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Skin cancer is a widespread and perilous disease that necessitates prompt

and precise detection for successful treatment. This research introduces a

thorough method for identifying skin lesions by utilizing sophisticated deep

learning (DL) techniques. The study utilizes three convolutional neural networks

(CNNs)—CNN1, CNN2, and CNN3—each assigned to a distinct categorization

job. Task 1 involves binary classification to determine whether skin lesions are

present or absent. Task 2 involves distinguishing between benign and malignant

lesions. Task 3 involves multiclass classification of skin lesion images to identify

the precise type of skin lesion from a set of seven categories. The most

optimal hyperparameters for the proposed CNN models were determined using

the Grid Search Optimization technique. This approach determines optimal

values for architectural and fine-tuning hyperparameters, which is essential

for learning. Rigorous evaluations of loss, accuracy, and confusion matrix

thoroughly assessed the performance of the CNN models. Three datasets

from the International Skin Imaging Collaboration (ISIC) Archive were utilized

for the classification tasks. The primary objective of this study is to create a

robust CNN system that can accurately diagnose skin lesions. Three separate

CNN models were developed using the labeled ISIC Archive datasets. These

models were designed to accurately detect skin lesions, assess the malignancy

of the lesions, and classify the di�erent types of lesions. The results indicate

that the proposed CNN models possess robust capabilities in identifying and

categorizing skin lesions, aiding healthcare professionals in making prompt

and precise diagnostic judgments. This strategy presents an optimistic avenue

for enhancing the diagnosis of skin cancer, which could potentially decrease

avoidable fatalities and extend the lifespan of people diagnosed with skin cancer.

This research enhances the discipline of biomedical image processing for skin

lesion identification by utilizing the capabilities of DL algorithms.

KEYWORDS

deep learning (DL), Convolutional Neural Network (CNN), grid search algorithm, binary

classification, multiclass classification, skin cancer, skin lesions
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1 Introduction

The body’s largest organ, the skin (1), is the soft, flexible outer

tissue separating a human body’s internal systems and organs from

its environment. It has a complex structure which is further divided

into three layers: the epidermis, the dermis, and the hypodermis.

It serves three major tasks: Protection, Sensation, and Regulation.

It protects the body from heat, light, injury, and infection. It

also assists in regulating the temperature of the human body

(2) and serves as a sensory organ, providing a sense of touch

to humans. As it covers the entire human body, it has a total

surface area of 20 square feet, making it an essential human

organ. Various internal and external factors, such as aging, sun

exposure, infections, and injuries, lead to skin lesions (3). They

are characterized as any anomaly in the skin’s color, texture, or

appearance, including lesions, lumps, or bumps. Based on the

underlying causes, skin lesions can be categorized as infectious,

neoplastic, or inflammatory. Skin lesions can be categorized based

on their appearance and where they occur. A skin lesion can be

categorized as benign or malignant (4) based on whether the lesion

develops into cancer and spreads to other body parts. A lesion

is considered benign when the cells do not invade other tissues

and remain contained within the lesion. Malignant lesions contain

cancerous cells that spread to other tissues and cause significant

harm to the infected regions. Thus, it is essential to categorize skin

lesions timely and accurate to detect whether a lesion is a form of

skin cancer.

Skin cancer (5), the most common category of cancer (6),

refers to abnormal cell duplication caused by DNA mutation. This

condition results when the DNA of skin cells gets damaged due to

UV rays (7) from the sun or artificial sources for prolonged periods.

This leads to the damaged skin cells growing abnormally to form

tumors. Skin cancer can be categorized into Basal Cell Carcinoma

(BCC), Squamous Cell Carcinoma (SCC), and Melanoma (8). BCC

and SCC are the two most frequent skin cancer types. BCC affects

the basal cells of the lower part of the epidermis, causing lesions

to be formed on the skin’s surface. SCC is due to the abnormally

increased development of squamous cells in the epidermis due to

prolonged exposure to sunlight. The least common type of skin

cancer, which is melanoma, is the most risky and invasive form

of skin cancer with the highest probability of fatality. Also known

as ’black tumor,’ it accounts only for 1% of all cancers but is the

cause of most significant of the demises caused by skin cancer. The

WHO, in its ’World Cancer Report: Cancer Research for Cancer

Development, (9) stated that every year, over 13 lakh cases of

melanoma and around 25 lakh cases of non-melanoma are reported

worldwide annually e, accounting for every third cancer diagnosis.

Traditionally, examining the skin visually and doing a biopsy

are conventional ways of finding skin lesions. The appearance of

the skin lesion is commonly examined by a dermatologist, who

may also study the lesion’s anatomy using a dermatoscope, a

portable magnifying instrument (10). A tissue sample is detached

in biopsy and then sent to a laboratory for investigation to help

identify the skin lesion’s presence. Although these approaches are

viable, they are laborious and arbitrary, resulting in many false

positives and negatives. In medical image analysis (11), machine

learning (ML) procedures (12), specifically DL architectures (13),

have made significant advancements recently. DL is a kind of

ML that uses massive datasets to train neural networks (NN)

to recognize patterns and predict future outcomes. DLNNs,

called Convolutional Neural Networks (CNNs), are exceptionally

proficient at image identification and classification tasks. This

research aims to develop a system of fully automated CNNs for

multi-classifying skin lesions using datasets developed by ISIC

(14). For this research, the classification of the images was divided

into three Tasks. Three different CNNs were implemented for the

three different classification Tasks. For Task 1, binary classification

of images was carried out to ascertain whether Skin Lesions

were detected. For Task 2, binary classification of images was

carried out to ascertain whether the lesion detected was benign or

malignant. For Task 3, multi-classification of images was carried

out to confirm one of the seven types of skin lesions: Actinic

Keratosis & Intraepithelial Carcinoma/Bowen’s Disease (AKIEC),

Basal Cell Carcinoma (BCC), Benign Keratosis-like Lesions (BKL),

Dermatofibroma (DF), Melanoma (MEL), Melanocytic Nevi (NV),

& Vascular Lesions (VASC). A separate dataset was created for

each task taken from the ISIC Archive. The dataset is divided into

two sets: train and test. After training, the performance of the

proposed CNNmodels was evaluated. Performance evaluation was

achieved using methods such as Loss Analysis, Accuracy Analysis,

and Confusion Matrix. The Confusion Matrix (15) is a square

table representation of the true labels and predicted labels of the

images by a CNN model. It is used to derive various performance

characteristics, including Accuracy, Precision, Recall/Sensitivity, F1

Score, and Specificity.

