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Background: Pulmonary arterial hypertension (PAH) is a serious condition 
characterized by elevated pulmonary artery pressure, leading to right heart 
failure and increased mortality. This study investigates the link between PAH and 
genes associated with hypoxia and cuproptosis.

Methods: We utilized expression profiles and single-cell RNA-seq data of PAH 
from the GEO database and genecad. Genes related to cuproptosis and hypoxia 
were identified. After normalizing the data, differential gene expression was 
analyzed between PAH and control groups. We performed clustering analyses 
on cuproptosis-related genes and constructed a weighted gene co-expression 
network (WGCNA) to identify key genes linked to cuproptosis subtype scores. 
KEGG, GO, and DO enrichment analyses were conducted for hypoxia-related 
genes, and a protein–protein interaction (PPI) network was created using 
STRING. Immune cell composition differences were examined between groups. 
SingleR and Seurat were used for scRNA-seq data analysis, with PCA and t-SNE 
for dimensionality reduction. We analyzed hub gene expression across single-
cell clusters and built a diagnostic model using LASSO and random forest, 
optimizing parameters with 10-fold cross-validation. A total of 113 combinations 
of 12 machine learning algorithms were employed to evaluate model accuracy. 
GSEA was utilized for pathway enrichment analysis of AHR and FAS, and a 
Nomogram was created to assess risk impact. We also analyzed the correlation 
between key genes and immune cell types using Spearman correlation.

Results: We identified several diagnostic genes for PAH linked to hypoxia and 
cuproptosis. PPI networks illustrated relationships among these hub genes, 
with immune infiltration analysis highlighting associations with monocytes, 
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macrophages, and CD8 T cells. The genes AHR, FAS, and FGF2 emerged as key 
markers, forming a robust diagnostic model (NaiveBayes) with an AUC of 0.9.

Conclusion: AHR, FAS, and FGF2 were identified as potential biomarkers for 
PAH, influencing cell proliferation and inflammatory responses, thereby offering 
new insights for PAH prevention and treatment.

KEYWORDS

pulmonary arterial hypertension, bioinformatics analysis, immune infiltration, hub 
gene, AHR, FAS, FGF2

1 Introduction

Pulmonary arterial hypertension (PAH) is a rare and serious 
disease, with an incidence of 15 to 50 cases per million people in the 
United States and Europe (1). The prevalence is estimated at 4.8 to 8.1 
cases per million in children and 5.6 to 25 cases per million in adults 
(2). The prognosis for PAH is grim, primarily due to progressive 
elevation of pulmonary artery pressure, culminating in right heart 
failure and mortality. According to the National Center for Health 
Statistics, the 1-year survival rate for untreated PAH is 68%, dropping 
to 48% at 3 years and a mere 34% at 5 years (3). The annual mortality 
rate of PAH remains approximately 10% even with modern treatment 
techniques. Clinical manifestations of PAH encompass dyspnea, chest 
pain, syncope, lower limb edema, and jugular vein distension (4). The 
diagnosis of PAH poses challenges due to the absence of characteristic 
clinical manifestations. Diagnosis of PAH involves electrocardiography, 
echocardiography, and right heart catheterization (RHC), the gold 
standard diagnostic tool (5). However, RHC may lead to misdiagnosis 
due to various factors (6), causing diagnostic delays. Delayed diagnosis 
represents a primary contributor to poor patient prognosis (7). Thus, 
enhancing diagnostic tools for PAH is imperative. The widespread 
utilization of gene expression profiling (GEO) data has made 
bioinformatics analysis a pivotal tool for identifying potential genetic 
biomarkers in the diagnosis and treatment of PAH.

Hypoxia is a prevalent concomitant symptom of PAH. Dyspnea 
occurs in approximately 98% of PAH patients, with 60% experiencing 
it as the initial symptom (4). Hypoxia constitutes a significant risk 
factor for PAH (8) and serves as a common stimulus for inducing PAH 
in experimental models (9). A study investigating predictive factors for 
PAH development in patients with hypersensitivity pneumonitis 
identified hypoxemia as a predictor (10). Hypoxia is believed to initiate 
endothelial cell dysfunction in PAH, leading to abnormal proliferation 
of pulmonary artery vascular endothelial cells, vessel wall thickening, 
and pressure elevation, thereby fostering PAH development (11, 12).

Copper is an indispensable trace element for human physiology. 
Imbalances in copper levels have been strongly linked to various 
diseases, including Menkes disease, Wilson’s disease, neurodegenerative 
disorders, cancer, and cardiovascular diseases (13). A prospective pilot 
study conducted at a single center revealed significantly elevated blood 
copper levels among patients with PAH, suggesting a potential role of 
elevated copper levels as either a causative factor or a marker for PAH 
(14). Research indicates that copper plays a significant role in regulating 
the growth and proliferation of endothelial cells in PAH (15), possibly 
contributing to the pathogenesis of the condition. Cuproptosis, a novel 
form of copper-dependent cell death, has emerged as an area of study 

(13), with research extending to diverse conditions such as 
hepatocellular carcinoma, diabetes mellitus, glioblastoma, and oral 
squamous cell carcinoma (16–19). However, there remains a paucity of 
studies investigating the association between copper and PAH.

Both hypoxia and copper are closely linked to the pathogenesis of 
PAH, yet the relationship between genes associated with hypoxia and 
copper-induced cell death and PAH remains inadequately investigated. 
This study aimed to identify potential diagnostic biomarkers for PAH 
associated with hypoxia and copper-mediated cell death through 
bioinformatics analysis.

