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The causality between gut
microbiota and endometriosis: a
bidirectional Mendelian
randomization study
Hua Yang*

Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China

Background: Observational studies and animal experiments had suggested a

potential relationship between gut microbiota abundance and pathogenesis

of endometriosis (EMs), but the relevance of this relationship remains to be

clarified.

Methods: We perform a two-sample bidirectional Mendelian randomization

(MR) analysis to explore whether there is a causal correlation between the

abundance of the gut microbiota and EMs and the direction of causality.

Genome-wide association study (GWAS) data ukb-d-N80, finn-b-N14-EM, and

MiBinGen were selected. Inverse variance weighted (IVW), weighted median, and

MR Egger are selected for causal inference. The Cochran Q test, Egger intercept

test, and leave-one-out analysis are performed for sensitivity analyses.

Results: In the primary outcome, we find that a higher abundance of

class Negativicutes, genus Dialister, genus Enterorhabdus, genus Eubacterium

xylanophilum group, genus Methanobrevibacter and order Selenomonadales

predict a higher risk of EMs, and a higher abundance of genus Coprococcus

and genus Senegalimassilia predict a lower risk of EMs. During verifiable

outcomes, we find that a higher abundance of phylum Cyanobacteria, genus

Ruminococcaceae UCG002, and genus Coprococcus 3 predict a higher risk of

EMs, and a higher abundance of genus Flavonifracto, genus Bifidobacterium,

and genus Rikenellaceae RC9 predict a lower risk of EMs. In primary

reverse MR analysis, we find that EMs predict a lower abundance of the

genus Eubacterium fissicatena group, genus Prevotella7, genus Butyricicoccus,

family Lactobacillaceae, and a higher abundance of genus Ruminococcaceae

UCG009. In verifiable reverse MR analysis, we find that EMs predict a lower

abundance of the genus Ruminococcaceae UCG004 and a higher abundance

of the genus Howardella.

Conclusion: Our study implies a mutual causality between gut microbiota

abundance and the pathogenesis of EMs, which may provide a novel direction

for EMs diagnosis, prevention, and treatment, may promote future functional or

clinical analysis.
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Highlights:

• This study identifies specific GM taxa causally linked to EMs,
and conversely, demonstrates that EMs causally influences
certain gut microbiota taxa.

• Analysis of GM taxa may contribute to the non-invasive early
detection of EMs.

• The GM represents a novel and promising avenue
for the screening, treatment, and prevention of
endometriosis.

1 Introduction

Endometriosis (EMs) is a prevalent condition characterized
by the attachment, proliferation, and penetration of viable
endometrial tissue outside the uterus, which can lead to chronic
pain, reduced fertility, and the formation of nodules or masses due
to recurrent bleeding and inflammation. Affecting approximately
10% of women in their reproductive years, the global incidence
of endometriosis is estimated at around 196 million (1–3). The
treatment for this estrogen-dependent and currently incurable
condition typically focuses on alleviating symptoms, as even
surgical removal combined with hormonal therapy does not
guarantee immunity from recurrence. Moreover, the physical
and psychological toll on women before menopause contributes
to a significant socioeconomic burden. Surgical intervention
with histological verification remains the "gold standard" for
diagnosis, as non-invasive methods are yet to be established,
despite ongoing investigation into various biomarkers (4–6).
The complex etiology and pathogenesis of endometriosis have
been subjects of extensive research (7, 8), with the theory of
retrograde menstruation being widely accepted but insufficient
to explain the entirety of the disease’s biological mechanisms
(9). Alternative hypotheses, such as the presence of embryonic
Müllerian duct remnants (10), celomic metaplasia (11), and
vascular or lymphatic metastasis (12), along with the influence
of eutopic endometrium (13), have been proposed to supplement
and refine the understanding of EMs. However, a definitive causal
link has not been conclusively identified. The prevailing view
suggests that EMs is likely caused by an intricate interplay of
genetic, epigenetic, hormonal, environmental, and immunological
determinants (14).

