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This research is an analysis of multiple regression models developed for 
predicting ketoprofen solubility in supercritical carbon dioxide under different 
levels of T(K) and P(bar) as input features. Solubility of the drug was correlated 
to pressure and temperature as major operational variables. Selected models for 
this study are Piecewise Polynomial Regression (PPR), Kernel Ridge Regression 
(KRR), and Tweedie Regression (TDR). In order to improve the performance 
of the models, hyperparameter tuning is executed utilizing the Water Cycle 
Algorithm (WCA). Among, the PPR model obtained the best performance, with 
an R2 score of 0.97111, alongside an MSE of 1.6867E-09 and an MAE of 3.01040E-
05. Following closely, the KRR model demonstrated a good performance with 
an R2 score of 0.95044, an MSE of 2.5499E-09, and an MAE of 3.49707E-05. In 
contrast, the TDR model produces a lower R2 score of 0.84413 together with an 
MSE of 7.4249E-09 and an MAE of 5.69159E-05.
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1 Introduction

Simulation and modeling of pharmaceutical processes are great tools for development of 
pharmaceutical manufacturing and would help for shifting from batch toward continuous 
manufacture mode. Process analytical technology (PAT) and process modeling are important 
elements of process understanding for design of continuous manufacturing in pharmaceutical 
area (1–3) where they can be exploited to enhance the efficiency of process and products 
quality. Process modeling can be performed by finding the relationships between the process 
parameters and critical quality attributes of finished products. Once the relationship has been 
established, one can implement Quality-by-Design (QbD) for improvement of process and 
products (4, 5). Thus, development of robust and rigorous models for pharmaceutical 
processing is a major challenge which should be addressed.

There are different processing routes for manufacture of solid-dosage oral products 
which can be optimized via process modeling and theoretical computations. For instance, 
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the method of wet granulation can be  simulated via population 
balance model (PBM) to predict the granule size distribution. As the 
granules’ properties can affect the tablet characteristics, building 
relationship between granule size and tablet properties can be done 
via process modeling which would help for process 
understanding (6–8).

One of the main problems in pharmaceutical area is the poor 
solubility of APIs (Active Pharmaceutical Ingredients) in aqueous 
media which makes patients to take more dosage of drugs to obtain 
the therapeutics effectiveness. Taking more dosages would 
consequently result in side effects for patients. Therefore, some 
techniques have been developed to enhance the solubility of APIs in 
aqueous media such as production of nanomedicines (9–11). The 
processing of drugs with supercritical carbon dioxide has been 
reported as one of the methods for creation of nanomedicines. This 
method has attracted much attention and can be considered as a green 
method for preparation of nanosized APIs particles. Some 
computational models have been developed for description of this 
process, where the majority of studies focus on correlation of drug 
solubility dataset (12–15). Machine learning models are among the 
most commonly used methods for correlation of solubility data which 
can be used for a given dataset (16, 17).

Modern data analysis now heavily depends on machine learning 
(ML), which provides strong instruments and methods for deriving 
important insights from large datasets. ML includes a range of 
algorithms that let computers learn from data and, in the absence of 
explicit programming, make predictions or decisions. These 
algorithms can identify patterns, relationships, and trends within data, 
making ML particularly useful for tasks such as regression, 
classification, clustering, and anomaly detection (18, 19). The ML 
models have been used recently for correlation of pharmaceutical 
solubility in supercritical solvents such as CO2. Abouzied et al. (20) 
investigated the drug solubility in supercritical CO2 using multi-layer 
perceptron, k-nearest neighbors, and GPR methods. A great fitting 
accuracy was obtained with R2 more than 0.99 which confirmed the 
validity of ML models in estimating drug solubility. Support vector 
machine (SVM) has been one of the major methods used for 
evaluation of drug solubility in supercritical solvent which is useful in 
this area with great fitting accuracy (21).

In this paper, we focus on the application of ML to model the 
solubility of ketoprofen in supercritical carbon dioxide, a critical factor 
in pharmaceutical manufacturing processes. Accurate modeling of 
solubility is essential for optimizing production efficiency and 
ensuring the quality of pharmaceutical products. To achieve this, 
we employed three regression techniques:

 1 Piecewise Polynomial Regression (PPR): PPR partitions the 
input data range into segments and applies polynomial 
functions to each segment, enabling a flexible and localized 
estimation of the regression function.

 2 Kernel Ridge Regression (KRR): KRR combines ridge 
regression with kernel functions, enabling it to model 
non-linear relationships in the data by projecting it into higher-
dimensional spaces.