2 Method

2.1 Data collection and preprocessing

Transcriptome data for PAH were retrieved from the GEO dataset 
GSE15197, comprising 13 normal and 26 PAH groups. Additionally, 
validation was conducted using data from GSE33463, consisting of 41 
normal and 72 PAH groups. Dataset GSE113439 was used as 
validation group 2, including 11 normal groups and 15 PAH groups. 
Dataset GSE22356 was used as validation group  3, there were 10 
normal groups and 18 PAH groups. The gene set related to copper-
induced cell death was sourced from the Genecard database and 
literature, while hypoxia-related genes were obtained from the same 
database. Furthermore, single-cell 10x data for Single-cell Ribonucleic 
Acid Sequencing (scRNA-seq) was obtained from the GEO dataset 
GSE228644. Data preprocessing of the GEO dataset involved 
normalization using the “normalizeBetweenArrays” function.

2.2 Transcriptome analysis

Differential gene expression analysis was performed by comparing 
the 13 normal and 26 PAH groups in GSE15197, applying criteria of 
|log Foldchange (FC) | > 1 and a false discovery rate (FDR) < 0.05. 
Gene set enrichment analysis (GEA) was executed using the GSEA 
Base R package on genes with a p-value >0.05.

2.3 Differential gene expression and 
clustering for copper-induced cell death

Differential analysis was conducted on genes associated with 
copper-induced cell death, followed by clustering using the 
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“ConsensusClusterPlus” R package to delineate molecular subtypes 
linked to copper-induced cell death. Additionally, variations in the 
typed copper-induced cell death genes among subtypes were assessed.

2.4 Weighted gene co-expression network 
analysis of typing results

Weighted gene co-expression network analysis (WGCNA) is a 
systems biology approach used to delineate patterns of gene 
associations across different samples. Employing the “WGCNA” R 
package, we identified genes significantly linked to the cuproptosis 
subtype score. Initially, we  inputted expression profiles from the 
top 25% of variants in the GSE15197 cohort, excluding samples with 
cluster heights exceeding 20,000. We established a soft threshold and 
selected the two modules exhibiting the strongest positive correlations 
with the cuproptosis subtype score through Pearson correlation 
coefficient calculation.

2.5 Functional enrichment for hypoxia 
genes

To analyze hypoxia-associated genes, including KEGG pathways, 
Gene Ontology (GO), and Disease Ontology (DO) enrichment, 
we utilized the “enrich” function in R.

2.6 Protein interaction network analysis 
and ROC curve plotting

The final hub genes were obtained by intersecting sets of WGCNA 
genes, PAH differential genes, and hypoxia-associated genes. 
Subsequently, the protein interaction network of hub genes was 
scrutinized using the STRING database, with visualization conducted 
via Cytoscape. Further analysis of the protein network was performed 
using the MCODE tool. Receiver Operating Characteristic (ROC) 
analysis of the hub genes was carried out using the “pROC” R package.

2.7 Immune landscape analysis and genetic 
correlation analysis

The CIBERSORT algorithm predicted the composition of 
infiltrating immune cells in each tumor sample and assessed immune 
cell differences between normal and disease groups. Subsequently, 
immune cell profiles associated with hub genes were examined using 
the infiltration results. Correlations among hub genes were analyzed 
using the limma package.

2.8 Single-cell downscaling and cluster 
annotation

We analyzed scRNA-seq data using R software packages, including 
“Seurat” and “SingleR.” To ensure high-quality data, we applied four 
filters to the raw matrix of each cell: genes expressed in fewer than three 
cells or more than 10,000 cells, as well as cells with over 20% 

mitochondrial genes, were excluded. Data normalization was 
conducted using the “NormalizeData” function in the “Seurat” package, 
employing the “LogNormalize” method. The normalized data were 
then processed into Seurat objects, and the top 2000 highly variable 
genes were identified using the “FindVariableFeatures” function. 
Principal component analysis (PCA) was performed on the normalized 
objects using the “RunPCA” function. Subsequently, the dimensionality 
of the scRNA-seq data was reduced based on the first 2000 genes. The 
original distributions of the data were visualized using the “RunTSNE” 
function for t-distribution random neighbor embedding (t-SNE). 
We  utilized the “RunHarmony” function for de-batching and 
downscaling the data. Significant principal components were identified 
using JackStraw analysis, and the top 17 components were selected for 
clustering analysis. Cell clustering was performed using the 
“FindNeighbors” and “FindClusters” functions in the “Seurat” package. 
Based on Euclidean distance in PCA, we  constructed a k-nearest-
neighbor graph using the “FindNeighbors” function and visualized the 
downscaled resolution using the clustree function. The resolution was 
set to 1 for combined results. SingleR annotation was integrated with 
the toppgene database, and cell groups were labeled accordingly.

2.9 Analysis of single-cell gene sets

Hub genes underwent differential analysis using the 
“FindAllMarkers” function. Subsequently, the resulting genes were 
scored using the “irGSEA.score” function, and the significance of 
these scores was displayed in each cluster.

2.10 Machine learning for constructing 
diagnostic models

To determine the optimal regularization parameter (λ) of the model, 
we performed 10-fold cross-validation using least absolute shrinkage and 
selection operator (LASSO) logistic regression. The cv.glmnet function 
was used to select the value of λ that best explained the data based on the 
deviance criterion. We plotted the path plots and cross-validation curves 
of the LASSO regression to visually demonstrate the coefficient shrinkage 
process and the evaluation of model performance. Finally, we extracted 
the characteristic genes with nonzero regression coefficients in the 
LASSO model at the optimal λ value, and screened out the significantly 
associated genes. Similarly, randomForest function was used to construct 
a random forest model, and the model parameter was set to construct 
500 decision trees (ntree = 500). We generated a plot of the error rate of 
the random forest model (forest.pdf) to evaluate the stability and 
accuracy of the model. Subsequently, we re-constructed the random 
forest model by cross-validating the number of trees that selected the 
least error to improve model performance. The MeanDecreaseGini 
(importance score) of genes was extracted by the importance function, 
and genes with a score greater than 2 were screened as significantly 
contributing to classification. Ultimately, genes that overlap in the two 
machine-learning algorithms are considered diagnostic biomarkers.