The GM is defined as the collective microbial inhabitants of the
intestine, essential to health and playing pivotal roles in multiple
physiological processes, including metabolism, detoxification,
nutrient absorption, and the maintenance of homeostasis in
the intestinal mucous barrier, immune systems, and endocrine
systems (15–18). Perturbations in the composition and abundance
of gut microbiota can lead to damage of the mucosal barrier,
translocation of bacteria and endotoxins (19), elicitation of
various inflammatory responses (20), compromise of the immune
milieu (21), and alterations to the metabolome (22). Intestinal
dysbiosis not only locally affects the gastrointestinal tract but
also elicits systemic responses and has been suggested to
correlate with an array of immune or metabolic diseases, such
as Graves’ disease (23), multiple sclerosis (24), diabetes (25),

systemic lupus erythematosus (26), reproductive disorders (27),
and cancers (28–31). Notably, certain bacteria within the gut
microbiota carry genes encoding estrogen-metabolizing enzymes,
which may regulate circulating estrogen levels (32). Given that
estrogen is directly linked to the onset and progression of
EMs, it is speculated that the gut microbiota could play a
crucial role in EMs.

Although the etiological and risk factors for EMs are
largely unknown, recent studies (33–35) have highlighted notable
variations at the genus level, with elevated levels of Prevotella,
Blautia, and Bifidobacterium, and reduced levels of Paraprevotella,
Ruminococcus, and Lachnospira in patients with EMs compared
to healthy controls. In the context of patients undergoing
abdominal hysterectomy, there has been an observable shift in
the microbial composition, particularly a marked increase in
the Proteobacteria phylum from 34.36% pre-surgery to 54.04%
post-surgery (36). In a mouse EMs model with intraperitoneal
injection of endometrial fragments, Ni et al. (37) found that
EMs was significantly linked to alternative GM abundance.
Chadchan et al. (38) found that metronidazole and broad-
spectrum antibiotics could reduce EMs growth in a surgical
mouse model. In Rhesus monkeys with EMs, Birney (39) also
found significant alterations in the GM between EMs and
healthy controls; EMs was related to a higher abundance of
gram-negative bacteria and a lower abundance of Lactobacilli.
A similar correlation had been found in human studies. Shan
et al. (40) found that the alpha diversity of GM and the
Firmicutes/Bacteroidetes ratio were statistically different between
stage III/IV EMs and healthy controls. Ata et al. (41) found that
compared to healthy women, stage III/IV EMs had an elevated
ratio of Shigella/Escherichia in their stool. Svensson et al. (42) also
found lower alpha diversities, beta diversities, and the ratio of
Firmicutes/Bacteroidetes in EMs patients. Although these studies
suggest that the GM is correlated with EMs, the real effect and
impact on EMs are largely unknown. The causal relationship
between GM and EMs had been insufficiently addressed owing
to the limitations of conventional observational studies that
were susceptible to potential confounding bias or reverse causal
bias, our research primarily focuses on analyzing the microbial
composition at different taxonomic levels, ranging from phylum
to species, to understand their role in EMs. By examining
these diverse taxonomic ranks, we aim to uncover patterns and
correlations that may contribute to our understanding of microbial
influence on EMs.

Mendelian randomization (MR) analysis is a sophisticated
epidemiological statistical methodology that circumvents the
inherent limitations of conventional observational studies.
It offers a powerful approach to mitigate the influence of
confounding variables and the potential for reverse causation,
which often plague such research. This is achieved by
leveraging germline single nucleotide polymorphisms (SNPs),
which are randomly assigned at conception, to calculate the
causal relationship between an exposure and an outcome
of interest. The current investigation employs a dual-
sample, bidirectional Mendelian randomization analysis to
robustly assess the causal nature of these interactions, thereby
contributing to our understanding of the complex interplay
between the GM and EMs.
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2 Materials and methods

2.1 Inclusion criteria

(1) Human subjects only: Data must be derived from human
participants to ensure relevance to the study’s focus
on EMs in humans.

(2) Genome-Wide Association Studies (GWAS) databases: Only
data from publicly available GWAS databases will be included,
specifically focusing on those that compare Single Nucleotide
Polymorphisms (SNPs) between individuals with EMs and
healthy controls.

(3) Language and time restrictions: There are no language or time
restrictions applied to the selection of studies, allowing for a
comprehensive review of available literature.

(4) Population-scale cohorts: Studies should include population-
scale cohorts with sufficient sample sizes to ensure
statistical power in detecting associations between SNPs
and endometriosis risk.

(5) High-density SNP arrays: Studies must have utilized high-
density genome-wide SNP arrays for genotyping to ensure the
accuracy and comprehensiveness of the genetic data.

(6) European descent: This study focuses on individuals of
European descent to maintain consistency in the genetic
background across the samples analyzed.

(7) Healthy controls: Studies must include non-gender-specific
health controls without any diagnosed endometriosis to serve
as a comparison group for identifying genetic differences
associated with the disease.

2.2 Exclusion criteria

(1) Preclinical or animal models: Data obtained from preclinical
studies or animal models will be excluded, as the focus is on
human genetic associations with endometriosis.