The significant contributions of this research are presented

as follows:

• A CNN model-based approach is used to diagnose skin

lesions. Three CNN models are presented for three

classification tasks: detecting a skin lesion, determining

if the lesion is benign or malignant, and categorizing the skin

lesion by kind.

• To train and evaluate the proposed CNNmodels, images from

the ISIC Archive were used to create three datasets with class-

annotated images based on the three separate classification

tasks. Data Augmentation was used to increase the variety

of the datasets. The datasets were divided into two sets for

training and testing the models.

• The CNN models’ performance was assessed using Analysis

Plots for Loss and Accuracy during training and testing and

the Confusion Matrix. The Confusion Matrix is utilized to

calculate performance metrics such as Accuracy, Precision,

Recall/Sensitivity, and F1 Score, which provide a complete

picture of the proposed CNN model for the intended

classification job.

The remaining sections of the research paper are as follows:

Section II explores previous research studies conducted in this

domain. The methodology employed to carry out the proposed

research is described in Section III. The results of the proposed

study have been emphasized in Section IV. The concluding

thoughts on the proposed research effort and its potential scope are

provided in Section V.
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2 Literature work

Dorj et al. (16) implemented an SVM to classify skin diseases.

The authors utilized an AlexNet transfer learning (TL) model to

extract features. The dataset employed for the study consisted of

3,753 images procured from the internet. The research achieved a

classification accuracy of 92.3% for AKIEC, 91.8% for BCC, 95.1%

for SCC, and 94% for MEL. Maron et al. (17) proposed using a

customized CNN model with 112 dermatologists to classify skin

diseases. The images were obtained from the HAM10000 dataset,

supplemented with more images from the ISIC archive. The input

dataset consisted of 11,444 dermatoscopic images of various skin-

related diseases, including multiple types of skin lesions. Amin

et al. (18) performed skin lesion segmentation by utilizing the

Otsu algorithm. Pre-processing of images was performed to resize

the images. The authors merged different datasets to generate a

novel dataset of 7,849 images. A fusion of AlexNet and VGG16

features was implemented to classify images of MEL and BCC.

The research attained an accuracy of 99%, sensitivity of 99.52%,

and specificity of 98.41%. Hekler et al. (19) utilized images of

MEL and NV to train and evaluate the ResNet50 TL model

for examining label noise effects. The input dataset consisted of

804 images of MEL and NV procured from a combination of

HAM10000 and ISIC Archive. Accuracy was evaluated for two

types: For medical applications, the accuracy attained was 75%, and

for biopsy, the accuracy achieved was 74%. The authors observed

that the DL approach was extremely superficial and recommended

biopsy-verified images to reduce the effect of label noise. Mahbod

et al. (20) proposed a three-stage fusion technique combined

with image downsampling and skin lesion cropping. The input

dataset consisted of 12,927 dermatoscopic images of skin lesions.

A CNN model was implemented to classify skin diseases. The

research achieved an accuracy of 86.2%. However, the proposed

research presented some limitations as significant training time

was required for the many implemented sub-models. Han et al.

(21) suggested a model for skin lesion classification. The dataset

was formed by procuring dermoscopic skin lesion images from

various hospitals, with 2,844 images. The RCNN architecture was

implemented for classification into two categories based on the

type of carcinoma detected, i.e., BCC and SCC. The research

achieved an AUC score of 0.91. Masni et al. (22) proposed an

analysis of TL models to classify three types of skin lesions. The

dataset was taken using the ISIC 2017 dataset and consisted of

2,750 dermatoscopic images of skin lesions. A comparison between

InceptionV3, ResNet50, Inception-ResNetV2, and DenseNet201

TL models was presented based on the classification of the dataset

into NV, MEL, and AKIEC. The TL models’ accuracies were:

InceptionV3-−81.29%, ResNet50-−81.57%, Inception-ResNetV2-

−81.34%, and DenseNet201–73.44%. Polat et al. (23) presented

a CNN design to classify skin lesions into seven classes. The

dataset, which consisted of a total of 10,015 images, was used

for input. The CNN model attained 77% accuracy. Duggani

et al. (24) employed a deep learning approach by proposing and

implementing a customized CNN design to classify skin disease.

The dataset consisted of 200 images from the PH2 dataset. The

CNN design was utilized to categorize the dataset into two types:

MEL and NV. The authors observed that the CNN model attained

97.49% accuracy. Khan et al. (25) employed a deep learning

approach by proposing and implementing a customized CNN

design. The dataset consisting of 10,015 dermatoscopic images

of distinct types of skin diseases was employed for the research

study. The CNN design was used to categorize the seven types: NV,

DF, MEL, AKIEC, BKL, BCC, and VASC. The research achieved

87% accuracy, 86% sensitivity, 87.01% precision, and 86.28% F1

score. Shetty et al. (26) presented research on classifying images

into seven distinct forms of skin lesions. The authors observed

that a customized CNN model achieved an accuracy of 95.18%.