We combined 12 machine learning algorithms to generate 113 
algorithm combinations to further screen for consistent regulatory 
genes (CRGs) with good accuracy and stability. Ensemble algorithms 
include random forest (RF), least absolute shrinkage and selection 
operator (Lasso), Ridge, elastic network (Enet), Stepglm, support 
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vector machine (SVM), glmBoost, linear discriminant analysis (LDA), 
gradient boosting machine (GBM), extreme gradient boosting 
machine (XGBoost), and Bayesian method. GSE15197 and GSE33463 
were merged into the training group, and GSE113439 and GSE22356 
were used as the test group. The fitted diagnostic model was 
constructed based on the 10-fold cross-validation of the train dataset. 
For each model, the area under receiver operating characteristic curve 
(AUC) value was determined in all validation datasets, and the model 
with the highest mean AUC value was considered to be the optimal. 
ROC curves of the three data sets were constructed for each biomarker.

2.11 Characterization-based analysis of 
GSEA enrichment of genes

Pathways of AHR enrichment in high and low expression groups 
were analyzed via Gene Set Enrichment Analysis (GSEA) to elucidate 
potential mechanisms. The reference gene set comprised c2.cp.kegg.
Hs.symbols.gmt and c5.go.Hs.symbols.gmt, with a screening 
condition of p-value <0.05.

2.12 Nomogram construction and 
immunoanalysis of genes

To further evaluate the validity of the model, a Nomogram was 
constructed to show the influence of each variable on disease risk. To 
verify the stability and prediction accuracy of the model, calibration 
curves were generated using Bootstrapping (1,000 replicates). Finally, 
decision curve analysis (DCA) was used to evaluate the clinical 
applicability of the model under different risk thresholds. All statistical 
analyses were performed in the R language environment using the rms 
and rmda packages. We then further analyzed the infiltration of key 
genes from the proportion of immune cells analyzed by 
CIBERSORT. Spearman correlation analysis was used to assess the 
correlation between different immune cell types and AHR and FAS 
expression (20–22).

2.13 Time series analysis of Mfuzz and 
functional enrichment

Time-series analysis of all sample genes by comparing AHR 
expression was performed using the MfuzzR package, and they were 
divided into 50 categories. The most valuable category was obtained 
by calculating the correlation between each cluster and AHR, and then 
functional and pathway clustering analysis was performed on these 
categories. Finally, using the http://bar.utoronto.ca/efp_human/
cgi-bin/efpWeb.cgi online analysis of AHR and location of the FAS.

3 Results

3.1 Differential analysis of transcriptome 
data and GSEA enrichment analysis

Figure 1A shows the normalization of the four PAH datasets. 
We  identified 225 up-regulated genes and 366 down-regulated 

genes through differential analysis of corrected GSE15197 data 
between pulmonary arterial hypertension (PAH) and normal lung 
tissues (Figure 1B). Additionally, we examined the expression of the 
top 30 genes with the most significant differences between PAH and 
normal controls (Figure 1C). Analysis of the GSEA results revealed 
that the five most significantly enriched pathways for downregulated 
genes encompassed Basal cell carcinoma, Maturity onset diabetes 
of the young, Metabolism of xenobiotics by cytochrome P450, 
Nicotine addiction, and Platinum drug resistance (Figure  1D). 
Conversely, the five most significantly up-regulated genes were 
enriched in pathways including Glycosylphosphatidylinositol 
(GPI)-anchor biosynthesis, Asthma, IL-17 signaling pathway, 
Legionellosis, and Renin-angiotensin system (Figure 1E).

3.2 Identification and typing of 
cuproptosis-related genes and WGCNA 
analysis

Based on the literature and Genecard database, we obtained 25 
cuproptosis-related genes, of which five genes—LIPT1, PDHX, LIAS, 
GLS, and DBT—showed differential expression in the transcriptome 
(Figure 2A). Unsupervised cluster typing of GSE15197 using these five 
differential cuproptosis-related genes segregated them into two 
subgroups (Figures  2B,C), with Subtype II displaying stronger 
association with cuproptosis, as evidenced by gene variance analysis 
(Figure 2D). Figures 2E,F depict the differential expression of the five 
genes across various clusters and groups. WGCNA was employed to 
further investigate genomes associated with these subtypes. When the 
soft threshold value was set to 8, the data exhibited consistency with 
the power law distribution, and the average concatenation appeared 
stable (Figure  2G), rendering it suitable for subsequent analysis. 
Ultimately, we identified 10 modules (Figure 2H), with comparative 
analysis revealing that the MEred (cor = 0.9, p = 1.7e-161) and MEpink 
(cor = 0.72, p = 4.2e-44) modules were most closely correlated with 
subtype II (Figure 2I), encompassing 712 genes.

3.3 Functional analysis of hypoxia target 
genes and PPI construction of disease 
genes

The intersection of key genes from two modules and differential 
genes from the transcriptome analysis resulted in 130 disease genes 
(Figure 3A). We retrieved 972 genes from Genecard with a correlation 
score > 0.2, and the overlap between the hypoxia gene set and disease 
genes identified 13 hub genes (Figure  3B). Functional enrichment 
analysis of hypoxia-related genes revealed Gene Ontology (GO) results 
indicative of responses to oxygen level changes, hypoxia, and cellular 
components such as vesicle lumen and membrane rafts (Figure 3C). 
Disease Ontology (DO) enrichment highlighted significant associations 
with PAH, ischemia, renal cell carcinoma, and peripheral nervous system 
tumors (Figure 3D). Additionally, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis indicated significant enrichment in pathways 
including the HIF-1 signaling pathway, microRNA in cancer, and 
AGE-RAGE signaling pathway in diabetic complications (Figure 3E).