(2) Non-GWAS data: Studies that do not employ a GWAS
approach or do not compare SNPs between cases and controls
will be excluded.

(3) Insufficient sample size: Studies with inadequate sample sizes,
which may limit the ability to detect significant associations,
will be excluded.

(4) Lack of control group: Studies lacking a proper control
group of healthy individuals without endometriosis will
not be considered.

2.3 Genome-wide association study
(GWAS) statistics of EMs

The GWAS databases included for the study compared SNPs
between individuals with EMs and healthy controls without
language or time restrictions, excluding data from preclinical or
animal models. After evaluation, two major public mete-datasets on
EMs were selected: ukb-d-N80 (43): includes 9,983,671 SNPs, with

1,496 EMs cases and 359,698 non-gender-specific health controls of
European descent, and finn-b-N14-EMs (44): comprises 16,377,306
SNPs, with 8,288 EMs cases and 68,969 non-gender-specific health
controls also of European descent.

2.4 GWAS statistics of gut microbiota

The GWAS data on GM, MiBioGen (45), was published in
2021, which has amassed 18 population-scale cohorts comprising
approximately 19,000 individuals. This initiative seeks to generate
novel insights for the burgeoning field of microbiome research.
Each participating cohort has conducted comprehensive surveys
of the gut microbiota utilizing 16S rRNA gene sequencing and
has performed genotyping on their participants using high-
density genome-wide SNP arrays. In total, 197 taxa were
included (comprising 9 phyla, 16 classes, 19 orders, 33 families,
and 120 genera), and 14 unknown taxa (11 genera and 3
families) were excluded.

2.5 Instrumental variable selection

GM is analyzed in distinct independent taxa. To ensure the
robustness and veracity of the analysis results, several optimization
strategies are used to extract closely related instrumental variables
(IVs) (28, 46–48). Initially, a strong statistical threshold of
p < 5 × 10−8 is set to extract SNPs intensively correlated
with the GM. However, since no SNPs meet this criterion for
most taxa, a second threshold of p < 5 × 10−6 is adopted
for MR analysis. Minor allele frequency (MAF) threshold = 0.01
is set to filter common SNP mutations. To avoid bias caused
by LD among IVs, an R-squared (R2) value less than 0.001
and a clumping distance of 10,000 kilobases (kb) are used as
thresholds to clump SNPs with LD. The horizontal pleiotropy of the
SNPs is tested using MR-PRESSO. Outlier tests compute p-values
for individual significant pleiotropy, while global tests compute
p-values for overall significant pleiotropy. SNPs are ranked by
increasing p-values and removed sequentially. The MR-PRESSO
global test recalculates the p-value for the remaining SNPs until
it exceeds 0.05. We also calculate F statistics to avoid weak IVs
bias. The formula used was F = R2

× (N-1-K)/(1-R2) × K,
R2 represents the coefficient of determination, which indicates
the proportion of the variance in the dependent variable that
is predictable from the independent variables. N is the sample
size, or the total number of observations. K is the number of
independent variables in the regression model. The term (N-1-
K) represents the degrees of freedom for the regression model.
The term (1-R2) represents the proportion of variance that is not
explained by the regression model. The term K in the denominator
represents the degrees of freedom for the residuals. The F-statistic
is calculated by multiplying R2 by the ratio of the regression
degrees of freedom to the residual degrees of freedom, adjusted
for the unexplained variance. This value is used to test the null
hypothesis that all coefficients in the population regression model
are equal to zero. A higher F-statistic value suggests that the model
explains more of the variance in the dependent variable and is
less likely to be due to random chance. Where SNPs with F-values
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below 10 were discarded in subsequent MR analyses. We check the
genotype-pheotype associations during website PhenoScanner for
each SNP, those SNPs related with potential confounding factor
of EMs are removed. The remaining SNPs are then used for
subsequent MR analysis. These strategies aim to ensure that the
SNPs effectively influence both the exposure (GM) and the outcome
(EMs), maintaining the validity of the MR analysis.

2.6 Mendelian randomization analysis

The causal correlation between GM and EMs is inferred using a
bidirectional two-sample Mendelian randomization (MR) analysis.
The following steps are undertaken:

Selection of SNPs for GM: SNPs closely associated with
gut microbiota are selected from the GWAS data to test for a
causal effect on EMs.

Selection of SNPs for EMs: SNPs closely associated with EMs
are used as exposure variables in the reverse MR analysis, with the
abundance of gut microbiota as the outcome to test if EMs have an
effect on altering the gut microbiota.