 3 Tweedie Regression (TDR): TDR is a generalized linear model 
capable of accommodating various distribution types, 
rendering it well-suited for modeling continuous, non-negative 
data with variance scaling with a power of the mean.

To optimize the performance of these regression models, 
we  utilized the Water Cycle Algorithm (WCA), a nature-inspired 
optimization method that simulates the water cycle process to find 
optimal solutions. WCA has proven effective in navigating complex 
search spaces and identifying optimal parameter settings for various 
ML models.

The selected models are highly suitable for small datasets 
because of their adaptability and resilience in capturing complex 
relationships. PPR enables localized polynomial fits that can adapt 
to specific segments of the data, KRR effectively handles 
non-linearities even with limited data points using kernel functions, 
and TDR is designed for modeling continuous non-negative data 
with scalable variance. The careful application of these models, 
along with the Water Cycle Algorithm (WCA) for optimal 
parameter tuning, ensures that they are capable of delivering 
accurate and reliable solubility predictions despite the small 
dataset size.

Multiple contributions are made by this paper. First, we evaluate 
the three regression models for ketoprofen solubility prediction, 
highlighting their pros and cons. Second, we demonstrate how the 
Water Cycle Algorithm improves model performance by tuning 
hyperparameters. Finally, we present detailed dataset visualizations 
and statistical analyses to reveal T(K), P(bar), and solubility 
relationships. This study uses advanced ML techniques and robust 
optimization strategies to predict supercritical fluid solubility and 
advance pharmaceutical process optimization. Indeed, Piecewise 
Polynomial Regression (PPR), Kernel Ridge Regression (KRR), and 
Tweedie Regression (TDR) were used for the first time with the Water 
Cycle Algorithm (WCA) optimizer to improve the prediction accuracy 
of models for solubility of ketoprofen in supercritical CO2. The models 
are then used for evaluation of effect of temperature and pressure on 
the solubility variations.

2 Data set description

The dataset includes solubility measurements at temperatures 
spanning from 308.15 K to 338.15 K and pressures ranging from 
160 bar to 400 bar, sourced from (22). The entire data points of the 
dataset are shown in Table 1. So, T and P are taken as inputs of ML 
models, and the drug solubility has been considered as the single 
output for all models in this study.

Figure 1 depicts distribution plots for temperature (T), pressure 
(P), and ketoprofen solubility in supercritical carbon dioxide. These 
plots use kernel density estimates (KDE) to represent the probability 
density functions of the variables. The solubility distribution is right-
skewed, indicating that higher solubility values occur less frequently 
in the dataset.

Furthermore, the violin plots in Figure 2 depict the temperature 
(T), pressure (P), and solubility of ketoprofen in supercritical carbon 
dioxide. Each plot combines a boxplot with a kernel density estimate 
(KDE). The KDE component shows the probability density of the data 
at various values, whereas the boxplot component within the violin 
plot displays the median, interquartile range, and potential outliers. 
The temperature and pressure data have relatively uniform 
distributions, whereas the solubility data has a more skewed 
distribution, indicating that solubility values vary across 
experimental conditions.
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3 Methodology

3.1 Water cycle algorithm

Inspired by the natural water cycle, the Water Cycle Algorithm 
(WCA) is a population-based optimization algorithm. The method 
relies on the water cycle, which includes evaporation, cloud formation, 
and precipitation. The WCA replicates this cycle to find the best 
solutions. Initialization, evaporation, precipitation, and river 
formation are key algorithm steps (23, 24).

During the initialization phase, a set of potential solutions is 
generated in a random manner. In this context, every solution is 
defined by a set of hyper-parameter values. For instance, in a function 
optimization scenario, these parameters may represent the input 
variable values (25).

The evaluation of the solutions’ fitness values takes place in the 
evaporation phase. The fitness of a solution reflects its quality, with 
higher fitness values corresponding to superior solutions. These fitness 

values play a role in computing the evaporation rate, dictating the 
amount of water that evaporates from each solution (25, 26).

In the precipitation stage, the evaporated water is converted into 
clouds, which are subsequently dispersed randomly among the 
solution population. Each cloud symbolizes a potential enhancement 
to a solution. The fitness values of the clouds are assessed, and the 
most superior cloud is selected (27). The introduced steps of WCA are 
reiterated until a termination condition is met. The stopping criterion 
could involve attaining an specific fitness value, reaching a maximum 
number of iterations, or consuming a maximum computational time 
(24, 28).