We employed the STRING database to construct a protein–protein 
interaction (PPI) network, where green nodes represented disease genes, 
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blue nodes represented genes from STRING, and yellow nodes 
represented hub genes. This network analysis revealed direct and indirect 
regulatory targets of the hub genes (Figure 4A). Utilizing the MCODE 
algorithm, we identified the CCL21-IL33-CX3CR1 cluster, with CX3CR1 
identified as the hub gene, suggesting potential indirect regulation of 
CCL21 and IL33 in PAH development (Figure 4B). Additionally, raw PPI 
network images were generated (Figure  4C). ROC curve analysis 
demonstrated that all hub genes had an AUC above 0.7, with FAS 
exhibiting the highest AUC value of 0.959 (Figure 4D). Differential 
expression analysis indicated that all hub genes were highly expressed in 
the normal group, suggesting their role as protective genes (Figure 4E).

3.4 Immune infiltration and immune 
differential analysis

Using the CIBERSORT algorithm, we  assessed immune 
infiltration in GSE15197 and visualized the immune cell proportions 
for each sample (Figure 5A). Based on these results, the hub gene 
was significantly under-expressed in memory B cells and over-
expressed in naive B cells, with significant differences also observed 
in memory resting CD4+ T cells, naive CD4+ T cells, and CD8+ T 
cells (Figure  5B). Differential analysis of immune cells between 
normal and tumor groups revealed superior immune cell infiltration 

FIGURE 1

Comprehensive gene expression analysis. (A) Sample normalization process. (B) Volcano plots of differentially expressed genes (DEGs). Yellow is up-
regulated in the Depression Group, and blue is up-regulated in the control group. (C) Heatmap of top 30 genes. (D,E) Gene set enrichment analysis 
(GSEA) of differential genes.
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in the normal group, particularly evident in monocytes, naive B 
cells, and neutrophils, while activated mast cells and memory B cells 
were significantly infiltrated in tumors (Figure 5C). Furthermore, 
correlation analysis among various immune cells revealed distinct 
expression patterns (Figure 5D). Analyzing hub gene correlations, 
CX3CR1 and NAMPT exhibited significant negative correlations, 
while other genes showed significant positive correlations. AHR 
displayed positive correlations with ANXA1, BACH, DLEU2, FAS, 
FGF2, LEPR, NAMPT, SNHG1, TNFSF10, and TSLP (Figures 5E,F).

3.5 Single-cell outcome analysis

We processed the scRNA-seq data from GSE228644, ensuring 
sample quality by removing specific cells and controlling the 
mitochondrial and erythroid gene ratio (Figure 6A). Figure 6B is a 
single-cell cluster tree. Subsequently, we identified 2000 genes exhibiting 
high variability and highlighted the top  10 most important genes 
(Figure  6C). Using PCA, we  selected 17 principal components 
(Figure 6D), with all highly variable genes marked in red. We employed 

FIGURE 2

Analysis of cuproptosis genes in pulmonary arterial hypertension (PAH). (A) Expression of cuproptosis genes in PAH and normal groups. (B) Consistent 
clustering matrix at k  =  2. (C) Consensus clustering cumulative distribution function (C,D,F) for k  =  2 to k  =  9. (D) Expression of cuproptosis genes in two 
subtypes. (E,F) Heatmap of cuproptosis signature genes. (G) Network analysis. Left: Scale-Free Fit Index versus Soft Threshold Power. Right: Mean 
Connectivity as a Function of Soft Threshold Power. (H) Pearson correlation analysis of merged modules in two subtypes. Each row in the heatmap 
corresponds to a module eigengene (ME), and each column corresponds to a clinical feature. (I) Correlation analysis of feature genes in pink and red 
modules.
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the top 1,500 variable genes for principal component analysis to facilitate 
dimensionality reduction. Based on the findings presented in Figure 6B, 
a resolution of 1 was selected, and the differential gene expression results 
within each cluster were examined (Figure 6E) We employed singleR for 
preliminary annotation of the cell population (Figure 7A). Cell cluster 
results identified a total of 13 cell clusters (Figure  7B). Figure  7C 
we observed the enrichment of some common cell characteristic genes 
in each cell cluster. Cell identity was annotated by combining singleR 
results with cell characterization genes (Figure 7D), broadly categorized 
into nine clusters: Macrophage, Monocyte, T cells, Tissue stem cells, 
Smooth muscle cells, Endothelial cells, B cell, NK cell, and Epithelial 
cells. Using the results of z-score, it was found that there was significant 

enrichment on Macrophage, Monocyte, Smooth muscle cells 
(Figure 7E). The characteristic genes of each cell cluster were obtained 
by differential analysis (p < 0.05). Among them, the heat map of the 
distribution of key genes AHR and FAS is shown in Figure 7F.

3.6 Identification and validation of 
diagnostic biomarkers

Four diagnostic genes were identified using RF as potential 
diagnostic markers (Figures 8A,B). Using the LASSO regression 
algorithm, six genes from the selected modules were identified as 

FIGURE 3

Gene intersections and enrichment analyses in hypoxia-related conditions. (A) Intersection of modular and differential genes. (B) Intersection of 
disease genes and hypoxia targets. (C) GO enrichment analysis for hypoxic targets. Presentation of the top five results for BP, CC, and MF. (D) Disease 
ontology (DO) enrichment results. The top 20 enriched disease terms were displayed. (E) KEGG pathway enrichment results: Top 20 enriched 
pathways were displayed.
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potential diagnostic biomarkers (Figures 8C,D). Superposition of 
the results of the two sets of machine-learning algorithms yielded 
three genes (Figure 8E), including AHR, FAS, and FGF2. AHR and 
FAS are the most effective diagnostic markers. On the basis of 
retaining three genes, the combination of multiple machine learning 
algorithms obtained 67 models, among which NaiveBayes had the 
best comprehensive performance in the training group and the two 
test groups (Figure 8F), with AUC values of 0.939 in GSE113439 and 
0.789  in GSE22356, respectively. 0.757  in the train group 
(Figure 8G). Figure 8H shows the confusion matrix for the three 
data sets. The AUC values of single genes are shown as shown in 
Figure 8I, which shows that AHR and FAS perform best in the three 
datasets. The expression of the three genes in other datasets is shown 
in Figures 1–3. In summary, we defined them as hub important genes.

