enhancement and size of the 
region (Figure 2B), which was associated with headaches. In order to 
differentiate between fRNB and tumor progression, an [18F]FDG-PET/
CT of the brain was performed and demonstrated focal 
hypometabolism at the region of the gadolinium-contrast-
enhancement, supporting the diagnosis of fRNB. A low-dose 
bevacizumab treatment regimen (previously established as effective 
treatment for fRNB) was initiated to treat the perilesional edema (15) 
(Figure 2C). After two doses of bevacizumab (8 weeks) the headache 
subsided and MRI showed an important decrease in contrast-
enhancement and edema (Figure 2D).

At the moment of writing, after 88 weeks of treatment, the patient 
continues to have a radiological response and remains on treatment 
(trametinib with low-dose dabrafenib and bevacizumab), while 
maintaining an active lifestyle.

3 Discussion

No approved therapies have shown to improve OS in patients with 
BRAFV600wild-type melanoma who progress on ICB. In melanoma 
with non-NRASQ61/BRAFV600, MAPK-pathway activating mutations, 
MEK-inhibitor therapy has shown anti-tumor activity (12, 16, 17). In 
vitro trametinib has activity in triple wild-type melanoma cell lines 
(18). In MAP2K1-mutant melanoma, there is one case report of a 
partial response to trametinib in a patient with stage IV-M1c 
melanoma, but resistance developed 3 months later and dose 
reduction was needed because of trametinib-induced skin-toxicity 
(Table 2) (19). To the best of our knowledge, this is the first case report 
of stage IV-M1d MAP2K1-mutant melanoma with a durable 
extracranial complete response and intracranial disease control with 
trametinib and low-dose dabrafenib. Our patient initially had 
unconfirmed PR, thereafter oligo-progression in the brain, which was 
managed locally with SRS while continuing trametinib and dabrafenib. 
Eventually, a deep and durable disease control, both extra- and 
intracranially, was achieved.

The prognosis and natural evolution of AJCC stage IV-M1d, 
BRAF-wild-type melanoma with active brain metastasis progressing 
on ICB is very poor. In this patient, the brain metastases were 
successfully controlled: the majority disappeared with trametinib and 
no new lesions emerged following SRS, maintaining disease control 
for more than 20 months at moment of writing.

MAP2K1 mutations can be classified into three groups. Class-1, 
RAF-dependent MAP2K1-mutations are dependent on upstream 
RAF-activation to induce high levels of activated phosphorylated ERK 
(pERK), likewise the pathway is self-limited by feedback inhibition of 
RAS or RAF. Class-2, RAF-regulated MAP2K1-mutations are partially 
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FIGURE 1

Case presentation with radiological evaluation with [18F]FDG-PET/CT (maximum intensity projections and fused axial images) and contrast-enhanced 
T1-weighted MRI of the brain. (A) Baseline, week minus 3 shows hypermetabolic supra-and infradiaphragmatic lesions on PET/CT. In the brain, a lesion 
can be noted parafalcine in the left (L) occipital lobe (4  mm; upper image) and no lesion is noted in the right (R) nucleus caudatus (lower image). 
(B) PET/CT in week 7 shows a significant decrease in metabolic activity as well as a decrease in size of the lesions (unconfirmed partial response). Brain 
MRI at week 5 shows a slight increase of the L occipital parafalcine lesion (7  mm, upper image), however there are no new lesions and considering a 
lead time bias of 3  weeks the treatment is continued. (C) On brain MRI in week 14, the parafalcine L occipital lesion has disappeared (upper image), a 
new lesion in the nucleus caudatus has emerged (lower image). (D) PET/CT in week 24 shows a metabolic remission extracranially. MRI shows an 
increased size of the lesion on the nucleus caudatus (lower image); SRS is performed for this lesion and 2 other progressive lesions (not shown). 
(E) PET-CT in week 66 shows a sustained complete metabolic remission, MRI in week 59 shows a shrinkage of the lesion in the nucleus caudatus 
(lower image), no other intracranial lesions are detectable on MRI. BID, twice a day; dab, dabrafenib; OD, once daily; SRS, stereotactic radiosurgery; 
trame, trametinib.

TABLE 1 Comprehensive genomic profiling of the presented patient.

Gene Shortcode VAF (%) Biological class Clinical class

MAP2K1 Q58_E62del 37 Likely pathogenic1 Tier IB

RB1 / 41 Likely pathogenic1 Tier III

LRP1B W3334* 15 Likely pathogenic1 Tier III

LRP1B I2644T 60 VUS Tier III

LRP1B D3049E 53 VUS Tier III

ZNF217 E914_P915delinsDS 47 VUS Tier III

GNAS A436D 45 VUS Tier III

TET1 P119Q 37 VUS Tier III

CD276 P185S 31 VUS Tier III

LRP1B E547Q 30 VUS Tier III

PLCG2 N798S 28 VUS Tier III

SPTA1 S818F 28 VUS Tier III

IL7R G434D 26 VUS Tier III

GRM3 G18K 22 VUS Tier III

1These mutations are reported as being likely pathogenic following the comprehensive genomic profiling. 
VAF, variant allele frequency; VUS, variant of uncertain significance.
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TABLE 2 Overview of case reports describing patients with an MAP2K1-mutation treated with trametinib.