Figure 3 shows the basic workflow of WCA algorithm. One of the 
strengths of the WCA is its capability to address multiple objectives. 
Multi-objective optimization finds the best solutions for conflicting 
goals (accuracy and generality in ML tasks). The dominance principle 
is used to extend the WCA to multiple goals. A solution dominates 
another solution if it excels in at least one objective without being 
inferior in any. Utilizing this idea, the WCA can identify a collection 
of solutions that are independent of one another (28). Natural-inspired 
processes give the Water Cycle Algorithm (WCA) benefits over 
Particle Swarm Optimization (PSO) and Differential Evolution (DE). 
WCA’s iterative evaporation, cloud formation, and river construction 
balance exploration and exploitation to avoid local optima and 
increase convergence. Its self-adjusting evaporation rates and cloud 
dispersal improve performance without parameter adjustment. The 
robust diversification mechanism of WCA provides constant 
exploration of new regions, while its structured navigation of complex 
search spaces via river formation efficiently avoids suboptimal regions. 
These properties make WCA more adaptable and effective than 
PSO and DE.

This algorithm is used for model optimization (hyper-parameter 
tuning) in this study. We used deterministic optimization here while 
there exists methods for optimization under uncertainty (29, 30). 
Here, each solution consists of a combination of hyper-parameter 
values and one of the objective functions is the RMSE error rate of the 
model build on each solution which should be maximized.

Also, by selecting the architecture with the least Akaike 
Information Criterion (AIC) value, the models are filtered to prevent 
overfitting, thus promoting generalization and robustness in the 
forecasting models. This method already shown promising results in 
avoiding overfitted models (31).

3.2 Piecewise polynomial regression

Piecewise Polynomial Regression (PRR) is the process of 
estimating a regression function by fitting multiple polynomial 
functions to different segments of the dataset. In this regression 
model, several polynomial functions are used to approximate the 
regression function in specific data segments (32).

PPR divides the dataset into segments and uses polynomial 
functions to approximate the regression function. The foundation of 
this segmentation is input space partitioning. Every segment is 
equivalent to a polynomial function that denotes the regression 
relationship inside that certain interval (32, 33).

To determine the optimal piecewise polynomial estimator, the 
research paper suggests considering various models defined by 
partitions and polynomial degrees. It utilizes a penalized least squares 

TABLE 1 Complete dataset of ketoprofen solubility in supercritical 
carbon dioxide (22).

T (K) P (bar) Solubility

308.15

160 2.21 × 10−5

200 2.56 × 10−5

240 2.87 × 10−5

280 3.21 × 10−5

320 3.45 × 10−5

360 4.23 × 10−5

400 4.56 × 10−5

318.15

160 5.01 × 10−5

200 6.58 × 10−5

240 7.68 × 10−5

280 9.01 × 10−5

320 1.12 × 10−4

360 1.03 × 10−4

400 1.20 × 10−4

328.15

160 7.01 × 10−5

200 1.16 × 10−4

240 1.75 × 10−4

280 2.20 × 10−4

320 2.54 × 10−4

360 3.24 × 10−4

400 3.59 × 10−4

338.15

160 1.01 × 10−4

200 2.45 × 10−4

240 3.25 × 10−4

280 4.92 × 10−4

320 5.79 × 10−4

360 6.87 × 10−4

400 7.12 × 10−4
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criterion to identify the model with an estimator closely resembling 
the best one in terms of quadratic risk. Additionally, the study 
establishes a non-asymptotic risk bound to ensure the selected 
model’s performance.

Extending the methodology to tree-structured partitions akin 
to those in the CART (34) algorithm offers a novel approach to 
constructing piecewise polynomial estimators for regression 
functions. This extension involves iteratively optimizing the 
selection of polynomial functions within each segment to best 
represent the underlying regression function across the entire 
data range.

3.3 Kernel ridge regression

The ideas of linear ridge regression are extended in the robust 
non-linear regression method known as kernel ridge regression 
(KRR). Utilizing the kernel trick, KRR adeptly captures the non-linear 
patterns inherent in data, rendering it applicable across diverse 
scenarios. The regularization mechanisms in KRR, including the ridge 
penalty, play a pivotal role in shaping the optimized kernel function, 
thereby mitigating overfitting concerns and bolstering predictive 
precision (35, 36).

Assume we have a dataset x yi i i
N

,( ){ } =1 consisting of N data rows 
that have been sampled from a distribution P over the Cartesian 
product of X and the real numbers (R). The objective is to identify the 
best function that, with the expectation computed collectively over 

(X,Y) pairs, minimizes the Mean Squared Error (MSE) 
of the data f x y( ) −( )2.