3.7 Nomogram construction and immune 
cell analysis of key genes

In this study, we developed a predictive model based on AHR and 
FAS expression levels and used a nomogram to estimate disease risk 
(Figure 9A). The nomogram showed that AHR and FAS levels were 
associated with disease risk. The calibration curve of the model 
(Figure  9B) showed good agreement between the predicted 
probabilities and the actual results, indicating the high reliability of 
the model. Decision curve analysis (Figure 9C) further validated the 
clinical usefulness of the model, providing a net benefit across a range 
of threshold probabilities.

In addition, correlation network analysis (Figure 9D) revealed 
complex relationships between immune cell types and gene expression 

FIGURE 4

Network analysis and gene expression profiling in PAH. (A) Visualization of disease targets in cytoscape. (B) Result of the MCODE algorithm. (C) Original 
Protein–Protein Interaction (PPI) Network. (D) ROC curves for each hub gene. (E) Expression of hub Genes in PAH and normal groups.
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levels. AHR and FAS were significantly associated with a variety of 
immune cells, suggesting their potential role in regulating immune 
responses. Detailed correlation analysis showed that AHR was 
significantly positively correlated with Macrophages M1 (p = 0.034) 
and negatively correlated with Monocytes (p = 0.005) and CD8 T cells 
(p = 0.004) (Figure 9E). FAS was positively correlated with Macrophages 
M1 (p = 0.015) and Neutrophils (p = 0.043). However, there was a 
significant negative correlation with Macrophages M2 (p = 0.033), 
Monocytes (p = 0.014) and T cells CD8 (p = 0.002) (Figure 9F). In the 
correlation matrix heat map (Figure 9G), AHR, FGF2 and FAS showed 
varying degrees of correlation in their relationships with other genes, 
and FGF2 was particularly significant in positive correlation, indicating 
that it may play an important role in the diagnosis of PAH. These 

results highlight the possible impact of AHR and FAS in immune cell 
dynamics and immune-related diseases.

3.8 GSEA analysis of the biomarker AHR

GSEA results showed that the AHR high expression group was 
enriched in CILIUM_MOVEMENT, CILIUM_ORGANIZATION, 
MICROTUBULE_BASED_MOVEMENT, etc. (Figure  10A). The 
pathways in the AHR high expression group were enriched in ABC_
TRANSPORTERS, OOCYTE_MEIOSIS, P53_SIGNALING_PATHWAY, 
and others (Figure 10B). The functions in the low expression group were 
enriched in REGULATION_OF_TRANS_SYNAPTIC_SIGNALING, 

FIGURE 5

Immune cell distribution and correlations in GSE15197 dataset. (A) Relative proportion of immune cell infiltrates. (B) Correlation analysis of hub genes 
with immune cells. (C) Comparison of 22 immune cell types in PAH and normal groups. Blue indicates normal and yellow indicates PAH groups. 
(D) Correlations among 22 different immune cell populations: Yellow and blue indicate positive and negative correlations, respectively, and white 
indicates no correlation between the indicated immune cell populations. (E,F) Correlation analysis of hub genes.
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TRANSPORTER_COMPLEX, G_PROTEIN_COUPLED_RECEPTOR_
ACTIVITY, etc. (Figure 10C). Pathways in the AHR low expression group 
were enriched in BASAL_CELL_CARCINOMA, BASAL_CELL_
CARCINOMA, CARDIAC_MUSCLE_CONTRACTION, and others 
(Figure 10D). Similarly, functions in the FAS high expression group were 
enriched in CILIUM_ORGANIZATION and GOLGI_
ORGANIZATION, MICROTUBULE_BASED_MOVEMENT 
(Figure  10E); The pathways in the FAS high expression group were 
enriched in ABC_TRANSPORTERS, OOCYTE_MEIOSIS, P53_
SIGNALING_PATHWAY, and others (Figure  10F); In the FAS low 
expression group, functions were enriched in KERATINIZATION, ION_
CHANNEL_COMPLEX, G_PROTEIN_COUPLED_RECEPTOR_
ACTIVITY, etc. (Figure  10G). In the FAS low expression group, the 
pathways were enriched in BASAL_CELL_CARCINOMA and 

CALCIUM_SIGNALING_PATHWAY, CARDIAC_MUSCLE_
CONTRACTION (Figure 10H).

3.9 Mfuzz expression pattern clustering, 
functional analysis of key modules, and EFP 
analysis of AHR

Mfuzz analysis yielded 50 clustering results (Figure 11A). Key 
modules with significant differences between PAH and normal 
groups, as well as their correlation with AHR, were determined 
based on ssGSEA scoring. Modules 13 and 43 emerged as key 
modules, positively correlated with AHR expression levels 
(Figures  11B–E). GO enrichment analysis of module 13 genes 

FIGURE 6

Cell quality control and clustering analysis. (A) Histogram of cell quality control results. (B) Cluster tree across different resolutions. (C) Characterization 
of top 2,000 significant genes. (D) Elbow plot for quantification inflection. (E) Differential heatmap of each cell cluster.
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revealed associations with myeloid leukocytes, cytokine production, 
and RNA polymerase II general transcription initiation factor 
activity (Figure 12A), while KEGG enrichment identified relevance 
to the tumor necrosis factor (TNF) signaling pathway and 
nucleoplasmic translocation (Figure 12B). Module 43 genes were 
enriched in functions like ribonucleoprotein complex biogenesis 
and catalytic activity on RNA, with KEGG enrichment indicating 
involvement in the phosphatidylinositol signaling system and 
ubiquitin-mediated proteolysis (Figures 12C,D). Expression Atlas 
(EFP) analysis demonstrated high AHR expression in lung tissues, 
particularly in the pleura outside lung tissue (Figure  13). EFP 
results showed that AHR was highly expressed in lung tissue, and 

the bar chart showed that AHR was highly expressed in a variety of 
tissues (organs), with the most significant expression in pleura 
except lung tissue. Similarly, FAS was highly expressed in 
lung tissue.