Case Current case Krebs et al. 
(19)

Wang et al. 
(20)

Cheng et al. 
(21)

Andritsos 
et al. (22)

Azorsa 
et al. (23)

Gounder et al. 
(24)

Kumamoto 
et al. (25)

Lorillon 
et al. (26)

Roeser 
et al. (27)

Age, gender 40 y, F 55 y, M 52 y, F 67 y, M 52 y, M 16 y, M 62 y, M 18 y, M 18 y, M 65 y, F

Tumor type Melanoma Melanoma Colorectal cancer Nonsquamous 

NSCLC

vHCL LCH non-LCH* Non-LCH* Pulmonary 

LCH

LCH

AJCC stage Stage IV-M1d Stage IV-M1c Stage IV Stage IV / / / / / /

Prior systemic 

treatment

Pembrolizumab, 

ipilimumab/nivo-

lumab

Ipilimumab FOLFOX, 

FOLFOX + 

panitumumab

Carboplatin + 

paclitaxel, 

pembrolizumab, 

carboplatin + 

pemetrexed + 

bevacizumab, 

docetaxel

Cladribine, BL22, 

rituximab/pento-

statin, rituximab, 

ibrutinib, 

bendamustine/ 

retuximab, 

allogeneic 

transplantation

LCH-III 

therapy, 

afuresertib, 

cytarabine, 

vincristine, 

clofarabine

Rituximab/ 

bendamustine

doxorubicin/

cyclophosphamide

Steroids, ICE, 

cladribine

Cladribine Vinblastine, 

cladribine

MAP2K1 

mutation

p.Q58-E62del 

(Class-2)

p.C121S 

(Class-2) P124A 

(Unknown)

p.E102-I103del 

(Class-3)

p.K57N (Class-2) p.K57N (Class-2) p.L98-K104del 

(Class-3)

p.F53L (Class-2) p.F53L (Class-2) p.E102-I103del 

(Class-3)

p.E102-I103del 

(Class-3)

Trametinib 

dosing

Trametinib (2 mg 

OD) + Dabrafenib 

(50 mg BID)

2 mg OD - 

decreased to 

1 mg OD - re-

challenge 2 mg 

upon first PD

Not reported 2 mg OD 2 mg OD 2 mg OD 2 mg OD 1st trial: 2 mg OD – 

decreased to 0.5 mg 

OD 2nd trial: 2 mg 

OD

2 mg OD 2 mg OD – 

decreased to 

1.5 mg

Response Initial unconfirmed 

PR, followed by PD 

intracranial; PR after 

local treatment

PR, then PD Decline in CA19.9, 

PD on first 

radiographic 

assessment

Mixed response 

(response in some 

lesions, PD in 

others)

Clinical near CR, at 

6 months SD with 

decreased disease 

activity

PD CR (>2 years) 1st trial: PD in liver

2nd trial: PR

PR Initial PR, then 

PD after 

5 months; 

subsequent CR 

under 

cobimetinib

Toxicity G1 itching

G1 nausea

G1 epigastric pain

G1 fatigue

G3 fatigue

G3 skin rash 

(dose 

reduction)

Not reported Acneiform rash, 

diarrhea, nausea

G1 Acneiform 

facial rash

Not reported Not reported 1st trial: G4 

hepatotoxicity

2nd trial: G2-3 skin 

toxicity (treatment 

discontinuation)

G1 Acneiform 

skin rash

G1 CPK 

elevation

Cardiac toxicity 

with decreased 

LVEF (dose 

reduction)

*Histiocytic sarcoma. Abbrevations: CPK: creatine phosphokinase; CR: complete response; F: female; G: grade; LCH: Langerhans cell histiocytosis; LVEF: left ventricle ejection fraction; M: male; PD: progressive disease; PR: partial response; NSCLC: non-small-cell 
lung cancer; SD: stable disease; vHCL: variant hairy cell leukemia; y: years (19–27).
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dependent on RAF-activation but have varying amounts of 
RAF-independent activity. Finally, class-3, RAF-independent 
mutations induce high levels of pERK without upstream 
RAF-activation and are not susceptible to feedback inhibition (11). 
Class-1/2 MAP2K1-mutations are usually associated with upstream 
mutations in RAS, RAF, or NF1, while class-3 MAP2K1-mutations do 
not coexist with other mutations. MAP2K1-mutations have been 
successfully targeted in vitro with MEK-inhibitors that preferably bind 
to the inactive, unphosphorylated form of the MEK1-enzyme. Both 
class-1 and -2 MAP2K1-mutations are (partially) RAF-dependent, 
suggesting a significant inactive fraction of the mutant MEK1-
enzymes and thus sensitivity to trametinib. Class-3 mutated proteins 
on the other hand are resistant to allosteric MEK-inhibitors due to 
their permanently active conformation (11). The MAP2K1-mutation 
(Q58-E62del) found in our patient, results in an in-frame deletion and 
is classified as class-2 RAF-regulated MAP2K1-mutation (28). In 
accordance with these preclinical results, the melanoma lesions in our 
case responded to trametinib.