The conditional mean ( ) [ ]: |=f x Y X x∗ =  is widely regarded as 
the most suitable function (37). Using a squared Hilbert norm penalty 
and the M-estimator with the lowest squares loss on the dataset is a 
feasible approach to forecast the unknown function f ∗ (37).

 
( )( )2 2

i
1

1: argmin ,
N

i Hf H i
f f x y f

N∈ =

  = − + 
  
∑ 

Here, H denotes a reproducing kernel Hilbert space and ⋋ > 0 
represents a regularization parameter. The kernel ridge regression 
estimate (referred to as KRR) serves as the estimator employed in the 
equation above (38).

3.4 Tweedie regression

The Tweedie regression model is a versatile tool for analyzing data 
that is non-negative, right-skewed, and has a high probability of being 
zero (39). It provides a single model that can effectively handle various 
types of continuous data automatically, making model selection easier 
during fitting.

The Tweedie regression model is predicated upon the assumption 
that the response variable Y follows a Tweedie distribution, denoted 
as Y Tw u pp∼ ( ), ,φ , where u represents the mean, φ  denotes the 

FIGURE 1

Distribution plots of temperature (T), pressure (P), and solubility of ketoprofen in supercritical CO2.
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dispersion parameter, and p signifies the power parameter. This model 
postulates a relationship between the mean and variance of Y, where 
the variance is proportional to the mean raised to the power parameter 

p, expressed as ( ) · pVar Y u= φ . The regression parameters b are linked 
to the mean of Y through a specified link function ( )·g , such that 
E Y g Xb( ) = ( ), where X represents the design matrix. The likelihood 
function for the Tweedie regression model involves the probability 
density function of the Tweedie distribution, which entails complexity 
due to the presence of the power parameter p, necessitating numerical 
methods for its evaluation. Estimation of the regression parameters b 
and the dispersion parameter φ  typically relies on maximum 
likelihood, quasi-likelihood, or pseudo-likelihood methods, 
leveraging second-moment assumptions to facilitate efficient and 
adaptable modeling of continuous data (39, 40).

4 Results and discussion

In this study, we implemented regression models to predict the 
solubility of ketoprofen in supercritical CO₂ using the provided 
dataset. The dataset includes measurements of temperature (T in 
Kelvin) and pressure (P in bar) as inputs, and solubility as the output. 
The regression models employed are PPR, KRR, and TDR. To 
optimize the hyperparameters of these models, we utilized the Water 
Cycle Algorithm (WCA), a robust optimization method known for its 
efficiency in finding optimal solutions in complex search spaces. The 
dataset was partitioned into training and testing subsets (80% training 
and 20% test) randomly, and the effectiveness of the models was gaged 
using a diverse set of metrics. The models are implemented on a 
machine with core-i7 CPU and 8Gb RAM which takes very small time 

FIGURE 2

Violin plots illustrating the distributions of temperature (T), pressure (P), and the solubility of ketoprofen in supercritical CO2.

FIGURE 3

Water cycle algorithm (WCA).
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(near Realtime) for each model to be executed. The effectiveness of 
regression models was appraised based on the following criteria (41):

 1 R2 Score (Coefficient of Determination):

 

R
Y Y

Y Y
i
n

i i

i
n

i

2 1

2

1

1= −
−( )
−

=

=

∑
∑

observed predicted

observed obs

, ,

, eerved( )2

These metric measures how well model predictions match data. 
An R2 score near 1 indicates a highly accurate model.

 2 Mean squared error

 
MSE observed predicted= −( )

=
∑1
1

2

n
Y Y

i

n
i i, ,

The average squared difference between the outcomes as seen in 
reality and those the model predicts is known as MSE. Lower MSE 
values indicate better model performance.

 3 Mean absolute error

 
MAE observed predicted= −

=
∑1
1

n
Y Y

i

n
i i, ,

Without taking into account the direction of the errors, MAE 
determines the average magnitude of errors in a set of predictions. 
Like MSE, lower MAE values indicate better model performance.

Table 2 summarizes the numerical findings for every regression 
model. The results indicate that Piecewise Polynomial Regression 
(PPR) outperforms both Kernel Ridge Regression (KRR) and Tweedie 
Regression (TDR) across all evaluation metrics. PPR achieved the 
highest R2 score of 0.97111, indicating that it explains approximately 
97% of the variance in solubility. Additionally, PPR had the lowest 
MSE (1.6867E-09) and MAE (3.01040E-05), further demonstrating its 
superior predictive accuracy. Figure  4 shows a comparison of 
predicted solubility values and their corresponding actual values using 
the PPR model.