Anand et al. (27) proposed an analysis of the VGG16 model

and a modified VGG16 TL model with added multiple fine-

tuning layers for skin lesion detection. The input dataset consisted

of 3,297 images procured from the internet. Data augmentation

techniques were implemented for diversifying the dataset. The

models were implemented to classify the images between benign

and malignant classes. Several hyperparameters were optimized

and compared for better performance. The authors observed that

the modified VGG16 TL model achieved 90% accuracy. Anand

et al. (28) employed a TL approach by employing an Xception TL

model for the detection of skin lesions. The HAM10000 dataset

consisting of 10,015 images was utilized as the input dataset. Data

Augmentation techniques were implemented on the input dataset

for diversification. The Xception TL model classified the input

dataset images into seven types of skin diseases and achieved

96.40% results. Aldhyani et al. (29) utilized the DL approach

for skin disease detection by proposing and implementing a

lightweight dynamic kernel CNN. The HAM10000 was utilized as

the input. The proposed CNN model consisted of dynamic-sized

kernels, significantly reducing the number of trainable parameters.

The authors observed an accuracy of 97.85%, achieved by the

proposed CNN model. Nigar et al. (30) designed and proposed

an Explainable approach. The dataset employed in the research

consisted of 25,331 images from the ISIC 2019. The suggested XAI

system was executed to classify dermatoscopic images into eight

distinct types of skin lesions.

3 Proposed methodology

This research study proposes a fully automated system of CNN

models for ultimately detecting a skin lesion to classify a particular

type of skin lesion using datasets developed from the ISIC Archive.

This is achieved by dividing the classification of images into three

Tasks. Figure 1 represents the flow chart of the suggested research

for the complete diagnosis of skin lesions.

The first task involves binary classification of images to

ascertain whether skin lesions are in the images of the first

dataset or not. The second task involves binary classification

of images to classify images of the second dataset based on

whether the skin diseases are benign or malignant. The third task

involves multiclass classification of benign/malignant skin lesions

according to further specific types, as shown in Figure 1. For

task 3, seven skin lesion classes are taken as Actinic Keratoses

and Intraepithelial Carcinoma/Bowen’s Disease (AKIEC), Basal

Cell Carcinoma (BCC), Benign Keratosis-like Lesions (BKL),

Dermatofibroma (DF), Melanoma (MEL), Melanocytic Nevi (NV),
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FIGURE 1

Flowchart for proposed methodology of complete diagnosis of

skin lesions.

and Vascular Lesions (VASC). The three tasks are accomplished

using three distinct CNNmodels for each task. The proposed CNN

designs were trained and tested using images from three distinct

datasets formed from the ISIC Archive. First, the classification of

images of the first dataset was implemented for the detection of

skin lesions utilizing the first proposed CNN architecture. Next,

the second CNN design was implemented to categorize images of

the second dataset to ascertain whether skin lesions are benign

or malignant. Finally, the third CNN model was implemented to

classify images into seven specific categories of benign/malignant

skin lesions.

The use of three unique CNNs for three separate skin lesion

classification tasks has several benefits: It is possible to tune

each CNN for a specific task, enabling the customization of

architecture and hyperparameter configurations to achieve optimal

performance for the given classification problem. The pursuit

of this specialism has the potential to enhance accuracy and

increase the reliability of forecasts in many tasks. The use of a

dedicated CNN for each task enables the model to concentrate

on acquiring knowledge pertaining to the distinct characteristics

associated with that particular activity while minimizing the

influence of other tasks’ intricacies. For instance, the CNN may

be specifically constructed to differentiate between benign and

malignant tumors by only emphasizing characteristics that are

suggestive of malignancy. Rather than constructing a singular,

intricate model to address various tasks, the use of distinct CNNs

enables the development of more straightforward architectures that

are more manageable and trainable.

Furthermore, this phenomenon may result in expedited

training durations and reduced computational expenditures. The

use of separate models for each task facilitates the comprehension

of the decision-making process employed by each CNN. This may

be of significant use in comprehending the behavior of the model,

particularly in medical contexts where the capacity to provide

explanations is of utmost importance. The use of distinct CNNs

for various tasks may enhance the model’s ability to generalize

its performance over a wide range of datasets. This is because

each network can effectively adapt to the unique intricacies and

variations present in the data that are pertinent to its respective

job. The use of distinct CNNs enables a modular methodology

for the identification of skin lesions. Each model can undergo

separate enhancements, updates, or replacements without causing

any impact on the other models. This characteristic allows for

flexibility in the maintenance and development of the system. The

use of distinct CNNs for distinct tasks enables the isolation of

errors in a particular model, hence facilitating the identification

and resolution of difficulties within the classification process.

Furthermore, this approach enables more focused debugging and

improved refining of particular models.

3.1 Dataset description

The International Skin Imaging Collaboration (ISIC), with

the primary aim of minimizing melanoma mortality through the

facilitation of the administration of digital skin imaging, is an

international bond between academics and the industry. The ISIC

Archive archives readily accessible skin lesion images under the

Creative Commons License. Dermoscopic images of specific skin

lesions have been the archive’s initial emphasis since they are

intrinsically regulated due to the use of a specialized capture

instrument and lack many of the privacy concerns of medical

imaging. The images available through the archive are annotated

with ground-truth diagnoses and further clinical metadata. This

research study utilized annotated images from the ISIC Archive

to form three distinct datasets for each classification task. The

datasets contained various images for each task according to the

classification tasks. The classes, number of images, and train-test

splits for each classification task are presented in the following sub-

sections.

The Classification Task 1 Dataset consisted of images labeled

with two classes according to Classification Task 1, which involved

the detection of skin lesions. Thus, the dataset images were labeled

according to whether skin lesions were detected. The dataset
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FIGURE 2

Classification task 1: skin lesion detection dataset images.