MR methods: Three main MR methods are employed for
the analysis of multiple SNPs: Inverse-variance weighted (IVW)
method, this method is considered more robust than the other
methods and thus the primary reliance for MR results. Weighted
median estimator (WME). MR-Egger regression. The Wald ratio
test (49) is applied when only one SNP is included in the analysis to
evaluate the association between gut microbiota taxa and EMs.

Sensitivity tests: These are conducted to assess the reliability
of the findings: Leave-one-out test (50): Used to determine if the
causal correlation is due to a single SNP. Causal direction test:
Compares the variance caused by the SNPs in the exposure to that
in the outcome to establish directional robustness. F-statistics (51):
Calculated to identify weak instrumental variables (IVs), where an
F-value less than 10 indicates a weak IV and leads to its exclusion
from subsequent MR analysis.

Software: All analyses are performed using R for Windows
version 4.3.0, utilizing the "TwoSampleMR" package for
the MR analysis and the "MR-PRESSO" package for testing
horizontal pleiotropy.

2.7 Heterogeneity

Cochran’s Q statistic (52) is utilized to test for heterogeneity
among the instrumental variables. A Q-value greater than the
number of SNPs minus one or a p-value less than 0.05 suggests
heterogeneity and invalid IVs.

The flowchart detailing the MR analysis process is presented in
Figure 1.

3 Results

3.1 SNP selection

In the first step of the analysis, SNPs associated with individual
GM taxa are extracted. A total of 1 to 11 SNPs are associated

with each of the 197 taxa (comprising 9 phyla, 16 classes, 19
orders, 33 families, and 120 genera) at a significance level of
p < 5 × 10−6. This selection is based on the optimization strategies
previously outlined. The number of SNPs per taxon is detailed in
Supplementary Table 1. No pleiotropic effects are identified by the
MR-PRESSO global test (p > 0.05).

3.2 Primary causal correlation of GM on
the risk of EMs

Using a statistical threshold of p < 5 × 10−6 and with GWAS
data from ukb-d-N80 as the outcome, the analysis reveals that a
higher abundance of the class Negativicutes is causally linked to
a higher risk of EMs (b = 0.002521, p = 0.01863 by IVW test)
(Figure 2). Homogeneous results are obtained by MR Egger and
Weighted median tests, with no horizontal pleiotropy (p = 0.359)
or heterogeneity (p = 0.4014) detected among the SNPs. The causal
direction analysis shows that the variance explained in exposure
is significantly stronger than in the outcome (p = 1e-36), and the
leave-one-out test confirms that the causality is not driven by a
single SNP. These findings suggest that the causal relationship
between the class Negativicutes and EMs is robust. Additionally,
higher abundances of the genus Dialister, genus Enterorhabdus,
genus Eubacteriumxylanophilum, genus Methanobrevibacter, and
order Selenomonadales are found to causally predict a higher risk
of EMs (Figure 2 and Supplementary Table 2). Conversely, a higher
abundance of the genus Coprococcus 1 causally predicts a lower risk
of EMs (b = -0.003294, p = 0.001354 by IVW test) (Figure 2), with
homogeneous results from MR Egger and Weighted median tests,
no horizontal pleiotropy (p = 0.657), no heterogeneity (p = 0.5713),
and a strong significant variance explained in exposure over
outcome (p = 4.34e-36). The leave-one-out test supports that the
causality is not influenced by a single SNP. These results indicate
that the causal correlation between the genus Coprococcus 1 and
EMs is robust. Furthermore, a higher abundance of the genus
Senegalimassilia causally predicts a lower risk of EMs (b = -
0.003588, p = 0.02319 by IVW test) (Figure 2). However, there are
not enough SNPs (n = 2) to perform the MR Egger and Weighted
median tests.

3.3 Verified causal correlation of GM on
the risk of EMs

With a statistical threshold set at p < 5 × 10−6 and using
GWAS data from finn-b-N14-EMs as the outcome, the analysis
shows that a higher abundance of the phylum Cyanobacteria is
causally linked to a higher risk of EMs (b = 0.2114, p = 0.03997
by IVW test) (Figure 3). Consistent results are obtained from MR
Egger and Weighted median tests, with no horizontal pleiotropy
(p = 0.359) or heterogeneity (p = 0.4014) detected among the
SNPs. Although there is not enough data for causal direction
analysis, the leave-one-out test indicates that the causality is not
influenced by a single SNP. These findings suggest that the causal
relationship between the phylum Cyanobacteria and EMs is robust.
Additionally, a higher abundance of the genus Ruminococcaceae
UCG002 and genus Coprococcus 3 is found to causally predict