The results obtained in this study showed superior performance 
compared to the previous machine learning models developed for 
prediction of drug solubility in supercritical CO2. The accuracy 
reported for machine learning modeling of Hyoscine solubility in 
supercritical CO2 was reported to be 2.1680E-01 for the best model in 
terms of RMSE which is higher than our model developed in this 
study (20). A RMSE value of 2.74912E-01 was reported by Almehizia 
et al. (42) for prediction of multiple drugs solubility in supercritical 
CO2. The best model was reported to be HS-PR (Harmony Search-
Polynomial Regression).

Kernel Ridge Regression (KRR) also performed well, with an R2 
score of 0.95044, an MSE of 2.5499E-09, and an MAE of 3.49707E-05. 
Although KRR’s performance was slightly inferior to PPR, it still 
showed strong predictive capabilities, making it a viable alternative for 
modeling ketoprofen solubility. Figure 5 compares the KRR model-
predicted and corresponding actual solubility values.

Tweedie Regression (TDR) exhibited the lowest performance 
among the three models, with R2 score of 0.84413, an MSE of 7.4249E-
09, and an MAE of 5.69159E-05. Despite its relatively lower 
performance, TDR provided reasonable predictions, but it is clear that 
more complex models like PPR and KRR better capture the 
relationship between input features and solubility. The comparison 
between predicted and actual solubility values using the TDR model 
is depicted in Figure 6. Although some deviations can be observed in 
the testing step for this model, the overall fitting accuracy is acceptable 
considering the complexity of the process and dataset. Moreover, the 
models have been optimized in a way to minimize the risk of 
overprediction for the test dataset.

Ultimately, the Piecewise Polynomial Regression (PPR) model 
shows excellent accuracy and dependability in predicting the solubility 
of ketoprofen in supercritical CO₂. Comparing this model to the other 
models assessed in this work, it performs better because it can 
partition the data space and fit polynomial functions within each 
segment to efficiently capture the underlying patterns in the data. 
Figures 7, 8 illustrate, with this model, how inputs affect the solubility 
values. Furthermore, shown in Figure 9 is the solubility in a contour 
plot and three-dimensional manner as a function of T(K) and P(bar). 
The trend for temperature shows exponential increase of solubility 
with temperature rise. On the other hand, a linear trend was observed 
for the influence of pressure on the drug solubility (see Figure 8). 
Thus, the maximum amount of ketoprofen solubility is determined at 
the highest values of T and P based on the ML models. Indeed, there 
is no optimum point for the solubility, and the optimum conditions 
should be determined from the process cost and economic evaluations.

5 Conclusion

In this study, we  successfully developed and evaluated three 
machine learning regression models–PPR, KRR, and TDR–to predict 
the solubility of ketoprofen in supercritical CO2. By employing the 
Water Cycle Algorithm for hyperparameter tuning, we optimized each 
model’s performance, demonstrating the effectiveness of this approach 
in enhancing predictive accuracy. Our comparative analysis revealed 
that PPR outperformed the other models, providing the most accurate 
predictions with an R2 score of 0.97111, a MSE of 1.6867 × 10−9, and a 
MAE of 3.01040 × 10−5. This paper makes multiple contributions. 
Initially, we assess the three regression models used for predicting 
ketoprofen solubility, emphasizing their advantages and disadvantages. 
Furthermore, we illustrate the enhancement of model performance 
through the optimization of hyperparameters using the Water Cycle 
Algorithm. Ultimately, we  provide comprehensive visual 
representations and statistical examinations to uncover the 
connections between temperature (T), pressure (P), and solubility. 
This study employs sophisticated machine learning techniques and 
resilient optimization strategies to forecast the solubility of 
supercritical fluids and enhance the optimization of 
pharmaceutical processes.

TABLE 2 Performance metrics for the regression models predicting 
ketoprofen solubility.

Model R2 Score MSE MAE

PPR 0.97111 1.6867E-09 3.01040E-05

KRR 0.95044 2.5499E-09 3.49707E-05

TDR 0.84413 7.4249E-09 5.69159E-05
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FIGURE 6

Actual and predicted values comparison (TDR model).

FIGURE 7

Impact of temperature on the solubility on different pressure levels.
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FIGURE 8

Impact of pressure on the solubility on different temperature levels.

FIGURE 9

Final PPR model: (A) the 3D representation of predicted solubility values (B) contour plot of predicted solubility values.
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