4 Discussion

PAH presents a severe, life-threatening condition marked by a 
gradual elevation in pulmonary artery pressure, culminating in right 
heart failure and mortality. Hypoxia stands out as a significant risk 
factor for this condition, while copper-mediated cell death represents 

FIGURE 7

Cell clustering and marker expression analysis. (A) Singler’s annotation results. (B) t-SNE plot of 13 cell clusters. (C) Expression of characteristic marker 
targets in various cell populations. (D) t-SNE plot of cell annotation results. (E) AUC-Cell score result graph. (F) Z-Score expression of hub genes in each 
cluster.
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FIGURE 8

Analysis of biomarkers using machine learning algorithms. (A,B) RF algorithm. (C,D) Lasso regression analysis. (E) Venn diagram showing reliable 
biomarkers between LASSO and RF. (F) Heatmap of models constructed by various machine learning algorithms. (G) ROC curves of the models in each 
dataset. (H) Confusion matrices for the models across each dataset. (I) ROC curves of the three models’ genes in different test datasets.
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a novel mode of cell demise, both intricately linked to PAH 
development. Research has demonstrated the pivotal role of 
endothelial cell dysfunction in this process, with hypoxia and copper 
influencing PAH development by regulating endothelial cell 
proliferation. Therefore, identifying gene markers associated with 
hypoxia and copper-mediated cell death is imperative for PAH 
diagnosis. In this study, we explored the relationship between hypoxia- 
and copper-related genes and PAH, alongside the associated immune 
infiltration characteristics, through bioinformatics analysis.

Initially, we conducted a differential analysis comparing PAH with 
normal lung tissues, revealing 225 up-regulated genes and 366 down-
regulated genes. Gene Set Enrichment Analysis (GSEA) highlighted 
the top five enriched pathways for up-regulated genes, including 
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis, Asthma, 
IL-17 signaling pathway, Legionellosis, and Renin-angiotensin system. 
Conversely, the most enriched pathways for down-regulated genes 
encompassed Basal cell carcinoma, Maturity onset diabetes of the 
young, Metabolism of xenobiotics by cytochrome P450, Nicotine 
addiction, and Platinum drug resistance. Notably, the up-regulated 
pathways are closely linked to inflammation, vasoconstriction, and cell 
proliferation. The pathogenesis of PAH involves various physiological 
processes, such as endothelial dysfunction, smooth muscle migration 
and proliferation, endothelial-mesenchymal transition, inflammation, 
hypoxia, DNA damage, and oxidative stress (20). Primarily, the 
proliferation of endothelial and smooth muscle cells, along with 
fibroblasts, and the infiltration of inflammatory cells, underlie the 
pathological mechanisms (21). Consequently, we  hypothesize that 

factors like hypoxia, infection, autoimmunity, and genetics collectively 
contribute to abnormal cell proliferation, vasoconstriction, and 
inflammation, thus fostering PAH, aligning with our study findings.

We identified key genes from both modules through unsupervised 
cluster analysis and Weighted Gene Co-expression Network Analysis 
(WGCNA). By intersecting with the differential genes from the 
previous transcriptome analysis, we pinpointed 130 DISEASE genes. 
Subsequently, we subjected the hypoxia genes obtained from Genecard 
to analysis using Disease Ontology (DO), Gene Ontology (GO), and 
Kyoto Encyclopedia of Genes and Genomes (KEGG). Intersection of 
the hypoxia gene set with the disease genes yielded 13 hub genes. 
Next, we constructed a Protein–Protein Interaction (PPI) network for 
the disease genes, revealing that CX3CR1, a hub gene, might indirectly 
regulate PAH development by modulating CCL21 and IL33. Notably, 
CCL21 serves as a crucial marker for predicting PAH development in 
patients with systemic sclerosis (22) and exhibits significant expression 
in epithelial lung tissue (23), closely linked to PAH development. 
Similarly, IL-33 plays a pivotal role in vascular remodeling in PAH 
(24) by promoting the proliferation of vascular smooth muscle cells 
through the upregulation of HIF-1α and Vascular endothelial growth 
factor expression in vascular endothelial cells (25). Consistent with 
our findings, a mouse study demonstrated that CX3CR1 deficiency 
prevents hypoxia-induced PAH by influencing macrophage 
polarization (26). Consequently, CX3CR1 emerges as an important 
biomarker in PAH, mediating vascular and tissue injury (27).