FIGURE 3

Classification task 2: classification of benign and malignant dataset images.

consisted of 17,806 images labeled Lesion and Not lesion. The input

images’ size was 224 by 224 pixels, and the number of channels

was set at 3. The dataset was split into 12,464 images (70%) for

the train set, 1,780 images (10%) for the validation set, and 3,561

images (20%) for the test set. Figure 2 displays the class labels for

Classification Task 1 and some images from each class.

The Classification Task 2 Dataset consisted of images labeled

with two classes according to Classification Task 2 for the
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FIGURE 4

Classification task 3: benign/malignant skin lesion classification in seven classes dataset images.
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TABLE 1 Number of skin lesion images for each dataset.

Classification task Classification group Number of images for each group Total number of images

Classification 1 Lesion 8,903 17,806

Not Lesion 8,903

Classification 2 Benign 1,800 3,297

Malignant 1,497

Classification 3 AKIEC 6,696 46,935

BKL 6,718

BCC 6,680

DF 6,658

MEL 6,692

NV 6,709

VASC 6,784

classification of the skin lesions as Benign and Malignant. The

dataset consisted of 3,297 images labeled with classes Benign or

Malignant. The input images’ size was 222 by 222 pixels, and the

number of channels was set at 3. The database has been split

into 2,307 images (70%) for the train set, 330 images (10%) for

the validation set, and 660 images (20%) for the test set. Figure 3

displays the class labels for Classification Task 2 and some images

from each class.

The Classification Task 3 Dataset consisted of images labeled

with two classes according to Classification Task 3 to categorize the

skin diseases into seven categories: AKIEC, BCC, BKL, DF, MEL,

NV, & VASC. The dataset consisted of 46,935 images. The input

images were 28 by 28 pixels, and the number of channels was 3. The

dataset was split into three sets consisting of 30,508 images (65%)

for training, 4,693 images (10%) for validation, and 11,734 images

(25%) for testing. Figure 4 displays the class labels for Classification

Task 3 and some images of skin lesions.

Table 1 represents the various classification groups for each

classification task involved in complete skin disease detection. The

Classification Groups, Number of images for each group, and

the total number of images for specific classification tasks are

highlighted for each classification task.

3.2 Data augmentation

Data Augmentation is modifying existing training data to

generate new, synthetic training data. To enhance the volume

of data available for training a network without collecting extra

data, this is frequently employed in ML and DL (31). Data

Augmentation provides various advantages, including improved

model performance, reduced overfitting, robustness of models, and

increased diversity. Data augmentation was performed on the ISIC

datasets to improve their diversity. This research study diversifies

the dataset by using rotate, zoom, horizontal flip, and vertical flip.

This improves the training process of CNN models and enhances

their performance. After augmentation, the datasets were split to

form sets for training and testing the proposed CNN models.

Some examples of the data augmentation techniques utilized in this

research study are displayed in Figure 5.

3.3 Proposed CNN models

CNN is a popular DL model. A typical CNN architecture

consists of two steps: feature extraction and classification. The CNN

model extracts and varies features through five layers: the input,

convolution, pooling, fully connected, and classification layers.

CNN performs feature extraction and classification by deploying

increasingly trainable layers stacked on each other. In the feature

extraction phase of a CNN, convolutional and pooling layers are

utilized, whereas fully connected classification layers are used in

the classification phase. This paper proposed a system of three

CNN models for three distinct classification tasks. The grid search

technique was used to optimize the hyperparameters of each

CNNmodel.

3.3.1 Proposed CNN model 1 for skin lesion
detection

The first CNNmodel determines whether a patient’s skin image

contains a skin lesion, as it is designed to detect skin lesions. This

classification is referred to throughout this article as Classification

Task 1. Figure 6 illustrates the structure of the proposed CNN

architecture 1, which includes 60 layers: 1 Input, 19 Convolutions,

19 ReLU, 19 Batch Normalization, 1 Global Average Pooling, and

1 Classification layer. The output layer consists of two neurons

because the initial CNN architecture aims to classify an image into

two categories. The SoftMax activation function uses the dense

layer’s input, a 2-D feature vector, to determine the presence or

absence of a lesion.

Table 2 shows the model summary of the first CNN

architecture. The model summary details the input image size,

output image size, and the parameters of 1 Input Layer, 10

Convolutional Blocks, 1 Global Average Pooling, and 1 Dense layer.

Convolutional Blocks 1–9 consist of 6 layers each: 1 Conv2D layer,

1 Depthwise Conv2D layer, 2 Batch Normalization layers, and 2

activation layers. Convolutional Block 10 consists of 3 layers: 1

Conv2D, 2 Batch Normalization layers, and 2 activation layers. The

model consists of a total of 2,147,522 parameters. The parameters

are split into trainable and non-trainable categories consisting of

2,133,826 parameters and 13,696 parameters, respectively.
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FIGURE 5

Data augmentation (A) original image, (B) rotate, (C) zoom, (D) horizontal flip, and (E) vertical flip.

FIGURE 6

Framework of proposed CNN model 1 for skin lesion detection task 1. (A) CNN model 1, and (B) Conv block.
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3.3.2 Proposed CNN model 2 for
benign/malignant classification of skin lesions

The lesions can also be classified separately into Benign or

Malignant. The third CNNmodel is used for the implementation of

this classification. This classification is referred to as Classification

Task 3 throughout the paper. As illustrated in Figure 7, the

proposed CNN design for Classification Task 2 is comprised of 10

weighted layers: 1 Input, 4 Convolutional layers, 2 Max Pooling

layers, 1 Dense layer, 1 Dropout layer, and 1 classification layer. As

the CNN 2 model is simulated for the classification of an image

into two classes, the output layer contains two nodes. The SoftMax

TABLE 2 Model summary of proposed CNNmodel 1 for skin lesion

detection.