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2024.1434582
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1434582 November 22, 2024 Time: 11:26 # 5

Yang 10.3389/fmed.2024.1434582

FIGURE 1

The flowchart of the present mendelian randomization (MR) analysis.

a higher risk of EMs (Figure 3 and Supplementary Table 3).
Conversely, a higher abundance of the genus Bifidobacterium is
causally linked to a lower risk of EMs (b = -0.2059, p = 0.02419
by IVW test) (Figure 3), with consistent results from MR Egger
and Weighted median tests, no horizontal pleiotropy (p = 0.73), no
heterogeneity (p = 0.6216), and the leave-one-out test confirming
that the causality is not driven by a single SNP. These results suggest
that the causal relationship between the genus Bifidobacterium and
EMs is robust. Furthermore, a higher abundance of the genus
Flavonifractor and genus Rikenellaceae RC 9 is found to causally
predict a lower risk of EMs (Figure 3 and Supplementary Table 3).

3.4 Primary causal correlation of EMs on
GM

In this analysis, with a statistical threshold set at p < 5 × 10−6,
23 closely related SNPs are extracted as instrumental variables
(IVs) for the GWAS data from ukb-d-N80, using GM taxa as the
outcome. The results indicate that EMs causally predict a higher
abundance of the genus Ruminococcaceae UCG009 (b = 28.39,
p = 0.0008221 by IVW test) (Figure 4). Consistent findings are
observed through MR Egger and Weighted median tests, with
no horizontal pleiotropy (p = 0.63) or heterogeneity (p = 0.635)
detected among the SNPs. The causal direction analysis reveals
that the variance explained in exposure is not significantly

different from the variance explained in the outcome (p = 0.285),
and the leave-one-out test confirms that the causality is not
driven by a single SNP. These findings suggest that the causal
relationship between EMs and the increased abundance of the genus
Ruminococcaceae UCG009 is robust. Additionally, EMs are found
to causally predict a lower abundance of the genus Eubacterium
fissicatena (b = -28.39, p = 0.0008221 by IVW test) (Figure 4),
with homogenous results from MR Egger and Weighted median
tests, no horizontal pleiotropy (p = 0.362), and no heterogeneity
(p = 0.4528) detected. The causal direction analysis shows that the
variance explained in exposure is not significantly different from
the variance explained in the outcome (p = 0.287), and the leave-
one-out test indicates that the causality is not influenced by a single
SNP. These results suggest that the causal association between EMs
and the reduced abundance of the genus Eubacterium fissicatena
is robust. Furthermore, EMs are found to causally predict lower
abundances of the genus Prevotella7, genus Butyricicoccus, and
family Lactobacillaceae (Figure 4 and Supplementary Table 4).

3.5 Verified causal correlation of EMs on
GM

With a statistical threshold set at p < 5 × 10−6, 30 closely
related SNPs are used as instrumental variables (IVs) for the GWAS
data from finn-b-N14-EMs, using GM taxa as the outcome. The
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FIGURE 2

The forestplot summarized the causality of gut microbiota on the risk of endometriosis during Genome wide association study (GWAS) data:
ukb-d-N80.

analysis reveals that EMs causally predict a higher abundance of the
genus Howardella (b = 0.1271, p = 0.01087 by IVW test) (Figure 4).
This finding is supported by consistent results from the MR Egger
and Weighted median tests. No horizontal pleiotropy (p = 0.275)
or heterogeneity (p = 0.5403) is found among the SNPs. Although
there is not enough data for causal direction analysis, the leave-
one-out test indicates that the causality is not influenced by a single
SNP. These results suggest that the causal correlation between EMs
and an increased abundance of the genus Howardella is robust, as
illustrated in Figure 4 and Supplementary Table 5. Additionally,
EMs are found to causally predict a lower abundance of the genus
Ruminococcaceae UCG004 (b = -0.07478, p = 0.01742 by IVW
test) (Figure 4), with homogeneous results from the MR Egger
and Weighted median tests. No horizontal pleiotropy (p = 0.391)
or heterogeneity (p = 0.4917) is detected among the SNPs. While
there is insufficient data for causal direction analysis, the leave-one-
out test confirms that the causality is not affected by a single SNP.
These results suggest that the causal association between EMs and
a decreased abundance of the genus Ruminococcaceae UCG004 is
robust, as shown in Figure 4 and Supplementary Table 5.