Through immune infiltration analysis, we observed significant 
differences in immune cell infiltration between PAH patients and 

FIGURE 9

Risk prediction and regulatory relationships analysis. (A) Nomogram constructed for risk prediction. (B,C) Calibration curve and DCA curve of the 
nomogram. (D) Heatmap showing the regulatory relationships between immune cells and hub genes. (E,F) Bar charts illustrating the regulatory 
relationships between AHR, FAS, and immune cells. (G) Heat map of correlation between key genes and other PAH diagnostic genes.

https://doi.org/10.3389/fmed.2024.1435068
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2024.1435068

Frontiers in Medicine 14 frontiersin.org

normal individuals. PAH patients exhibited heightened infiltration of 
activated mast cells and memory B cells, while monocytes, naive B 
cells, and neutrophils were prominently infiltrated in normal subjects. 
Consistent with prior research, PAH patients displayed increased 
proportions of activated mast cells and memory B cells, alongside 
decreased proportions of monocytes, naive B cells, and neutrophils in 
lung tissues (28–30). PAH and vascular remodeling are strongly linked 
to various inflammatory cells (31). Mast cells, principal players in 
allergic reactions, have emerged as crucial contributors to PAH 
development. They participate in pulmonary vascular remodeling 
through degranulation, lipid mediator release, and interaction with 
other inflammatory cells (32). The mast cell-B cell axis notably 
influences PAH, with mast cells secreting substantial IL-6 amounts 
that stimulate B cell differentiation into plasma cells, pivotal for PAH 
and vascular remodeling (33). B cells, in turn, contribute to pathogenic 
autoantibody production and endothelial cell apoptosis through 
diverse pathways. In PAH patients, B cell subsets exhibit abnormal 
distribution, with naive B cell expansion and memory B cell reduction 
(31). Differential analysis identified hub genes (FGF2, AHR, TNFSF10, 
FAS, LEPR, NEAT1, SNHG1, CX3CR1, ANXA1, NAMPT, BACH1, 
DLEU2, and TSLP) predominantly highly expressed in the normal 
group, with most under-expressed in memory B cells and over-
expressed in naive B cells. This differential expression pattern suggests 
a protective role for hub genes.

Analysis of single-cell results showed that features were 
significantly enriched on macrophages, monocytes, and smooth 
muscle cells. A prominent pathological feature of PAH is the 
infiltration of peripheral inflammatory cells, including neutrophils, 
macrophages, dendritic cells, mast cells, T cells and B cells (31). 
Among them, the accumulation of macrophages is an important 
feature of vascular remodeling in PAH, and the activation of 
macrophages and the synergistic effect with other immune cells are 
crucial in the occurrence of PAH (34, 35). The characteristic changes 
of PAH, such as accumulation of inflammatory cells, oxidative stress 

and proliferation of vascular cells, are related to endothelial cell 
dysfunction (36). The interference and connection between 
macrophages, smooth muscle cells and endothelial cells is of great 
significance for the occurrence and development of PAH (35).

Accurate early diagnosis of Pulmonary Arterial Hypertension 
(PAH) is crucial, as its progression to later stages can lead to right 
heart failure and serious health consequences. In recent years, 
machine learning techniques have gained significant attention for 
their potential in disease prediction. However, the challenge remains 
in successfully applying effective machine learning methods to 
clinical practice while ensuring high accuracy. Specifically, the 
selection of algorithms is often influenced by personal preferences 
and inherent biases among researchers (37, 38). To address these 
issues, this study adopted a systematic approach, integrating twelve 
different machine learning algorithms and their 113 combinations, 
and conducted a comprehensive comparison of their diagnostic 
performance to identify the optimal model, thereby reducing 
subjective biases in the selection process. Through validation on a 
training set and two independent test sets, the Naive Bayes model was 
ultimately identified as the best diagnostic tool. Notably, compared to 
two other PAH diagnostic models mentioned in the literature, our 
model relies on a smaller number of genetic markers (39, 40). This 
not only simplifies the application process but also reduces the 
complexity of actual implementation, making it easier to achieve 
clinical translation. By optimizing the balance between accuracy and 
clinical feasibility, our model has the potential for wider application 
in clinical environments, enhancing the practicality and accessibility 
of PAH diagnosis.

This study successfully identified three potential biomarkers for 
pulmonary arterial hypertension (PAH), namely AHR, FAS, and FGF2, 
through the application of machine learning strategies. Among these, 
AHR and FAS emerged as the most significant. AHR and FAS, which are 
closely related to PAH, were identified by constructing a diagnostic 
prediction model. AHR, the gene encoding the aryl hydrocarbon 

FIGURE 10

GSEA analysis of functional and pathway enrichment based on gene expression levels. (A,B) GSEA analysis of functions and pathways based on high 
expression of AHR. (C,D) GSEA analysis of functions and pathways based on low expression of AHR. (E,F) GSEA analysis of functions and pathways 
based on high expression of FAS. (G,H) GSEA analysis of functions and pathways based on low expression of FAS.

https://doi.org/10.3389/fmed.2024.1435068
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2024.1435068

Frontiers in Medicine 15 frontiersin.org

receptor, is widely expressed in vascular endothelial cells. The classical 
signaling pathway is the genomic pathway, which starts in the cytosol, 
exists in a latent form, is activated by ligands, and then transfers to the 
nucleus to regulate gene expression after ligand binding. Including 
cytochrome P450 family 1 subfamily A member 1 (CYP1A1), 
cytochrome P450 family 1 subfamily A member 2 (CYP1A2), 
cytochrome P450 family 1 subfamily B member 1 (CYP1B1), TCDD-
induced aggregation (ADP-ribose) polymerase (TIPARP) and aryl 

hydrocarbon receptor repressor (AHRR) are also closely related to the 
epidermal growth factor receptor signaling pathway, JAK/STAT pathway 
and NF-κB family signaling pathway (41–43). FAS encodes the death 
receptor CD95. The death receptor CD95 belongs to the tumor necrosis 
factor receptor family. Its classical signaling pathway is the apoptosis 
signaling pathway combined with Fals, which is involved in the process 
of apoptosis. It also has non-apoptotic signaling pathways that maintain 
inflammation, regulate immune cell homeostasis and induce cell 

FIGURE 11

Expression pattern clustering and correlation analyses involving AHR. (A) Mfuzz expression pattern clustering results. (B) Correlation between clustering 
module and AHR. (C) SSGSEA clustering module scores and expression characteristics between the PAH group and the normal group. (D,E) Correlation 
analysis of modules 13 and 43 with AHR.
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migration (44, 45). AHR and FAS may affect the occurrence of PAH by 
affecting the above pathways. Furthermore, we found that AHR and FAS 
were closely associated with monocytes, macrophages and CD8 T cells. 
Combined with the immune infiltration results, it is not difficult to find 
that the occurrence of AHR and PAH is related to monocytes and 
macrophages. Monocytes develop and differentiate into phagocytes and 
dendritic cells after entering tissues or organs, and this process is 
controlled by AHR (46). Macrophages accumulate around blood vessels 
and cause vasoconstriction, increased vascular permeability and cell 
proliferation by interfering with immunomodulatory mechanisms, thus 
promoting the occurrence of PAH, and changes in the microenvironment 
of phagocytes are an important cause of PAH pathology (35, 47). From 
this we  infer that AHR affects PAH development by affecting the 
expression of macrophages.