Layer
name

Input
image size

Output
image size

Number of
parameters

Input layer - 224× 224× 3 0

Convolutional

block 1

224× 224× 3 112× 112× 32 1,408

Convolutional

block 2

112× 112× 32 56× 56× 64 3,136

Convolutional

block 3

56× 56× 64 56× 56× 128 10,368

Convolutional

block 4

56× 56× 128 28× 28× 128 18,560

Convolutional

block 5

28× 28× 128 28× 28× 256 37,120

Convolutional

block 6

28× 28× 256 14× 14× 256 69,888

Convolutional

block 7

14× 14× 256 14× 14× 512 139,776

Convolutional

block 8

14× 14× 512 14× 14× 512 270,848

Convolutional

block 9

14× 14× 512 14× 14× 1,024 541,696

Convolutional

block 10

14× 14× 1,024 14× 14× 1,024 1,052,672

Global average

pooling

14× 14× 1,024 1,024 0

Dense 1,024 2 2,050

activation function predicts the final lesion type after receiving a

2-D feature vector as input from the final dense layer.

The model summary of the second CNN design is highlighted

in Table 3. Themodel summary provides information regarding the

input image size, output image size, and parameters for 4 Conv2D

layers, 2 MaxPooling layers, 1 Flatten layer, and 2 Dense layers.

There are 2,881,314 parameters in the architecture. There are no

non-trainable parameters, as every parameter is trainable.

3.3.3 Proposed CNN model 3 for classification of
benign/malignant skin lesion in seven classes

The third CNN model is implemented for the classification

of images into seven classes: AKIEC, BCC, BKL, DF, MEL, NV,

and VASC. This classification is referred to as Classification Task

3 throughout the article. As shown in Figure 8, the proposed CNN

design to Classify Task 3 consists of 24 weighted layers: 1 Input, 7

Convolutional layers, 7 Batch Normalization layers, 3 Max Pooling

layers, 4 Dense layers, 1 Dropout layer, and 1 Classification layer.

The output layer includes seven neurons since the third CNN

design is intended to classify an image into seven classes. The

SoftMax classifier creates the final lesion type prediction, which

receives an input of a seven-dimensional feature vector from the

last dense layer.

Table 4 presents the model summary of the third CNN design.

The model summary details the input image size, output image

size, and the parameters of 1 Input Layer, 4 Convolutional

Blocks, 1 Flatten, 1 Dropout, 4 Batch Normalization, and 5 Dense

layers. Convolutional Block 1 consists of 3 layers: 1 Conv2D, 1

MaxPooling2D, and 1 Batch Normalization layer. Convolutional

Blocks 2 and 3 consist of 4 layers: 2 Conv2D, 1 MaxPooling2D,

and 1 Batch Normalization layers. Convolutional Block 4 consists

of 3 layers: 2 Conv2D and 1 MaxPooling2D layers. The model

consists of a total of 1,275,079 parameters. The parameters are split

into trainable and non-trainable categories consisting of 1,273,671

parameters and 1,408 parameters, respectively.

4 Experimental setup

Several obstacles have developed in the utilization of CNNs

as their application in the discipline of medical imaging analysis

has grown. More significant computational expenses are generated

FIGURE 7

Framework of proposed CNN model 2 for benign/malignant lesion classification task 2.
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when the designs, which are improved to produce more effective

outcomes, become deeper and the input images become of

better superiority. Utilizing robust hardware and tuning the

hyper-parameters of the existing models are crucial for lowering

these computing costs and producing superior outcomes. As a

result, the suggested CNN models virtually all have their key

hyper-parameters automatically adjusted using the grid search

optimization approach. When the search space for the value

range is limited, the grid search optimization method is a useful

alternative to CNN hyper-parameter optimizations. Grid Search

TABLE 3 Model summary of proposed CNNmodel 2 for

benign/malignant classification of skin lesions.

Layer
name

Input
image size

Output
image size

Number of
parameters

Input layer - 222× 222× 3 0

Conv2D 222× 222× 3 222× 222× 16 448

Conv2D 222× 222× 16 220× 220× 16 2,320

MaxPooling2D 220× 220× 16 110× 110× 16 0

Conv2D 110× 110× 16 108× 108× 8 1,160

Conv2D 108× 108× 8 106× 106× 8 584

MaxPooling2D 106× 106× 8 53× 53× 8 0

Flatten 53× 53× 8 22,472 0

Dropout 22,472 22,472 0

Dense 22,472 128 2,876,544

Dense 128 2 258

Optimization was therefore implemented in this research study for

each classification task for optimizing the hyper-parameters of each

of the suggested CNN architectures.

Furthermore, to scientifically validate the study’s findings,

analyzing the classification parameters to classify image research

is essential. If not done properly, then the performance of

the classification research remains without evidence and is thus

academically insufficient. The performance of each proposed CNN

model for the specified classification tasks of skin lesions was

evaluated using several methods, such as the Loss Analysis Plot,

Accuracy Analysis Plot, and Confusion Matrix.

4.1 Hyperparameter optimization using
grid search

To identify the ideal set of hyperparameters for proposed

CNN models, the Grid Search Optimisation method has been

used for hyperparameter optimization. Values for hyperparameters

are predetermined prior to the beginning of the process of

learning as they cannot be inferred solely from the data (32).

Architectures for CNN models are relatively complex and

contain many hyperparameters. To enhance the performance

of proposed models, two types of hyperparameters are tuned,

i.e., Architectural hyperparameters and fine modification

hyperparameters. Architectural hyper-parameters include the

convolutional layers, pooling layers, fully connected layers, and

the activation function. In contrast, Batch size and learning rate,

conversely, are referred to as acceptable alterations of hyper-

parameters. In grid search, a grid of potential results for the

hyperparameters mentioned above is first defined, and the CNN

FIGURE 8

Framework of proposed CNN model 3 for classification task 3 of benign/malignant skin lesion classification in seven classes.
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TABLE 4 Model summary of proposed CNNmodel 3 for classification of

benign/malignant skin lesion in seven classes.