4 Discussion

The present study is the first to employ a bidirectional MR
approach to investigate the reciprocal causal relationships between
the GM and EMs. This research holds significant potential for
guiding clinical practice in the field of microbiome studies. From
the largest GWAS datasets on GM and two independent EMs,
robustly associated SNPs have been extracted. A thorough genetic
correlation analysis of over 400,000 European individuals has
led to the discovery that SNPs predisposing to certain GM taxa
have a causal relationship with EMs. Conversely, it has also been
found that SNPs predisposing to EMs have a causal relationship
with specific GM taxa. These findings suggest a new direction
for the non-invasive early diagnosis of EMs. Targeting the GM
may represent a novel strategy for the prevention, treatment, and
long-term management of EMs.

The GM plays a pivotal role in human health, influencing
multiple aspects of physiology and immunity. Eubiosis refers to
a balanced GM that contributes to host health, whereas dysbiosis
indicates an imbalance associated with disease states like EMs.
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FIGURE 3

The forestplot summarized the causality of gut microbiota on the risk of endometriosis during Genome wide association study (GWAS) data:
finn-b-N14-EMs.

FIGURE 4

The forestplot summarized the causality of endometriosis on gut microbiota.

Dysbiosis may promote EMs by increasing intestinal permeability
and systemic inflammation, potentially altering immune responses
and fostering a pro-inflammatory milieu that facilitates EMs
development (53–55). EMs is a very common disease during
the childbearing period for females, causing serious health and

mental distress. Many of these women experience chronic pelvic
pain, infertility, excessive bleeding, and so on. The diagnosis is
delayed usually because it can only be definitely diagnosed by
invasive methods (56), and curative treatments are unavailable
because it is estrogen-dependent. In the past few years, owing to
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the rapid development of science technologies, omics research,
bioinformatics, and high-throughput sequencing technology, a
growing body of research had found the potential relationship
between gut microbiota and EMs (57–59). In recent decades,
despite alterations in gut microbiota had been reported in animal
models and females with EMs, the results were inconsistent, and
whether there was a causal correlation and the direction of causality
between EMs and gut microbiota abundance was unclear.

In this MR study, dual verification is adopted to verify the
robustness of causality. For primary analysis, we set GWAS
data: ukb-d-N80 (included 1496 cases and 359698 controls from
European ancestors) as the outcome, MR results find genetic
liability to class Negativicutes, genus Dialister, genus Enterorhabdus,
genus Eubacteriumxylanophilum, genus Methanobrevibacter, order
Selenomonadales, genus Coprococcus 1 and genus Senegalimassilia
causally associate with EMs. For verifiable analysis, we set
summary GWAS data: finn-b-N14-EMs(included 8288 cases
and 68969 controls from European ancestors) as the outcome,
MR results find genetic liability to phylum Cyanobacteria,
genus Ruminococcaceae UCG002, genus Coprococcus3, genus
Bifidobacterium, genus Flavonifractor and genus Rikenellaceae RC9
causally associate with EMs. Our results suggest that certain GM
taxa may be involved in pathogenesis of EMs, and GM analysis may
help to identify females at high risk for EMs and may be helpful to
diagnose EMs at an earlier time.

EMs pathogenesis contains complex metabolic, genetic,
immunological, and immunological alterations. Most recent
evidence shows that intercellular crosstalk through micro-RNA
has a critical role in EMs. To date, the exact mechanism by
which the GM affects EMs is largely unknown. Baker et al. (60)
found a vicious cycle between GM and EMs through chronic
stress and β-adrenergic signaling, regarded as the “estrogen-gut-
brain axis.” Chadchan et al. (38) found that short-chain fatty
acids in the gut might affect the gut immune barrier, might
regulate the pathogenesis of EMs. Jiang et al. (61) found GM
might affect the formation and function of lymphoid structures
and immune cells during the intestinal wall, might affect the
development of EMs. Due to immunological dysfunction of
immunological (62) and estrogen homeostasis (63) playing a key
role in the development and progression of EMs, and the potential
influence of GM on immune and estrogen levels, researchers
speculate that immunological and estrogen mechanisms maybe
the key mediators.