A recent retrospective review of the AACR genie, a clinico-
genomic database showed that co-occurring MAPK-pathway 
mutations (e.g., NRAS, NF1) are significantly more likely with class-1 
MAP2K1-mutations (82.3%) compared to class-2 (30.9%) and class-3 
(10.6%) in any tumor type. This highlights that additional activation 
of the MAPK-pathway is needed to induce malignant cell growth in 
class-1 RAF-dependent MAP2K1-mutant tumors, that this is to a 

lesser extent necessary in class-2 MAP2K1-mutant and not necessary 
in class-3 MAP2K1-mutant tumors. Class-2/3 MAP2K1-mutations 
can therefore act as a driver mutation. Additionally, patients receiving 
MAPK-inhibitors, with class-2 MAP2K1-mutations derived the most 
benefit, translating to a longer PFS (4.0 months) and duration of 
response (23.8 months) (29).

Several other cases of successful MEK-inhibitor use in MAP2K1-
mutant malignancies have been documented, primarily 
non-Langerhans cell histiocytosis and hairy cell leukemia (Table 2) 
(30). Responses were observed in cases with class-2 and -3 MAP2K1-
mutations, however in the class-3 cases, responses were mostly short-
lived. These data show the importance of precision oncology and 
systematic genomic analysis through NGS in both triple wild-type 
melanoma and other malignancies in which no classical driver 
mutations have been identified to expand possible treatment options.

Another point of interest is that in five of the seven cases reporting 
adverse events, rash or acneiform dermatitis were reported (Table 2). 
In one case this led to treatment discontinuation, in another trametinib 
dosing was reduced (19, 25). In our patient trametinib-induced skin-
toxicity was successfully prevented by adding low-dose BRAF-
inhibitor, as previously reported by our group, seemingly without 
compromising MEK-inhibitor activity (12, 13). Consequently, the 
patient has an excellent and durable tolerance of full dose trametinib.

Of note, the patient developed fRNB 8 months after SRS, a late 
side effect of SRS with increasing frequency as more effective therapy 

FIGURE 2

Case presentation of focal post-radiation necrosis of the brain (fRNB) with gadolinium contrast-enhanced T1-weighted and FLAIR MRI of the brain and 
[18F]FDG-PET/CT (FDG-uptake images). (A) First sign of fRNB (week 59 or 32  weeks after SRS) with contrast-enhancement in the paramedian frontal 
right region on the T1-weighted axial image (upper) and surrounding edema on the FLAIR axial image (lower). (B) In week 65 or 38  weeks after SRS 
there is an increase of contrast-enhancement in the paramedian frontal right region on the T1-weighted axial image (upper) and surrounding edema 
on the FLAIR axial image (lower). (C) PET-CT performed 1 week later (week 66 or 39  weeks after SRS) shows no increased uptake of [18F]FDG, 
supporting the diagnosis of fRNB. (D) In week 74 or 8  weeks after bevacizumab initiation there is a decrease of contrast-enhancement in the 
paramedian frontal right region on the T1-weighted axial image (upper) and surrounding edema on the FLAIR axial image (lower). SRS, stereotactic 
radiosurgery.

https://doi.org/10.3389/fmed.2024.1436774
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Dirven et al. 10.3389/fmed.2024.1436774

Frontiers in Medicine 06 frontiersin.org

for brain metastases becomes available. [18F]FDG-PET/CT helps 
distinguish fRNB from tumor progression, with fRNB showing 
decreased [18F]FDG uptake (hypometabolism) and tumor progression 
showing increased uptake (hypermetabolism) (15, 31). Our group 
recently reported a case series of successful fRNB treatment using 
low-dose bevacizumab (loading dose of 400 mg, followed by 100 mg 
q4w) (15). This regimen was effective and well tolerated alongside 
trametinib and dabrafenib in our patient.

4 Conclusion

We report the first case of durable intra- and extracranial response 
to trametinib, following local control with SRS of intracranial oligo-
progression, in a patient with stage IV-M1d class-2 MAP2K1-mutant 
melanoma. Association of low-dose BRAF-inhibitor prevented 
MEK-inhibitor-induced skin-toxicity. Precision oncology using NGS 
data to screen for MAP2K1-mutations offers valuable treatment 
insights. A cross-tumor prospective trial is needed to evaluate the 
efficacy of MEK-inhibitors in MAP2K1-mutated tumors.
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