Layer
Name

Input
Image Size

Output
Image Size

Number of
Parameters

Input layer - 28× 28× 3 0

Convolutional

block 1

28× 28× 3 14× 14× 32 1,024

Convolutional

block 2

14× 14× 32 7× 7× 64 55,680

Convolutional

block 3

7× 7× 64 3× 3× 128 221,952

Convolutional

block 4

3× 3× 128 1× 1× 256 885,248

Flatten 1× 1× 256 256 0

Dropout 256 256 0

Dense+ batch

normalization

1

256 256 66,816

Dense+ batch

normalization

2

256 128 33,408

Dense+ batch

normalization

3

128 64 8,512

Dense+ batch

normalization

4

64 32 2,208

Dense 32 7 231

TABLE 5 Optimum hyper-parameters results achieved by grid search of

proposed CNNmodel 1 for skin lesion detection task.

Hyper
parameters

Hyper parameter
range

Optimized
value

Convolution layers [13–19] 19

Global average

pooling layer

[1–4] 1

Fully connected

layers

[1–4] 1

Activation function [ReLU, Softmax, Sigmoid,

Leaky ReLU]

ReLU, Softmax

Batch size [16, 64, 128] 64

Learning rate [0.0001, 0.01, 0.001, 0.00001] 0.01

Number of epochs [10, 20, 30, 40, 50] 30

model is then trained with all feasible combinations to ascertain

which combination produces the greatest performance.

The stages involved in grid search optimization for CNN

models are as follows:

1. Hyperparameter grid formation: for each hyperparameter

that is to be optimized, a range of possible values is set.

2. Potential combination generation: all potential combinations

of hyperparameters are generated from the range of values in

the formed grid.

TABLE 6 Optimum hyper-parameters results achieved by grid search of

proposed CNNmodel 2 for benign/malignant classification of skin lesions.

Hyper
parameters

Hyper parameter
range

Optimized
value

Convolution layers [1–4] 4

Max pooling layers [1–4] 2

Fully Connected

layers

[1–4] 2

Activation function [ReLU, Softmax, Sigmoid,

Leaky ReLU]

ReLU, Sigmoid

Batch size [16, 64, 128] 64

Learning rate [0.0001, 0.01, 0.001, 0.00001] 0.001

Number of epochs [10, 20, 30, 40, 50] 30

TABLE 7 Optimum hyper-parameters results achieved by grid search of

proposed CNNmodel 3 for classification of benign/malignant skin lesions

in seven classes.

Hyper
parameters

Hyper parameter
range

Optimized
value

Convolution layers [3–9] 7

Max pooling layers [1–4] 3

Fully connected

layers

[2–5] 5

Activation function [ReLU, Softmax, Sigmoid,

Leaky ReLU]

ReLU, Softmax

Batch size [16, 64, 128] 64

Learning rate [0.0001, 0.01, 0.001, 0.00001] 0.001

Number of epochs [10, 20, 30, 40, 50] 30

3. Model evaluation: the proposed model is implemented using

each potential combination of the hyperparameters, and its

performance is evaluated.

4. Determination of optimized hyperparameter combination:

the hyperparameter combination with the best results

is determined.

5. Utilization of optimized hyperparameters: the proposed

design is retrained and implemented with the optimized

hyperparameters derived from the grid search.

The Grid Search Optimization for each classification task

has been shown in Tables 5–7. Table 5 shows the optimized

hyperparameters derived from the grid search of the first proposed

CNNmodel implemented for the detection of Skin Lesions.

Table 6 shows the optimized hyperparameters derived from the

grid search of the second proposed CNN model implemented for

the classification of Skin Lesions as Benign or Malignant.

Table 7 shows the optimized hyperparameters derived from a

grid search of the third proposed CNN model implemented for the

Classification of Benign/Malignant Skin Lesions in seven distinct

classes.

The optimized values of hyperparameters derived from the grid

search algorithm are finally used to simulate and evaluate the CNN

models for different categorization tasks.
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FIGURE 9

Results of proposed CNN model 1 for classification task 1 (A) Loss analysis plot, and (B) accuracy analysis plot.

FIGURE 10

Confusion matrix achieved for classification task 1.

4.2 Results

Analyzing the performance of classification research is essential

to validate the study’s findings scientifically. If not done properly,

then the performance of the classification research remains without

evidence and is thus academically insufficient. This research

evaluates the performance of the CNN models implemented

for the three Classification Tasks using Analysis Plots of Loss

and Accuracy and Confusion Matrices. These give an overall

summary of the performance of the CNN models by providing

information regarding learning rate and overfitting during training

and performance parameters such as Accuracy, Precision, Recall,

and F1 Score during the model implementation on the test sets.

The Loss and Accuracy Analysis Plots are used to determine

several parameters observed during the training of the CNN

models. The Loss Analysis Plot highlights the loss of a model

during the training and validation phase. It is used to observe

whether the model had a good learning rate. The Accuracy Analysis

Plot highlights the accuracy of a model during the training and

validation phase. The gap between the training accuracy plot and

validation accuracy plot represents whether a problem of overfitting

had occurred.

A table used to assess the efficiency of a classification design

is referred to as a confusion matrix or error matrix. It is a

multi-dimensional matrix that displays the actual and predicted

class labels for each piece of data in a classification task’s

summary results.

4.2.1 Performance of CNN model 1 for skin
lesion detection

Figure 9 shows the Loss and Accuracy Analysis Plots obtained

by the first CNN model for Classification Task 1. Figure 9A

highlights the loss incurred by the proposed CNN model during

the training and validation phase. The training loss was 0.10,

and the validation loss was observed to be 0.28. It can be

seen that since the slope of the training and validation plots is

exponentially decreasing, the model had a good learning rate.