The histopathological features of EMs are characterized by
local inflammation. An imbalance of the inflammatory reaction
and immune system is a crucial cause of EMs. Recent studies had
shown a strong relationship between alterations in gut microbiota
and psoriasis (64), inflammatory bowel disease (65), arthritis
(47), neuropsychiatric diseases (66), and some cancers. These
can be partially explained by the immunoregulation of the GM
for systemic inflammatory reactions. As unbalanced immune and
inflammatory responses are thought to be involved in EMs, the
causality between GM and EMs is logically rational. A mouse
model found that fecal transplant from EMs mice could alter
EMs progression accompanied by modulation of inflammatory
and immune responses. Lui et al. (67) found that alteration of
GM might influence the composition and function of mucosal T
cells (Th1, Treg, Th17, etc.), which might cause an imbalance in
the mucosal immune system, further triggering inflammation and

disease. Kogut et al. (68) found that alteration of GM could cause
elevated levels of systematic immune mediators. Macrophages are
the predominant immune cell population in the ascites of EMs
and may play an important role in EMs. Elkabets et al. (69), Lobo
et al. (70), and Rao et al. (71) found dysfunctional NK cells could
damage the phagocytic activity of macrophages and induce Treg
lymphocytes, which might promote ectopic endometrial cells to
escape from immune surveillance. Recent studies had suggested
that alterations in GM abundance might cause inappropriate
macrophage activity (72, 73), which might be involved in the
pathogenesis of EMs. Unfortunately, due to the limitation of GWAS
data on immune cells and immune mediators, we can not explore
whether there is a causality between GM and immune systems,
or whether the causality between GM abundance and EMs is
mediated by immune systems, which is also a crucial implication
for further research.

Another potentially critical mediator between GM and EMs is
estrogen. Previous research had shown that alterations in the GM
might lead to increased circulatory estrogen levels (74, 75). Certain
taxa of GM can produce β-glucuronidase or β- βglucosidases
involved in estrogen metabolism, which is defined as "estrobolome"
(76). Estrogen metabolism mainly occurs in the liver. The liver can
inactivate estrogen through sex hormone-binding globulin. The β-
glucuronidase or β-glucosidases came from the GM can catalyze the
decomposition of conjugated estrogen; thus, estrogen reabsorption
from the intestine is upregulated. High-throughput sequencing of
gut microbial genome finds multiple bacterial taxa carries the gene
coded for β-glucuronidase or β-glucosidases, including Bacteroid,
Bifidobacterium, Escherichia, Lactobacillus, and Lactobacillus (77–
79). Yan et al. (80) found that the abundance of Escherichia
was higher in the stool of patients with EMs than in healthy
controls. Yuan et al. (81) also reported a higher abundance of
Bifidobacterium and Escherichia in EMs mouse models. In our
MR study, we find genetic liability to the genus Bifidobacterium
(belonging to the astrobleme) causally associates with EMs,
confirming that the GM maybe involved in the pathogenesis of EMs
through estrogen metabolism.

Although numerous clinical studies had reported that GM
of EMs differed from that of healthy females, the results were
inconsistent. Animal studies had found a bidirectional correlation
between GM and EM risk (82). Whether GM changed before
or after the onset of EMs in the same female has not been
clarified yet. Whether EMs can cause alterations in GM is known
still, which seems to be difficult to solve by epidemiological or
observational studies. Therefore, we adopt a reverse MR study to
clarify this puzzle.

During the reverse MR study, we set GWAS data: ukb-d-
N80 as exposure first, MR results find SNPs predisposition to
EMs causally related to genus Ruminococcaceae UCG009, genus
Eubacterium fissicatena, genus Prevotella7, genus Butyricicoccus,
and family Lactobacillaceae. For verifiable analysis, we set summary
GWAS data: finn-b-N14-EMs as exposure, MR results find SNPs
predisposition to EMs causally related to genus Howardella and
genus Ruminococcaceae UCG004. Our results suggest that EMs
may affect certain GM taxa, indicating that GM analysis maybe a
helpful tool for the non-invasive diagnosis of EMs. However, the
mechanism by which EMs affect GM is largely unknown, which is
a crucial implication for further research.
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Prospective studies investigating the relationship between GM
and EMs, though challenging, are feasible with rigorous design. Key
elements include selecting a diverse cohort of women with EMs
and a control group, using strict inclusion and exclusion criteria
to minimize confounding factors. Standardizing sample collection
and analysis, potentially with advanced sequencing, is crucial
for reliability. Integrating immunological assays can elucidate the
interplay between microbial shifts and inflammatory processes,
potentially revealing causal pathways in EMs development.

Although there are several Mendelian randomization studies
(83–86) to explore causal correlation between GM and EMs. Due
to the GWAS data came from different population and the lower
significance threshold (P < 1.0 × 10−5), the conclusions are
inconsistent. Our study has several strengths:

(1) First bidirectional MR study: Our study is the first to conduct
a bidirectional MR analysis exploring the mutual causal
correlation between GM and EMs. This novel approach
allows for a comprehensive understanding of the reciprocal
relationships between these factors.