To ensure the accuracy of these results, we validated the three genes 
determined in three independent validation cohorts, further confirming 
their effectiveness as biomarkers for PAH. However, when we analyzed 
the expression of these three genes in different datasets, we observed that 
FAS and FGF2 were both upregulated genes in all three validation 
cohorts. This phenomenon may be  due to the fact that our dataset 
includes samples from 8 patients with pulmonary fibrosis. PAH 
secondary to pulmonary fibrosis has unique gene expression 
characteristics and pathophysiological mechanisms different from other 
types of PAH (48). Nevertheless, both high expression and low expression 
of these genes are closely related to the occurrence and development of 
PAH. We  systematically reviewed the existing literature and found 
supporting evidence (49, 50). Furthermore, in this study, the area under 
the receiver operating characteristic curve (AUC) of the overall model 

FIGURE 12

GO and KEGG analyses of characteristic genes in modules 13 and 43. (A,B) GO and KEGG analysis for module 13. GO analysis shows the first five 
results of BP, CC and MF, and KEGG analysis shows the first eight results. (C,D) GO and KEGG analysis for module 43. GO analysis shows the first five 
results of BP, CC and MF, and KEGG analysis shows the first eight results.
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and the individual gene validation in each dataset was excellent, further 
validating the reliability and predictive ability of the model.

GSEA analysis of AHR and FAS showed that the pathways in the low 
expression group of AHR and FAS were enriched in basal cell carcinoma, 
calcium signaling pathway, cardiac muscle contraction, etc. All functions 
were enriched in G-protein coupled receptor activity. Among them, 
calcium signaling pathway and G-protein coupled receptor activity play 
an important role in the occurrence, progression and prognosis of PAH 
(51, 52). It can be concluded that AHR and FAS inhibit the development 
of PAH by affecting the above pathways. In addition, the function of FAS 
low expression group is also enriched in ion channel complex, and the 
disorder of ion channel can also promote endothelial dysfunction and 
lead to PAH (53). However, in the existing literature reports, we found 
that aryl hydrocarbon receptors were more often used as risk factors for 
PAH (54). Takeshi Masaki’s research indicates that the regulatory 
mechanism of AHR in PAH is different from our research findings (55). 
We hypothesize that the systemic AHR knockout model used by Masaki 
et al. may have triggered a series of more widespread systemic effects 
that obscured the specific role of AHR in certain immune cells. As a 
multifunctional nuclear receptor, AHR may exhibit diverse biological 
effects in different cell types (56). Therefore, local or cell-specific AHR 
functions may play a more refined role in the development of PAH. To 
fully understand the role of AHR in PAH, future studies should consider 
using cell-type-specific knockout models to more accurately assess the 
function of AHR in different immune cells and its impact on PAH.

The exact mechanism of the AHR on PAH remains unclear, our 
study suggests that environmental conditions may suppress AHR gene 
expression in patients with PAH, influencing the biological processes 
and pathways involved in PAH development. Individual genetic 
backgrounds may further modulate AHR gene expression, impacting 
susceptibility to PAH. FAS is similar.

Finally, we conducted Mfuzz clustering analysis, revealing that 
clusters 13 and 43 were closely associated with AHR. KEGG analysis 
of these clusters unveiled their association with TNF and 
phosphatidylinositol signaling systems. These systems are intricately 
linked with inflammation, proliferation, and migration of pulmonary 
artery vascular smooth muscle cells, contributing to vascular 
remodeling (57, 58). Moreover, GO analysis of clusters 13 and 43 
indicated enrichment in pathways regulating cell proliferation and 
inflammatory factors. The proliferation and migration of pulmonary 
vascular smooth muscle cells are pivotal mechanisms underlying PAH 
development. Inflammatory factors serve as key drivers of vascular 
smooth muscle cell proliferation and remodeling (54). Alterations in 
the AHR and FAS expression level may thus impact the development 
of PAH by modulating the expression of cell growth factors and 
influencing the balance of angiogenic and apoptotic processes, thereby 
affecting vascular structure and function.

Our study has several limitations. Firstly, the analyses relied on the 
GEO database, which has a limited sample size, potentially introducing 
bias. Additionally, our study lacks sufficient experimental validation 

FIGURE 13

Expression profiles of AHR and FAS in human tissues obtained using the EFP Tool. Bar charts displaying the expression levels of AHR and FAS across 
various human tissues and organs.
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of the identified genes, highlighting the need for further gene function 
validation experiments to confirm their viability as diagnostic markers.

5 Conclusion

We constructed a diagnostic model for pulmonary arterial 
hypertension (PAH) based on genes related to cuproptosis and hypoxia, 
and identified three key diagnostic markers, AHR, FAS and FGF2. 
Combined with immune infiltration analysis, single cell analysis and 
GSEA, the results showed that these genes may affect the progression 
of PAH by regulating cell proliferation and inflammatory response. 
This finding not only indicates their potential as novel biomarkers, but 
also provides new strategic directions for the prevention and treatment 
of PAH by modulating the expression of AHR, FAS, and FGF2.
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