Figure 9B highlights the accuracy obtained by the proposed CNN

model for the training and validation phase. The training accuracy

achieved by the design was observed as 0.98, and the validation

accuracy was observed as 0.93. Since the gap between the training

and validation accuracy is low, negligible overfitting in the model

is represented.

Figure 10 highlights the Confusion Matrix the CNN for

Classification Task 1 formed. For classification task 1, the confusion

matrix is a two-dimensional matrix that indicates the predictions

made by the model for classifying images into two classes, detecting

whether the image contains skin lesions or not.

4.2.2 Performance of CNN model 2 for
benign/malignant classification of skin lesions

Figure 11 shows the Loss and Accuracy Analysis Plots obtained

by the second CNN model for Classification Task 2. Figure 11A
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FIGURE 11

Results of proposed CNN model 2 for classification task 2. (A) Loss analysis plot, and (B) accuracy analysis plot.

FIGURE 12

Confusion matrix achieved for classification task 2.

highlights the loss incurred by the proposed CNN model during

the training and validation phase. The training loss was 0.10, and

the validation loss was 0.21. It can be observed that since the slope

of the training and validation plots is exponentially decreasing, the

model had a good learning rate. Figure 11B highlights the accuracy

obtained by the proposed CNN model during the training and

validation phase. The training accuracy achieved by the model was

observed as 0.98, and the validation accuracy was observed as 0.92.

Since the gap between the training and validation accuracy is low,

negligible overfitting in the model is represented.

Figure 12 highlights the Confusion Matrix the CNN for

Classification Task 2 formed. For classification task 2, the confusion

matrix is a two-dimensional matrix that indicates the predictions

made by the model for classifying images into two classes, showing

whether the lesion detected is benign or malignant.

4.2.3 Performance of CNN model 3 for
classification benign/malignant skin lesions in
seven classes

Figure 14 shows the Loss and Accuracy Analysis Plots obtained

by the third CNN model for Classification Task 3. Figure 13A

highlights the loss incurred by the proposed CNN model during

the training and validation phase. The training loss was 0.07, and

the validation loss was 0.11. It can be seen that since the slope

of the training and validation plots is exponentially decreasing,

the model had a good learning rate. Figure 13B highlights the

accuracy obtained by the proposed CNN model during the

training and validation phase. The training accuracy achieved

by the model was observed as 0.99, and the validation accuracy

was observed as 0.98. Since the gap between the training and

validation accuracy is low, negligible overfitting in the model

is represented.

Figure 14 highlights the Confusion Matrix the CNN for

Classification Task 3 formed. For classification task 3, the confusion

matrix is a multi-dimensional matrix that indicates the predictions

made by the model for the classification of images into seven classes

according to the type of lesion detected. The scale of 0 to 6 on the x-

axis and y-axis represents the classes for classification task 3, which

are as follows: 0 for AKIEC, 1 for BCC, 2 for BKL, 3 for DF, 4 for

MEL, 5 for NV, and 6 for VASC.

The Confusion Matrices displayed in Figures 10, 12, 14

are utilized to analyze specific metrics for each CNN model

implemented for the classification tasks. Table 8 represents

Frontiers inMedicine 13 frontiersin.org

https://doi.org/10.3389/fmed.2024.1436470
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Pillai et al. 10.3389/fmed.2024.1436470

FIGURE 13

Results of proposed CNN model 3 for classification task 3. (A) Loss analysis plot, and (B) accuracy analysis plot.

FIGURE 14

Confusion matrix achieved for classification task 3.

Confusion Matrix values for each class of each classification task

and the evaluated performance metrics, including Precision, Recall,

F1 Score, and Accuracy.

As seen from Table 8, each of the CNN models achieved

excellent performance. CNN model 1 simulated the detection of

skin lesions and achieved an accuracy of 93.18%. CNN model

2 for the Benign/Malignant Skin Lesions classification attained

an accuracy of 91.67%. CNN model 3 for Classification of

Benign/Malignant Skin diseases in Seven Classes achieved an

accuracy of 98.72%.

4.2.4 Comparative result analysis of
hyperparameter optimisation using grid search

To validate the implementation of the Hyperparameter

Optimisation using the Grid Search technique employed in this

study, Table 9 presents a comparative analysis of the results

obtained for the three classification tasks by the CNN models

without and with the implementation of the Grid Search technique.

A comparison of the aggregate of the performance metrics

Precision, Recall, Specificity, F1 Score, and Accuracy is presented

for each classification task.
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TABLE 8 Performance metrics for detection and classification of skin lesions.

CNN Model Classes TP TN FP FN Precision Recall/
Sensitivity

Specificity F1 Score Accuracy

CNNModel 1 Lesion 1,602 1,716 64 179 0.96 0.91 0.96 0.93 93.18%

Not Lesion 1,716 1,602 179 64 0.90 0.96 0.90 0.93

CNNModel 2 Benign 332 273 27 28 0.93 0.92 0.91 0.92 91.67%

Malignant 273 332 28 27 0.90 0.91 0.92 0.90

CNNModel 3 AKIEC 1,667 9,917 6 0 1 1 0.99 1 98.72%

BCC 1,689 9,895 15 0 0.99 1 1 1

BKL 1,649 9,935 49 2 0.98 0.99 0.99 0.99

DF 1,629 9,955 2 0 1 1 1 1

MEL 1,525 1,0059 3 138 0.99 0.92 1 0.95

NV 1,680 9,904 0 0 1 1 1 1

VASC 1,745 9,839 67 10 0.95 0.99 0.99 0.97

TABLE 9 Comparison of results for hyperparameter optimization using grid search.