(2) Largest sample sizes: To date, our research encompasses the
largest sample sizes in this field, enhancing the statistical power
and generalizability of our findings.

(3) Dual verification: We have employed dual verification
methods to ensure the robustness of our results, thereby
increasing confidence in the validity of our conclusions.

(4) Elimination of confounding bias: The MR analysis
methodology effectively eliminates confounding biases
inherent in observational studies, aligning our evidence with
that of randomized controlled trials (RCTs).

(5) Strongly associated SNPs: Our study focuses on SNPs that are
strongly associated with GM, providing a solid genetic basis
for exploring their relationship with EMs.

(6) Comparison with dependent databases: By comparing our
findings with two dependent EMs databases, we enhance the
reliability and relevance of our results.

(7) No pleiotropy or heterogeneity: Sensitivity analyses indicate
no pleiotropy or heterogeneity, reinforcing the statistical
robustness of our outcomes.

(8) Potential novel biomarker: Our findings suggest certain GM
signatures may act as novel biomarkers for EMs, offering
potential for non-invasive diagnostic methods.

(9) Consistency with existing literature: Our findings resonate
with existing literature, particularly the review by Iavarone
et al. (87), which highlights correlations between GM
composition and EMs. Our study further supports the notion
that specific microbial signatures could be indicative of
pathophysiological states.

(10) Therapeutic implications: Given the accessibility of treatments
for GM dysbiosis through prebiotics or probiotics, our
results pave the way for novel therapeutic strategies beyond
traditional medicines and surgery for EMs management.

Despite the significant contributions of our research, several
limitations must be acknowledged.

(1) The sequencing methodology employed relied on 16S
rRNA gene analysis, which, while informative, does not

provide species-level resolution of GM. This constraint
potentially obscures critical details within the endometrial
microbial communities that could be pertinent to the
pathogenesis of EMs. Achieving species-level resolution
through advanced techniques such as shotgun metagenomics
or targeted PCR assays could significantly enhance our
comprehension by identifying specific microbial taxa
associated with EMs and elucidating the underlying
pathogenic mechanisms. Future studies should therefore
adopt these high-resolution sequencing technologies to delve
deeper into the GM composition.

(2) The population utilized in our study is of European
descent, raising concerns about the generalizability of our
findings to other ethnicities and geographical regions. Ethnic
and geographical variations are known to influence GM
composition, potentially limiting the applicability of our
results to more diverse populations. To address this, future
research should include participants from multiple races and
geographic locations to ensure broader relevance and validity.

(3) The use of summary data in our GWAS analysis means that
individual characteristics were not available for consideration,
making it challenging to assess the impact of personalized
confounding factors. The absence of individual-level data
limits our ability to control for potential confounders that
could affect the association between GM and EMs.

(4) Our stringent inclusion criteria may have excluded genetic
variants associated with GM that could contribute to EMs risk,
potentially leading to missed opportunities for discovery. The
rigorous thresholds applied at the IV selection stage might
have inadvertently filtered out relevant genetic markers.

(5) Although we analyzed over 200 taxa of GM, only a few showed
statistical correlation with EMs. The possibility that these
results occurred by chance cannot be entirely dismissed.
Therefore, future investigations should aim to enroll
larger sample sizes across diverse racial and geographical
backgrounds to strengthen causal inferences. There is
an urgent need for further in-depth mechanistic studies
to understand the precise roles of GM alterations in the
development of EMs. Additionally, exploring the diagnostic
and therapeutic potential of targeting GM abundance in
EMs requires comprehensive evaluation in subsequent
research endeavors.

In this study, we have conducted a comprehensive assessment
of the relationship between GM and EMs. Our findings indicate
that there exists a causal correlation between specific GM taxa and
EMs. We identified 14 GM taxa that are causally related to EMs,
and conversely, EMs appear to be causally related to seven GM
taxa. The bidirectional nature of these findings suggests a mutual
causality between the GM and the pathogenesis of EMs. These
results offer novel insights into the potential for GM as a diagnostic
tool, as well as a target for the prevention and treatment of EMs. The
implications of our study could pave the way for future functional
and clinical analyses, potentially leading to the development of
new therapeutic strategies that leverage the GM to combat EMs.
These discoveries may also contribute to a deeper understanding
of the complex interplay between the GM and EMs, providing a
foundation for further research in this area.
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