Without hyperparameter optimisation Hyperparameter optimisation using grid search

CNN model Precision Recall Specificity F1 Score Accuracy Precision Recall Specificity F1 Score Accuracy

CNNmodel 1 0.88 0.86 0.86 0.87 86.73% 0.93 0.94 0.93 0.93 93.18%

CNNmodel 2 0.82 0.84 0.81 0.83 83.42% 0.91 0.92 0.92 0.91 91.67%

CNNmodel 3 0.85 0.84 0.83 0.85 85.61% 0.99 0.98 1 0.99 98.72%
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TABLE 10 Comparison of proposed work with related studies.

References Classification type Dataset utilized Number of
images

Technique
implemented

Accuracy
achieved

Cassidy et al. (14) AKIEC

BCC

MEL

SCC

Internet 3,753 AlexNet AKIEC= 92.3%

BCC= 91.8%

MEL= 94.2%

SCC= 95.1%

Liang (15) AKIEC

BCC

BKL

NV

MEL

HAM10000

ISIC Archive

11,444 CNN p<0.001

Dorj et al. (16) MEL

BCC

PH2

ISIC 2016 Challenge

ISIC 2018 Challenge

7,849 Feature Fusion between

AlexNet & VGG16

99%

Maron et al. (17) MEL

NV

HAM10000

ISIC Archive

804 ResNet50 75.03%

Polat and Koc (23) AKIEC

BCC

BKL

DF

MEL

NV

VASC

HAM10000 10,015 CNN 86.5%

Duggani and Nath

(24)

AKIEC

BCC

BKL

DF

MEL

NV

VASC

HAM10000 10,015 CNN 95.18%

Khan et al. (25) Benign

Malignant

Internet 3,297 VGG16 89.09%

Shetty et al. (26) AKIEC

BCC

BKL

DF

MEL

NV

VASC

HAM10000 10,015 Xception 96.40%

Anand et al. (27) AKIEC

BCC

BKL

DF

MEL

NV

VASC

HAM10000 10,015 Lightweight

Dynamic

Kernel CNN

97.85%

Anand et al. (28) AKIEC

BCC

BKL

DF

MEL

NV

VASC

SCC

ISIC 2019 Challenge 25,331 XAI 94.47%

Proposed Work Lesion

Not lesion,

Benign

Malignant,

AKIEC

BCC

BKL

DF

MEL

NV

VASC

ISIC Archive 17,806

3,297

46,935

CNNModel 1

CNNModel 2

CNNModel 3

93.18%

91.67%

98.72%
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As observed from Table 9, using Grid Search for

Hyperparameter Optimisation leads to significantly better

results throughout all performance metrics when compared

to no implementation of hyperparameter optimization. Using

Grid Search leads to consistently high performance metrics thus

validating the performance of the models for each classification

task further.

4.2.5 Comparison of proposed work with related
studies

Table 10 highlights the comparison of the proposed work in this

research study. The various studies are compared based on several

categories, including Classification Type, Dataset Utilized, Number

of Images, Technique Implemented, and Accuracy Achieved.

5 Conclusion and future work

Modern advancements in deep learning have led to the

expansion of machine learning research and study beyond feature

engineering to architectural engineering. This study presents a

system of CNN models for comprehensive skin lesion diagnosis.

Three robust CNN architectures were presented for three skin

lesion classification tasks involving the classification of a skin

lesion, determining whether a lesion is benign or malignant, and

classifying the skin lesion by type. Annotated images from the

ISIC Archive were utilized to form three distinct datasets for

each classification task. For each task, the datasets contained

various images according to the classification tasks. Grid Search

optimization was implemented in each of the proposed CNN

models to optimize the hyperparameters and obtain the best

results. The detection of skin lesions was performed with an

accuracy of 93.18 percent. In addition, the classification of

skin lesions based on whether they were benign or malignant

was obtained with an impressive 91.67 percent accuracy. The

classification of cutaneous lesions into seven distinct categories

was accomplished with a high degree of precision (98.72%).

The results and performance of the proposed CNN models

demonstrate the effectiveness of deep-learning approaches for Skin

lesion classification. This research study proposes CNN models

that can be used to aid dermatologists with initial skin lesion

classification screening. Although the primary emphasis of the

study was on CNN models, it is suggested that future research

should consider investigating more sophisticated models, such as

Transformers or hybrid architectures that integrate CNNs with

Recurrent Neural Networks (RNNs) or attention techniques. The

designs mentioned above have shown potential in several fields

and might potentially enhance the precision and resilience of

skin lesion data categorization. The integration of other data

sources, such as histopathology pictures, patient medical history,

or genetic information, has the potential to augment the efficacy

of the model by offering a comprehensive perspective on the

patient’s medical state. The use of a multimodal approach has

the potential to enhance the precision and customization of

diagnostic instruments. Future research endeavors may prioritize

the adaptation of these models to facilitate their real-time

implementation inside clinical environments. Potential areas of

focus may include the creation of interfaces that are intuitive

and easy to use for dermatologists, as well as the incorporation

of pre-existing medical imaging technologies. The validation

of the efficacy of these models in real-world contexts via the

implementation of clinical trials is crucial for the successful shift

from research to practical application. Future research endeavors

may prioritize the adaptation of these models to facilitate their

real-time implementation inside clinical environments. Potential

areas of focus may include the creation of interfaces that

are intuitive and easy to use for dermatologists, as well as

the incorporation of pre-existing medical imaging technologies.

The validation of the efficacy of these models in real-world

contexts via the implementation of clinical trials is crucial for

the successful shift from research to practical application. The

use of explainability approaches such as Grad-CAM or SHAP

has the potential to improve the interpretability of CNN models,

hence enhancing their reliability and facilitating their integration

into clinical practice. Implementing this approach would enable

healthcare practitioners to comprehend the underlying rationale

behind the model’s predictions, hence enhancing their trust in

the outcomes.
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